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ABSTRACT

Deep neural networks (DNNs) are the standard approach
for image classification. However, they require a large
amount of data and corresponding annotations. Collecting
medical data is a difficult task, due to privacy restrictions.
Moreover, it is even harder to obtain the clinical labels, since
these must be provided by specialists. Self-supervised learn-
ing (SSL) has emerged as a possibility to overcome this issue,
since it uses non-annotated data to pre-train the DNN. Re-
cently SSL has been applied in the context of skin cancer.
However, the results were not conclusive. Moreover, a proper
analysis of the impact of different SSL approaches is still
missing. In this paper we investigate two SSL approaches:
Rotation and SimCLR. Our results highlight the benefits
of applying self-supervised learning to the classification of
dermoscopy images. Additionally, we demonstrate that these
approaches learn different and complementary features.

Index Terms— Skin Cancer, Deep Learning, Self-
Supervised Learning, Dermoscopy

1. INTRODUCTION

Skin cancer is one of the most common types of cancer world-
wide [1]. In the past decade, the number of melanoma cases
diagnosed has increased by 47% and in non-melanoma can-
cer about 5.400 people worldwide die every month due to this
disease [2]. Skin cancer is also one of the most treatable
forms of cancer when detected in an early stage. However,
late detection can have a significant impact in mortality rates.
Therefore, there is a need to develop a convenient and precise
method to perform early diagnosis [3].

Over the past decade, deep neural networks (DNNs) have
been developed to assist human experts and accelerate the
process of skin cancer diagnosis [3]. However these methods
require a huge amount of annotated data to obtain satisfac-
tory results. Collecting medical data is a difficult task, due
to privacy and law restriction, and it is even harder to obtain
clinical annotations, since these must be provided by special-
ists [4]. To overcome this issue, the research community has
been relying on transfer learning. This method consists of
first training a model for a task using a large data base and
then “recycle” it for a new target task [5]. These pre-trained
models usually have deeper architectures than what is needed

in medical image analysis [6]. Additionally, the color distri-
bution of natural images is also very different from the medi-
cal ones [7], which can result in models that have difficulties
in generalizing to the other data [6].

Self-supervised learning (SSL) has emerged as a strategy
to avoid the annotation process. This technique takes advan-
tage of unlabeled data to perform a pre-training of the DNN
[8] [9], allowing the model to learn relevant image features
that can later be applied to a specific task. Recently, SSL has
been used in the skin image context. Both Li et al. [9] and
Tajbakhsh et al. [6] applied SSL techniques with color-based
pretext tasks to the segmentation of skin lesions. Kwasigroch
et al. [4] applied two SSL techniques based on geometric
distortion to the skin cancer classification task. The closest
work to ours is that of Chaves et al. [10], in which they asses
five SSL contrastive techniques against a competitive super-
vised baseline and conclude that SSL is competitive both in
reducing variability and improving model accuracy. Despite
the promising results, it is still unclear which is the best SSL
strategy for skin images. Additionally, all works focus solely
on a quantitative analysis, disregarding the impact of SSL on
the features learned by the model.

This work aims to shed a new light on the application of
SSL in the skin cancer context. Towards this goal we have
develop a robust experimental framework to:
(i) investigate the impact of SSL on the training and general-

ization of a DNN for skin lesion diagnosis into 8 different
classes, and demonstrate that even with a small dataset
there are benefits in using SSL.

(ii) compare two different SSL approaches, one based on ge-
ometric distortion and another on contrastive learning.

(iii) for the first time provide a qualitative assessment of the
impact of the different pre-training strategies, using ex-
plainability approaches.

(iv) demonstrate the complementarity of the features learned
by the SSL strategies and the benefits of combining them.

To the best of our knowledge, this is the first work to perform
a robust quantitative and qualitative validation of the impact
of SSL, and to demonstrate the importance of combining dif-
ferent SSL techniques.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the used methodologies, and Section 3 de-
scribes the experimental setup. Section 4 presents the results
and Section 5 concludes the paper.
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2. METHODOLOGIES

This section gives a brief overview of SSL and the two strate-
gies adopted in this work, as well as the experimental setup
adopted in the skin cancer problem.

