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Abstract—Unmanned Aerial Vehicles (UAVs) can
be an important resource when performing Search
and Rescue (SAR) operations at sea, as this technol-
ogy is fairly inexpensive when compared to traditional
SAR approaches that use significant human resources
and expensive air and naval assets, thus enabling the
deployment of several UAVs simultaneously in these
missions to perform rescue targets search in maritime
environments.
In order to maximize the usefulness of these UAVs

in such operations, we propose a method which uti-
lizes a state-of-the-art object detection network to
perform real-time rescue target detection on-board
the UAV, using standard RGB cameras, with minimal
human intervention, thus enabling an increased vehi-
cle autonomy and search range. Additionally, since the
UAVs only relay the candidate images and locations
that contain possible rescue targets, given by the
onboard detector, it is possible to have several UAVs
working in parallel that report back to a single human
operator.
We have selected the YOLOv4-tiny detection net-

work, pretrained in the COCO dataset, and retrained
it to detect rescue targets at sea. For this purpose
some datasets were recorded and annotated to sim-
ulate the presence of maritime rescue targets. The
proposed approach has been validated on an inde-
pendent test dataset, showing that it has good detec-
tion capabilities and thus providing convincing results
regarding the use of UAVs with automatic target
detection capabilities in SAR missions.

I. Introduction and Related Work
Travel through sea has long been a crucial part of

the world economy, and nowadays around 90 % of traded
goods are carried by sea: as a result, there is a significant
number of ships at sea at any given time [1].

With such large number of ships around the globe
it is not surprising the ocasional occurrence of ship-
wrecks and man overboard incidents (Fig. 1): this lead
to the need for an ever evolving response capability in
terms of Search and Rescue (SAR) operations at sea.
The International Maritime Organization (IMO) and
the International Civil Aviation Organization (ICAO)
have jointly published the IAMSAR Manual [2], which
provides guidelines for the organization of maritime SAR
response.
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Fig. 1. Man overboard incident. Image taken from https://www.
cdc.gov/niosh/topics/fishing/fallsoverboard.html.

In Portugal, most SAR operations count on aircraft
and ship support in order to find and retrieve rescue tar-
gets, but this requires a lot of resources and manpower.
The evolving technology in the field of unmanned aerial
vehicles (UAVs) is an oportunity to improve the response
capabilities of the Portuguese Navy and Air Force, with
the deployment of less resources and manpower. With
the use of UAVs we can greatly extend the covered search
area and even automate some processes previously done
by human operators. The use of UAVs can be done on
three distinct levels:

1) In the simplest method, human operators perform
both the control of the UAV and the detection
of rescue targets, based on still images or video
streams acquired by the UAV onboard cameras and
sent to the ship using a wireless datalink. Achieving
a bandwidth large enough to send visual feedback
to the human operator with a proper sampling rate
requires the use of dedicated hardware and can
effectively decrease the search area, by limiting the
UAV distance to the ship.

2) Alternatively, the UAV can follow an automated
flight plan, using inertial and GNSS devices, while
the target detection is still performed by the op-
erator. This can reduce the number of operators
required to work with several UAVs simultaneously,
but a robust datalink for video transmission is still
required: this reduces the UAV search area.

3) In the third and most advanced method the UAV
follows an automated flight plan and performs on-
board detection of castways, allowing the operator
to only analyse the situations considered relevant
by the automatic detector. By combining UAVs
with automatic object detection algorithms we can
create a system where the UAVs only send visual
feedback (together with corresponding location) to
the human operator when the onboard detector
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has enough confidence on the presence of a rescue
target in the acquired images. This method has
two major advantages: on one way, a single human
operator can potentially deal with several UAVs
simultaneously deployed; on the other way, a large
search area can be covered, since each UAV only
sends images considered relevant by the detection
algorithm and thus a larger distance from the
ship can be achieved due to smaller bandwidth
requirements.

This paper addresses the automatic detection of mar-
itime rescue targets in maritime SAR missions, using
standard RGB cameras on board the UAV. While the
use of machine vision for detection of this kind of targets
is not something new, there is not a vast literature
on this topic. Sumimoto et al. [3] propose an image
processing technique for the detection of rescue targets
that resorts to color and shape information taken from
aerial footage in order to detect possible rescue targets;
however, using hand-picked features in the detection
algorithm makes this algorithm prone to errors due to
changes in environmental variables like e.g., weather and
light conditions, camera perspective, and distance from
the UAV to the rescue target.

The work published by Mace in 2011 [4] tackled the is-
sue of detecting marine debris, such as fishing nets, buoys
and ropes. In this work, data from satellite observations
and aircraft, in conjunction with mathematical models
for the debris, was utilized to predict the location of
such debris, but the author concluded that the detection
of these debris remained a serious challenge to current
technology at the time of publishing.

Ramirez et al. focused on sea rescue [5], proposing a
coordinated sea rescue system based on an UAV and
an Unmanned Surface Vessel (USV). In the system pre-
sented in that paper the USV benefits from the informa-
tion provided by the UAV, which is capable of locating
the castaways faster than the USV. The two subsystems
were able to work in real-time with really simple defined
behaviours. This system presents a good basis where
the improvements of automatic Object Detection can be
applied.

