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Abstract— Joint attention is the capacity of sharing attention
between two agents and an aspect of the environment, through
the use of different cues, namely gaze. This capacity is of
paramount importance for social skills. People with Autism
Spectrum Disorder (ASD) present certain deficits in joint
attention. Therefore, there is an increasing interest in finding
therapies to improve this skill. Some of these therapies include
robots since they are known to be attractive to people with
autism due to their motivation ability and predictability when
compared with humans. In this line, we have designed a real-
time attention classifier for a triadic robotic therapy, using
Gaze360 and geometrical considerations of the scene. We were
able to classify the gaze of the therapist and the one of the
child during the whole session, even in a highly unconstrained
scenario with a single camera, achieving a mean accuracy
of 59%. This classifier can be used for the measurement of
joint attention, an important metric for the development of
adaptive robotic therapies, where increasing levels of difficulty
and engagement are provided dependent on the ASD children,
who are characterised by high heterogeneity. Future work will
pass by the calculation of this metric and integration on a
robotic platform for ASD therapy to understand the impact of
these robotic therapies in improving ASD symptoms, specifically
on how ASD children share their attention with other people
present in the rehabilitation scenarios.

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental
disorder characterised by communication and social deficits
and the presence of repetitive behaviours. Among ASD chil-
dren, symptoms are very heterogeneous, therefore there is not
a unique standardised treatment that can help all individuals.
Recently, robots have been introduced in treatment protocols
for children with autism thanks to their predictability and
rule-based functioning, which make social interactions easier
for ASD children [1].

One of the social skills targeted with robotic therapies is
joint attention. Joint attention refers to the ability to share
attention between a person and a social partner on an aspect
of the environment (object or people) by acts of eye-gazing,
pointing or other verbal or non-verbal indications [2]. Joint
attention seems to be impaired in ASD children who tend

*This work was supported by the Portuguese Foundation of Science
and Technology (projects SFRH/BD/145040/2019) and Associazione Paolo
Zorzi (project IOGIOCO)

1NEAR-Lab, Department of Electronics, Information and Bioengi-
neering, Politecnico di Milano, Via Ponzio, 34, 20133 Milano, Italy
laurajoana.espinosa@polimi.it

2 Institute for Systems and Robotics, Instituto Superior Técnico, Univer-
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to produce less declarative pointing gestures than typically
developing children [3]. However, early intervention on joint
attention can lead to positive outcomes in other developmen-
tal skills, such as communication and social skills [4].

In robotics therapies, either joint attention is trained specif-
ically or it improves as an outcome of other trainings. In
the first case, the child should look at target images when
prompted by the robot [2], [5]. These scenarios tend to be
very constrained with a fix child position and the use of
multiple cameras. Such setup prevents the implementation
of these therapies in clinical practice. In the second case,
the joint attention is evaluated while the subjects are per-
forming other therapies (imitation therapy [6], narrative skills
training[3]). In these cases, the subject can move freely, in
an unconstrained scenario, and the number of cameras is
reduced (one or two) to not influence the therapy.

Regarding the measurement, joint attention is usually
evaluated indirectly from gaze patterns of the participants.
The measures can be obtained manually (e.g. one or two
people analyse the frames recorded during the session [1],
[2]) or automatically so that they are more objective, easier
to obtain and can be included in the robot’s control loop
for adaptive therapies [5]. Gaze measures can be obtained
using specific devices as eye-trackers [7] or algorithms for
gaze estimation through RGB cameras. Methods for the
indirect calculation of the gaze include estimation through
the orientation of the head [5] or using facial landmarks [8],
whose performance is limited by possible occlusions of the
eyes.

Therefore, more advanced algorithms have been developed
as Gaze360 [9], WHENet [10] and RT-Gene[11], allowing
gaze estimation even if just part of the eye is visible. Gaze
360 consists in long short-term memory cells, where the out-
put for one frame is dependent on the previous and following
frames. Thus, even if the gaze is occluded, its estimation is
still possible based on previous frames. Gaze360 receives
as input a cropped image of the face and outputs a gaze
direction estimation in terms of azimuth and elevation with
respect to the camera reference frame. This algorithm was
tested by [12] for the analysis of the eye-contact of ASD
children during standard dyadic therapy. To our knowledge,
this is the only work where the algorithm is tested in an
unconstrained environment with a single camera.