2.1. Self-Supervised Learning (SSL)

SSL is a technique used to extract visual features from unla-
beled data [4]. The main goal is to use the learned weights
to initialize a DNN for a specific target task, which is, in the
skin cancer image analysis, the classification of the different
skin lesions. To achieve this goal, the model is trained to
execute a pretext task, for which labels can be easily gener-
ated without human supervision. Pretext tasks aims to extract
different feature representations from the images. Therefore,
it is important to select a SSL technique that is adequate to
the wanted target supervised task. In this paper we will use
two SSL techniques, which we believe to have a good per-
formance on the skin image classification problem: Rotation
[11] and the SimCLR [12].

2.1.1. Rotation technique

Rotation [11] is a classification-based technique, where the
network is trained to predict which rotation (0º, 90º, 180º or
270º) has been applied to the image. Therefore, by predicting
which rotation was applied to the input, the model is capa-
ble of extracting useful information from each image. The
training pipeline starts with a small set of geometric trans-
formations, which will be applied to the dataset. Secondly,
the transformed images are fed to the model and the DNN is
trained to identify which rotation was applied to the original
image. As mentioned before, the set of geometric transforma-
tions defines the classification task, meaning that if there are
four rotations then it is a 4-class classification problem.

2.1.2. SimCLR technique

SimCLR [12] is a SSL approach that applies the concept
of contrastive learning to infer feature representations from
the unlabeled dataset. Feature representations are learned by
maximizing the agreement between differently augmented
views of the same image via a contrastive loss, which will
also accentuate the dissimilarity among different images. The
key idea is when comparing the multiple images using the
contrastive objective, the representations of corresponding
views are ’attracted’ to one another and the others are ’re-
pelled’. SimCLR can be divided into four main steps: 1)
Random transformations are applied to the input, in order to
obtain a pair of two augmented images. 2) Each augmented
image within the pair is sent to an encoder. 3) The output
representations of the encoder are then sent to a multi-layer
perceptron (MLP). 4) The contrastive loss is applied in the
feature space given by the MLP.

(a) Supervised Learning. (b) Self-supervised Learning.

Fig. 1. Proposed framework using different initialization
techniques applied to the skin cancer diagnoses. In both mod-
els the last layer is fully-connected one with 8 units. The
triangle represents the last layers of the DNN specific of the
pretext-task.

2.2. Experimental Framework

This paper aims to perform a robust assessment of the impact
of SSL as a pre-training technique, to initialize the weights
of a DNN for skin cancer diagnosis. To better understand the
impact of SSL, we perform a systematic assessment, adopting
the following pipeline:
(i) Baselines - two standard supervised learning strategies,

where the weights of the DNN are initialized either at ran-
dom (trained from scratch) or using a pre-trained model
on ImageNet (fine-tuning).

(ii) Scratch + SSL - standard SSL methodology, where the
weights of the DNN are initialized at random and refined
using either the Rotation or the SimCLR technique.

(iii) ImageNet + SSL - a variant of the SSL approach, that
aims to leverage the information from a model pre-trained
on the ImageNet dataset. Here, we initialize the weights of
the model used in the SSL phase from ImageNet and refine
them using either the Rotation or SimCLR approach.

(iv) Fusion - fusion of the DNNs pre-trained using the Ro-
tation and SimCLR techniques both at the feature (early
fusion) and classification (late fusion) level 1.

Fig. 1 (a) describes the proposed generic approach for the
application of supervised learning (baselines) and Fig. 1 (b)
describes the proposed approach for the application of self-
supervised learning. For the latter, the first step consists of
pre-training the DNN using the chosen pretext task and, sec-
ondly, fine-tuning the parameters of model to the classifica-
tion task (this time using labels), by recycling the encoder
and adding a fully connected layer to output the 8 classes pre-
sented in our skin cancer dataset. In all our experiments, the
encoder is a ResNet-50 [13].

