Half-day worskhop – October 5th 2018, 14:30-19:00
Objectives
The main objective of this workshop is to (re-)discuss the association of rules (i.e. concepts, abstractions) to sensorimotor robot’s data, in the context of the recent developments presented in the article “Learning abstract hierarchical compositional visual concepts“. These recent developments have shown that is possible, on the one hand, to learn associations between visual input and logical recombination operators in a hierarchical, fully grounded and with very little supervision. The connections between logic programming and robotics have been studied for a while, but the association between noisy and ambiguous data and symbolic rules has been performed by humans, using educated guesses and previous experiences. This is similar to the previous approaches in computer vision, where the image features were usually developed and selected by humans. Currently, deep learning approaches work in an end-to-end fashion so the image feature selection is done by the learning algorithm as well. Thus, the big question to be discussed is: “Are robots ready to learn symbolic rules and their association to noisy and ambiguous data in an end-to-end manner?”. Addressing this question has several issues to be considered, so we propose to have two sides: (i) The pragmatic and engineering approach, and (ii) the long-term quest of a solution. From the point of view of the pragmatic and engineering approach, it is very important to understand: (i) what are the symbolic rules and what kind of symbolic rules can be learned from sensors such as lasers, sonars, tactile sensors, etc?; and (ii) which type of robotics tasks could benefit from such logic programming approach? (i.e navigation, manipulation, interaction with humans). From a long-term quest of a solution, it is crucial to discuss what theoretical and technological insights are missing in order to reach end-to-end associations of symbolic rules to noisy and ambiguous data. Furthermore, in a more speculative discussion, the invited speakers and the audience will comment on: Will the robots be able to discover the symbolic rules from noisy and ambiguous data?
To engage roboticists in this discussion, the invited speakers will present their contributions on learning explanatory rules from data in the context of the questions above mentioned, providing the audience with the necessary background to interact proactively in the discussions. In addition to the general audience, we want roboticist and enthusiasts to present their current work on Inductive Logic Programming, Probabilistic Programming Languages and Relational learning to robotics problems. We especially would like to have papers on rule learning and rule discovery for robotics applications, but we welcome works in other areas such as rule-based planning.