In this work, our main goal is to design a real-time atten-
tion classification system. This classification system should
be used in the future for the measurement of joint attention
during a robotic therapy for ASD children, facilitating the
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implementation of adaptive protocols, protocols in which the
robot tasks are changed according to the attention of the
children. The robotic therapy consists of several interactive
turn-taking games between a humanoid robot, the child and
the therapist (IOGIOCO protocol) for the training of gestures
[13]. In our therapy, the subjects move freely and just one
camera is used to reduce the setup times, which is required
in clinical practice, and due to a space limitation (the therapy
room dimensions: 5x3.5 m). We choose to apply Gaze 360
and we aim at bringing it into unconstrained robotic thera-
pies scenarios, where targets can occlude other targets (e.g.
therapist in front of the robot). Although Gaze360 method is
prepared for unconstrained scenarios, it has long computa-
tional times, preventing real-time applications, specially due
to the face detection process, provided by DensePose [14],
an algorithm that fully reconstructs the whole body. Thus,
our contributions in this work are mainly two:

• developing a method for choosing the best face detector
to be associated with Gaze360

• implementing a full attention classification system for
an unconstrained robotic therapy of ASD children (Fig-
ure 1).

Fig. 1. Representation of the attention classification system, where the
Therapist (pink cone) and NAO (yellow cone) areas of interest are compared
with the subject gaze direction estimation (red arrow). In this case the system
would classify as ’looking at the robot’.

Fig. 2. Full overview of the attention classification system.

II. METHODS

For achieving real-time gaze classification, first the best
face detector was chosen considering the characteristics
of the IOGIOCO protocol. Then, for specific acquisition
sessions, the gaze was obtained in terms of an azimuth angle
and was processed. Subsequently, this angle was compared

with the areas of interest (AOI) of the different targets and
classified according to them (patient looking at the robot
or patient looking at the therapist). Finally, we performed a
sensitivity analysis to understand the effect of the parameters
of this gaze estimator (Figure 2).

A. Face Detector Benchmark

Gaze360 requires cropped images of the face to estimate
the gaze. Therefore, we compared three face detection al-
gorithms (YOLO [15], RT-Gene [11] and DensePose [14])
concerning the accuracy and the computational time to find
the best match for our system. We expected the face detectors
associated with Gaze360 to have different performances.
Gaze360 is a neural network model with long short term
units, thus dependent on the training images resolution and
on the detection capability of the bounding boxes algo-
rithms since it uses seven consecutive frames. RT-Gene and
YOLO were chosen because they were already present in
the literature: YOLO was associated with WHENet, and RT-
Gene facial detector, based on Multi-Cascaded convolutional
neural networks, was used in the whole architecture of RT-
Gene. Both have been implemented for gaze estimation
through the head pose. Here, we explored their behaviour
in combination with Gaze360.

Since there are no standard protocols for the benchmarking
of face detectors, we developed two validation procedures,
which we tested on one subject: one at a short camera-subject
distance and another at a long camera-subject distance. In
the first, we compared the outcomes of the gaze estimation
with the different face detectors with a gold-standard gaze
estimation through an eye-tracker, Tobii T60, in a controlled
scenario. In the latter, we analysed the algorithms in a
condition closer to the therapeutic one. We needed the two
validation scenarios because the gold-standard method could
be only applied for distances lower than 80 cm, preventing
its use in a long camera-subject distance setup.

During the first validation step procedure, the subject kept
his head in a fixed position, putting the chin on the rest and
performing only eye movements (Figure 3 (a)). The partic-
ipant executed 5 validation acquisitions. In each validation
sequence (Figure 3 (b)), 13 different points appeared one at
a time for two seconds on the Tobii T60 screen, for a total of
14 steps (the central point was displayed twice). Knowing the
dimensions of the Tobii screen, we converted the validation
dots’ coordinates to pixels, and their sequence constituted
the expected signal. Then, we calculated the Root Mean
Square Error (RMSE) between the gaze direction estimated
by Tobii T60, the several algorithms (DensePose+Gaze360,
YOLO+Gaze360, RT-Gene+Gaze360) and the expected sig-
nal, to evaluate their performance.