3. EXPERIMENTAL SETUP

3.1. Dataset and Evaluation Metrics

All experiments were performed using the ISIC 2019 [14]
[15] [16]. This dataset comprises 25,331 dermoscopy images,
divided into 8 lesions classes: Actinic keratosis (AKIEC),

1More details will be presented in the Support Material document
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Basal cell carcinoma (BCC), Benign keratosis (BKL), Der-
matofibroma (DF), Melanoma (MEL), Nevus (NV), Squa-
mous cell carcinoma (SCC) and Vascular (VASC). These
labels are only used to train the classification models (recall
Fig. 1). The images were collected at different medical cen-
ters (each center generated images with different sizes, color
and aspect ratio). Therefore, it was necessary to pre-process
them. This process compensated the color and allowed all the
images to have the same size, while maintaining their aspect
ratio. After having resized all the images to the desired size
(224x224), we applied the color constancy algorithm Shades
of Gray as it is proposed in [17]. In order to compare the
different initialization approaches and assess their robust-
ness, we adopted a 5-time Monte Carlo sampling strategy,
where the ISIC 2019 dataset was partitioned five times into
training (70%) and validation (30%) sets. Based on this, we
report the median and standard deviation of the following
metrics: Balanced Accuracy (BACC), Precision, F1-Score,
and Specificity.

3.2. Network Training and Computational Environment

The experimental framework was implemented using Tensor-
flow/Keras and one NVIDIA Tesla K80 GPU 2. All mod-
els were trained for 60 epochs, using early stopping and the
Adam optimizer [18]. The batch size was set to 32. For
SSL, the losses are the categorial cross-entropy for the ro-
tation task and for the SimCLR it was used the NT-Xent loss
(with τ = 0.1). For this task, we transformed the input image
using horizontal flips, central crops and rotations of 0, 90, 180
or 270 degrees. We also studied the impacts of random color
distribution and random Gaussian blur, however these exper-
iments resulted in a lower performance of the model. Both
tasks had a initial learning rate of η = 10−4, however the ro-
tation had a reduction factor of 0.75 and the SimCLR a expo-
nential decay of 0.96. To train the classifier, we adopted the
weighted categorical cross-entropy loss, where the weights
are set to the relative frequency of each class, in order to ac-
count for the unbalance. Here the learning rate was set to
η = 10−5, with a reduction factor of 0.75. In order to prevent
over-fitting, we also used online data-augmentation (random
flips and rotations of multiples of 90 degrees).

4. RESULTS

The results section is divided into three parts: i) a quanti-
tative analysis, where we compare the different approaches
taking into consideration the selected evaluation metrics; ii)
a qualitative analysis that used the Grad-CAM technique [19]
to convey a more interpretable analysis of the impact of the

2The source code and the Support Material document will
be released in: https://github.com/mrverdelho/
IMPACT-OF-SELF-SUPERVISED-LEARNING-IN-SKIN-CANCER-DIAGNOSIS.
git

various initialization strategies in the features learned by the
model; and iii) a quantitative analysis of the fusion of SSL
strategies.

4.1. Quantitative Analysis

Table 1 summarizes the median and standard deviation of the
scores obtained for the different initialization techniques. By
looking at Table 1 it is possible to see that there are some
benefits in using SSL when compared to the baseline super-
vised training. By looking at the baseline trained from scratch
(row 1) and to both rows trained from scratch with self su-
pervised learning techniques (row 3 and 4) it is visible that
both SSL techniques presented higher median and lower stan-
dard deviations. This proves that when comparing models
trained from scratch there is a tendency to have higher accu-
racy and more stability ( the standard deviation has a lower
value) in the models that use SSL. By looking at the models
trained using the ImageNet weights - the baseline (row 2) and
to both models that used the SSL techniques (row 5 and 6)-
it is visible that the latter two have a higher stability (lower
standard deviation) even though both had smaller or similar
accuracy to the baseline. This proves that when comparing
models trained with the ImageNet weights there is a tendency
to have more stability in the models that use SSL. Finally,
looking at the SSL pre-trained models (row 2, 3, 5 and 6) it
is possible to see that the rotation technique has a higher
accuracy when compared to the model initialized with the
SimCLR technique. More results are presented in the sup-
port material document. A shared conclusion between our
work, [4], and [10] is that, when using SSL pre-trained mod-
els, there is an out-performance in general terms, especially
in variability.