For the long camera-subject distance validation step, four
points were fixed in different positions of a room (Figure 3
(c)). The subject looked at each of them, moving only the
eyes, according to a sound played every 10 seconds. From the
room geometry (Figure 3 (d)), an expected signal of azimuth
was calculated to compare the algorithms’ performance. A
cross-correlation process was applied between this expected
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Fig. 3. Benchmark setups for the validation of the different face detection
algorithms.

signal and the several estimated signals to adjust the delay
between the sound and the actual point of interest switch.
The algorithm outcomes were then evaluated, calculating
the RMSE between the expected signal and the estimated
azimuth.

After the two validation steps, YOLO was considered the
best face detector method for our system due to a good
balance of speed and accuracy.

B. IOGIOCO robotic therapy setup

In this study, attention was analysed indirectly through a
robotic therapy done in Fondazione Don Gnocchi. The final
objective of this therapy was to train semantic gestures (e.g.
big, small, etc.). This study was approved by the Ethical
Committee of Fondazione Don Gnocchi (date: 28/08/2019).

For this case study, the humanoid robot NAO (SoftBank
Robotics) was chosen, since it has 25 degrees of freedom,
being able to produce the different gestures. A Microsoft
Kinect camera recorded the participant’s movements. We
placed the camera above the robot to capture both the subject
with ASD and the therapist who were in front of the robot.
Since it is a depth camera, it is able to estimate 3D joints’
coordinates of the two people, also known as keypoints.
These coordinates were used for controlling the robot to
mirror each subject (further detail in [13]).

The therapist was tracked through a red t-shirt she wore
during the session. A video recording was maintained
throughout the therapy session using the same camera. Si-
multaneously, the 2D joint coordinates in pixels, calculated
by the Kinect for each frame, were registered (called joint
points from now on).

C. Clinical acquisitions

Two sessions of two children were analysed to study the
impact of the gaze estimator. The numbers 6 and 7 were
attributed randomly to identify them anonymously. Both
were preschooler patients (under 6 years of age), with a
clinical diagnosis of Autism Spectrum disorder, confirmed by
experienced child neurologists according to the criteria of the

TABLE I
AUTISM ASSESSMENT OF THE CHILDREN CHOSEN. INT: RECIPROCAL

SOCIAL INTERACTIONS, COM: LANGUAGE/COMMUNICATION, BEHAV:
REPETITIVE BEHAVIORS/INTERESTS, SA: SOCIAL AFFECT, RRP:

RESTRICTED AND REPETITIVE BEHAVIORS, CS: COMPARATIVE SCORE

ADI-R ADOS-2
Child Int Com Behav Module SA RRP CS

6 1.4 1.5 1.3 2 0.8 1 6
7 1.87 1.7 0.8 1 1.1 1.75 6

Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition [16], and confirmed by Autism Diagnostic Observa-
tion Schedule – Second edition (ADOS) [17] and Autism
Diagnostic Interview-Revised (ADI-R) [18]. The results for
each patient are reported in detail in Table I. Patient 7 is a
male, non-verbal patient with a global developmental delay
who needs substantial support in everyday life. Difficult to
engage in the robot activities, the functional play was absent.
Patient 6 is a female with phrasal-speech language. This
patient has a mild developmental delay with global better
performances. She is more collaborative and more interested
in the activities proposed by the therapist.

During all sessions, their regular therapist was present.
The whole intervention had an increasing difficulty. In the
first level, the ASD subject was familiarised with the robot
functionalities(sounds, lights, movements). In level 2, the
subject could move freely and be mirrored by the robot.
In the third level, a triad was created between the robot,
therapist and ASD child to specifically train gestures. The
description of the full intervention (protocol and inclusion
and exclusion criteria) can be found in [19].

Child 6 did the three levels during the analysed sessions,
while child 7 performed the two initial levels. The duration of
the sessions depended on the engagement of the child. These
sessions happened in January of 2021 (child 6) and Novem-
ber of 2020 (child 7), during the pandemic period, thus, the
therapist used personal protective equipment, including mask
and visor, that influenced the perception of her gaze.

D. Gaze Extraction and Data Processing

From each video recorded during the therapy, the gazes
of the participants were estimated. Each frame was passed
to YOLO, which produced two bounding boxes. The images
were cropped and provided to the Gaze360 algorithm that
estimated the gaze.

Then, the gaze was attributed to each subject, using the
centre of the bounding box and the joint point of the head
tracked by the Kinect. If the joint point of the child was
closer to the centre of the bounding box than the joint point
of the therapist, the estimated gaze was considered to belong
to the child. All the frames without the joint points of both
the therapist and the child were discarded. In the end, the
azimuth of both participants was filtered through a moving
average filter with a window of 10 samples.
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E. Areas of Interest Definition
After obtaining the gaze orientation expressed by the

azimuth angle (α), this angle should be compared with
the different areas of interest (AOI), to identify which ob-
ject/person the subject was looking at. For each participant,
two targets were defined: robot and other person (therapist
or patient). Each area of interest t was defined by two angles
(a right angle, ϕrt and a left angle, ϕlt), depending on the
width of the target and its position in space. Therefore, the
participant was looking at the target if ϕrt < α < ϕlt.

Fig. 4. Definition of the area of interest

The definition of these angles considered the geometry
of the scene. For example, for the robot, through its position
(Xrobot, Zrobot), the ϕrrobot was given by Equation 1, where
the width was established by the physical dimensions of the
robot (Figure 4) and Xr = Xrobot − width

2 .

ϕrrobot = arctan

(
Xsubject −Xr

Zsubject − Zrobot

)
(1)

Xrobot and Zrobot changed at each session and were calcu-
lated through iterative process using the projection equation
of the camera crobot = P ∗ Crobot, where P is the cali-
bration parameters matrix, Crobot = (Xrobot, Yrobot, Zrobot)
the 3D coordinates vector of the robot and crobot =
(urobot, vrobot, 1) the corresponding 2D pixel coordinates
vector. The P matrix was obtained through a Direct Linear
Transformation using 6 keypoints (3 of the therapist and 3
of the child) in 3D and the corresponding jointpoints in
2D. Then, the value of Yrobot was fixed to -0.6m, since
the camera was always at the same position and the height
of the robot was known. Subsequently, for each session,
different values of Xrobot and Zrobot were tested until the
correspondent projection in the image matched the head of
the robot, which was verified by an operator. These values
were then used in Equation 1 to obtain the AOI of the robot.

Regarding the other target (therapist and patient), the
positions of each participant were used to establish the area
of interest angles in relation to the Kinect camera. In this
case, the positions of their heads were considered as the
centre, and their widths were obtained by the difference
between their shoulders positions. All these positions were
given directly by the Kinect.

F. Classification performance
After establishing the areas of interest, the attention of

each subject was classified and compared with the ground
truth to evaluate the algorithm performance.

The ground truth was constructed by one operator who
labelled the gaze of both participants in 700 frames of each
therapy session. For each frame, the subject’s gaze was clas-
sified as looking at the robot, looking at the therapist/patient,
looking elsewhere or none of the above if the operator could
not classify that frame. Then, we calculated the accuracy
by comparing the estimated gaze prediction and the label
from the operator. This accuracy was computed in relation
to each target, so four performance indexes were obtained
for the description of the algorithm (Patient looking at the
therapist, Patient looking at the robot, Therapist looking at
the Patient, Therapist looking at the robot).

Moreover, another independent rater labelled the partici-
pants’ gaze in 350 of the 700 labelled frames to study the
complexity of the acquisition scenario. Then, the Cohen’s
Kappa coefficient was computed to evaluate the agreement
between the two raters.

G. Sensitivity analysis

Associated with the azimuth estimation (α), Gaze360
provides a confidence error angle σ such that [α−σ;α+σ]
covers the 10% quantile up to the 90% quantile range of the
probability density function of the estimated angle α. Thus,
higher values of σ lead to more uncertainty in the estimation.

To understand the impact of this parameter, we defined a
threshold to discard all the estimations with a higher value
of uncertainty (σ > threshold). The threshold was set in a
progressively increasing range from 0 rad till 1 rad.

III. RESULTS AND DISCUSSION

A. Face Detection Benchmark

The results of the short distance validation process com-
paring the expected signal with the signal estimated by Tobii
T60 and the several algorithms are shown in Table II.