4.2. Qualitative Analysis

We opted to execute a qualitative analysis, since we wanted
to understand what each model saw differently and what it
learned in order to make the diagnostic decisions. There-
fore, to analyze the differences between the learned represen-
tations for each initialization technique the Grad-CAM [19]
was used. This is a technique used for visualizing the features
learned by the DNN and the regions of an image that activate
a certain label. Figure 2 shows the Grad-CAM results for the
different initialization techniques (fine-tuned with ImageNet
weights). We present more examples in the Support Material
document. Figure 2 proves that for the same input image all
three models look at different parts of each lesion. Therefore,
apart from having different performances each model seems
to learn different information about each class of lesion. The
SimCLR pre-trained model tended to focus more in the parts
of the lesion that presented higher contrast, while the Rotation
looked more at the structure of each lesion. The ImageNet
pre-trained model, was the least intuitive to interpret, since its
focus varied between lesion and skin. After, analyzing a set of
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Table 1. Application of the Monte Carlo Sampling with different initialization techniques: training the model from scratch or
fine-tuning with ImageNet weights; application of two self-supervised learning (SSL) techniques -Rotation and SimCLR - and
fusion of both techniques.

Initialization Technique BACC (%) Precision (%) F1-Score (%) SP(%)
Scratch 46,82 ± 2,00 35,37 ± 3,84 37,24 ± 4,64 92,89 ± 0,55

Baseline ImageNet 71,48 ± 1,82 65,14 ± 2,78 67,93 ± 1,75 96,04 ± 0,12
Rotation 54,92 ± 1,15 40,54 ± 1,84 43,19 ± 2,04 93,39 ± 0,18

Scratch + SSL SimCLR 52,54 ± 0,86 44,62 ± 1,39 47,53 ± 0,96 93,94 ± 0,18
Rotation 71,47 ± 0,30 62,37 ± 0,74 65,70 ± 0,47 95,77 ± 0,05

ImageNet + SSL SimCLR 65,37 ± 0,55 54,47 ± 2,71 58,28 ± 1,95 95,17 ± 0,18
Early Fusion 73,78 ± 0,24 68,41 ± 2,07 70,99 ± 2,61 96,40 ± 0,36

Fusion Late Fusion (mean) 57,09 ± 2,19 50,28 ± 1,41 52,02 ± 1,08 94,24 ± 0,19

Fig. 2. Example of different lesion visualizations using
the Grad-CAM algorithm (Baseline, Rotation and SimCLR).
Each image contains the predicted lesion class and we present
the incorrect classification with a red square.

different images it was possible to confirm that each method
also had some limitations. The rotation had difficulties in de-
tecting centered and symmetrical lesions, since each rotation
of 90 degrees is similar, then the model does not learn useful
information about this lesion. This limitation is visible in the
fifth row and second column of fig. 2. However, the SimCLR
as some images contained margins with high contrast (black
borders), this method tended to focus more on the margins

than the lesion (exemplified in the fourth row and third col-
umn of fig. 2). Based on the qualitative results, the question
that arose next was: Is the information learned by both
SSL techniques complementary?

4.3. Fusion of SSL Approaches

As a consequence of the previous interrogation, we performed
two tests that fused the models pre-trained with SSL. First,
we used early fusion, which fuses the different methods in
the feature space. Secondly, we used late fusion that fuses
the models in the classification scores level (we applied the
mean strategy). The fusion results appear in the last two rows
of table 1. It is possible to conclude that the early fusion
(row 7) had better results than any other model both in
stability and accuracy, proving that in fact the features of
both models have complementary information. However, the
late fusion (row 8) proved to have worse results, meaning that
the features are complementary, but not learned classification
models.

5. CONCLUSIONS

This paper performed a robust assessment of the impact of
SSL as a pre-training technique for skin cancer diagnosis. In
particular, we performed a quantitative and qualitative anal-
ysis of the different pipelines. During this assessment we
compared two SSL techniques: Rotation and SimCLR. Our
experimental results show that there are benefits while using
SSL. We observed that when applying this technique, the clas-
sification DNN appeared to have less variability in its perfor-
mance. To the best of our knowledge this is the first work that
provides a qualitative analysis of the features learned by the
SSL strategies. This study led us to conclude that each model
learned different information from the data. Therefore, we
also studied the combination of the two SSL techniques which
resulted in the highest performance. SSL is known to benefit
from using more unlabeled data. Therefore, we plan to repeat
both experiments using more unlabeled data in future work
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