TABLE II
RMSE OF SHORT DISTANCE VALIDATION PROCESS [PIXEL]

Mean ± Std. Dev. [px]
Tobii T60 154 ±33

DensePose + Gaze360 246 ±27
YOLO + Gaze360 420 ±80

RT-Gene + Gaze360 516 ±131

Although the results presented were just for one subject,
Tobii T60, as expected, provided the most accurate per-
formance for the gaze direction estimation. From this first
validation experiment, RT-Gene provided the less accurate
estimation, while DensePose drove the Gaze360 algorithm
to the best accuracy among the other facial detectors.

For the long camera-subject distance procedure, the results
of the RMSE after the cross-correlation process are reported
in Table III, with the computational times of each face
detector. From these results, RT-Gene still had the worse
RMSE error, while DensePose and YOLO had similar errors.
However, the YOLO algorithm takes five times less time to
obtain a bounding box of the face. Therefore, YOLO was the
chosen face detector for our attention system. Future work
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should pass by testing with more subjects to increase the
robustness of this conclusion.

TABLE III
RMSE AND FACE DETECTION TIME OF LONG DISTANCE ACQUISITIONS

[DEG].

RMSE[deg] Face detection time [s]
Mean±Std. Dev. Mean±Std. Dev.

DensePose + Gaze360 23.18 ± 2.65 0.335 ± 0.002
YOLO + Gaze360 24.24 ± 1.76 0.064 ± 0.008

RT-Gene + Gaze360 36.31 ± 16.27 0.069 ± 0.001

B. Classification performance

From the manual labelling performed by the two indepen-
dent raters, Cohen’s kappa coefficients of three sessions were
calculated and are shown in Table IV. In general, the coeffi-
cients regarding the patients were lower than the coefficients
of the therapist, highlighting the intrinsic complexity in the
detection of the patient gaze direction during the therapy
sessions. The lowest values refer to the child observations
in the second session of subject 6 and in the first session
of subject 7, reflecting a weak agreement [20]. Regarding
the therapist, the agreement is classified as moderate and
not as strong, which was expected for a healthy subject, due
to the protective material (e.g. face mask) which makes the
discrimination of the therapist’s gaze harder.

TABLE IV
INTER-RATER RELIABILITY - COHEN’S KAPPA COEFFICIENT. NA

REPRESENTS THE SESSION WHICH WAS NOT LABELLED BY THE SECOND

RATER.

Patient [%] Therapist [%]
Child 6 - Session 1 81 91
Child 6 - Session 2 50 65
Child 7 - Session 1 44 67
Child 7 - Session 2 NA NA

TABLE V
3D ESTIMATION ACCURACY OVERVIEW FOR THE TWO SESSIONS (S1

AND S2) OF THE TWO CHILDREN. T REPRESENTS THE THERAPIST, C ,
THE CHILD AND R, THE ROBOT. THE ARROW INDICATES THE OBJECT OF

INTEREST, NAMELY T ->C REPRESENTS THE THERASPIST LOOKING TO

THE CHILD.

Child 6[%] Child 7[%]
S1 S2 S1 S2 Mean± Std. Dev. [%]

T ->R 62 77 53 59 63 ±9
T ->C 57 46 59 49 53 ±5
C ->R 66 63 65 53 62 ±5
C ->T 64 58 54 59 59 ±4

Table V shows the overall algorithm performance for each
analysed session. The two worst outcomes were verified
for the therapist looking at the child in Session 2 of both
children. The proximity of the therapist to the camera in
some frames of these acquisitions can justify these results.
Thus, her face was completely covered and not detectable
by the face detection algorithm every time she looked at

the patient. In some frames, we verified that YOLO did
not detect any face. Therefore, a deeper analysis of the
facial detection algorithm may lead to a better estimation
accuracy since the Gaze360 algorithm would work on a more
continuous temporal sequence.

Moreover, in three of the four acquisitions the accuracy
of the gaze of each participant towards the robot was higher
than the one towards the ’other person’, which is a reflex
of the robot’s static position. Contrary to the ’other person’,
who was always moving and their AOI depended on the
Kinect detection, the robot had a fixed position, being the
calculation of its AOI, probably, more precise. Consequently,
the accuracy towards this target was higher in the majority
of the acquisitions.

Comparing the results of Child 6 and of Child 7, the
accuracies are higher for the former, which can be ascribed to
the children’s characteristics described in Section IIC. Child
6 has a mild developmental delay and was more collaborative
than Child 7, namely, she was more still during the sessions,
which influenced the Kinect detection algorithm, the face
detection algorithm, and consequently the whole attention
classifier system.

Furthermore, comparing Table V and Table IV for the
first session of subject 6, the best Cohen’s kappa coefficient
values correspond to the best algorithm accuracy perfor-
mances for what concerns the child gaze direction estimation.
Thus, the algorithm outcomes are consistent with the manual
labelling difficulty level.

C. Sensitivity analysis
Through the implementation of a threshold on the confi-

dence error angle extracted from Gaze 360, the accuracy of
the attention classification system changed (Figure 5 (a)).
Overall, the accuracy decreases with threshold increment
since the uncertainty is higher in the calculation of the gaze.
Simultaneously the number of accepted frames should be
considered since a low threshold is associated with a low
number of accepted frames (Figure 5 (b)). Therefore, the
tuning of this parameter is mandatory for evaluating the
patient’s attention during therapy.

Fig. 5. Evolution of the performance of the algorithm with the variation
of the threshold on the confidence error angle (a) and respective number of
accepted frames (b).

IV. CONCLUSIONS AND FUTURE WORK

We developed a full attention classification system for an
unconstrained environment with a single camera setup. It
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achieved a minimum mean classification accuracy of 53%
and a maximum of 63%. Differences between the child
and the therapist and between the two children were found,
probably reflecting their different levels of Autism. However,
the number of children tested and sessions analysed was very
small, preventing the statement of definitive conclusions. In
addition, the definition of the ground truth demonstrated the
challenges associated with the estimation of the child gaze
but also compromised the robustness of the results obtained.
Based on these preliminary results, we plan in future work to
apply our system to a larger sample of children and sessions
to monitor their progress. Moreover, a discussion phase
should be included in the ground truth definition: the raters
should establish an agreement regarding the frames harder
to classify or decisively eliminate those frames from the
analysis of the accuracy, to increase the results’ robustness.

Compared to the literature, our work had to address
additional challenges that justify in part its performance
difference: it was developed for a triadic situation and not
dyadic as the one of [12] and in an unconstrained scenario,
contrary to [4]. Then, the therapist had to wear protection
material due to the pandemic situation, adding complexity
to the conditions of therapy scenarios. On the other hand,
the main limitations of the algorithm could be ascribed to
the face detection part and the robot position identification.
As noticed by [12] and verified here, Gaze 360 is extremely
influenced by a continuous identification of the face and more
specifically by the proportion of the face size with respect
to the whole input image. Possible solutions could be: (i)
increasing the image resolution; (ii) applying a filter that uses
previous cropped faces in case the new ones are not available;
(iii) including the Kinect in the face detection, providing
the cropped image correspondent to the detected skeleton to
the face detectors, which would increase their performance.
Regarding the robot position, an alternative could use the
depth map of the Kinect and a mask for detecting the robot
in the colour image(frame of the video) to obtain the precise
robot location during the therapy.

Future work will consider these solutions to have a more
precise quantitative metric of the attention and consequently
calculate the joint attention. These automatic quantitative
metrics can simultaneously facilitate monitoring rehabilita-
tion therapies and allow a more standardised comparison
between them.

We will integrate this measurement system into the IO-
GIOCO platform in real-time to drive a more adaptive
therapy. Autonomous and adaptive robots are essential for
children with autism since they are characterised by very
different symptoms which change during their development.
An adaptive robot can not just deliver a more personalised
therapy but also evaluate the child engagement. In this way,
the robot can propose other exercises or augment the level
of the prompts to increase the child attention. Therefore this
system could bring robots to the clinical practice and even-
tually to more unconstrained environments such as home or
school, permitting a continuous rehabilitation. Furthermore,
this type of robotic therapy with a triadic interaction could

allow the participation of ASD children in group activities,
bringing their world closer to ours.
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