In 2017, Hoai and Phuong published a paper that
studied the use of anomaly color detection on UAV
images for SAR works. They were able to determine that
in different SAR situations the appropriate color space
and detection algorithm could be chosen to provide the
best performance of anomaly detection [6].

In the same year, Dinnbier et al. published a paper
that focused on using Gaussian Mixture Model (GMM)
and Fourier Transforms for target detection in UAV
maritime Search and Rescue [7]. Using GMMs they were
able to remove background from images while leaving
moving targets intact. By combining GMMs with Fourier
Transforms they were able to improve their detection
results.

In [8] a survey of traditional video processing for ob-

Fig. 2. Comparison of state-of-the-art detectors with respect to
detection performance (AP) and speed (FPS) in the MS COCO
dataset. Image taken from [11].

ject detection and tracking in maritime environments is
presented. However, in recent years, scientific advances in
the field of deep neural networks have revolutionized sev-
eral technological domains, from automatic image pro-
cessing to speech processing and synthesis, including au-
tomatic text translation, among many other applications.
In particular, the use of networks based on convolutional
topologies brought a significant performance increase in
the tasks of classification, detection and automatic image
segmentation [9]. This kind of networks also began to
be used, with great success, in maritime detection and
segmentation tasks [10].

In particular, one-stage state-of-the-art detectors like
YOLO v4 [11] currently achieve real-time inference capa-
bilities while maintaining a very high detection accuracy
(Fig. 2). Such advances make the application of such
detectors to autonomous detection of rescue targets in
SAR missions very promising: in this paper we present
an automatic maritime rescue target detector, based on
standard images acquired from an UAV standard RGB
camera, based on recently developed deep learning de-
tection techniques. No special hardware is needed to run
such detection models, as a low-power embedded system
like a Jetson Nano suffices to perform the detection in
real-time.

The main contribution of this paper is the proof of
concept that current state-of-the-art detection networks
can be used in maritime SAR missions in a real-time
manner, using simple embedded systems, with limited
computational capabilities, on board the UAV. Addition-
ally, a small dataset gathered and used for training the
detection network is presented.

The remaining of the paper is organized as follows:
Section 2 describes the data set acquired to train the
detection network; Section 3 presents the neural network
used and its training methodology; in Section 4 the re-
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sults obtained are presented and in Section 5 conclusions
are drawn and some possible future work is presented.

II. Data Acquisition
Due to its size, typically involving millions of pa-

rameters to be determined, the training of deep neural
networks requires the use of massive amounts of data, in
order to guarantee a correct convergence of these param-
eters, which allows to obtain a satisfactory performance
in a test set that, following approximately the same
statistical distribution as the data used for training the
network, is nevertheless distinct from the same training
set. Many detection networks are available in pre-trained
versions, with parameters optimized for the detection of
a certain number of predefined classes; Using these pre-
trained neural networks is associated with two major
advantages:

• You can immediately use this network when you
want to detect objects corresponding to classes for
which the network has been pre-trained;

• Even when the object to be detected does not belong
to that set of classes of the neural network, it is
generally much faster to carry out the readaptation
of weights from the pre-trained network for this new
class of objects, being necessary, for this purpose, the
use of a much smaller set of data.

Bearing in mind that no current detection neural
network is pre-trained to detect a “Rescue Target” class
object, it became necessary to obtain and annotate a
dataset that would allow the training of a network that
considers this class. For this purpose, three different
image sources were considered:

• Dataset 1: Images taken from videos on the YouTube
site showing people at sea swimming and performing
various aquatic activities (Fig. 3);

• Dataset 2: Images acquired from a DJI Mini 2 drone,
close to a beach, of people in kayaks and simulating
the castaway situation (Fig. 4);

• Dataset 3: Images captured from a Parrot Anafi
drone of cadets from the Naval Academy in a field
exercise in the Tagus river, during the swimming
crossing, in the late afternoon, of a small channel
(Fig. 5). In this situation, we tried to obtain images
corresponding to different points of view, often with
the sun in front of us to produce glare and reflections
in the water.

The images of each dataset were manually annotated,
in order to indicate the presence and location of each
alleged rescue target in the image. In the end, a set of
550 annotated images was obtained for dataset 1, 67
for dataset 2 and 292 for dataset 3, in a total of 909
annotated images.

Considering that datasets 2 and 3 were more repre-
sentative, due to the context in which they were ac-
quired, of the situation corresponding to the presence of
shipwrecked people in maritime images, it was decided

Fig. 3. Example images belonging to Dataset 1, taken from
YouTube videos.

TABLE I
Summary table of the different datasets used in this work.

Training Datasets # Images Avg. number of objects

Dataset 1 (YouTube) 550 13
Dataset 2 (Beach) 53 2
Dataset 3 (River) 233 5

Testing Datasets # Images Avg. number of objects

Dataset 2 (Beach) 14 2
Dataset 3 (River) 59 5

to remove 20 % of annotated images from each of these
datasets for a set independent test, ie respectively 14 and
59 images from datasets 2 and 3: these images were never
used to train or adjust detection network parameters.
The summary of the characteristics of these datasets is
summarized in Table I.

III. Training

There are currently many detection networks for sev-
eral classes of objects in RGB images: in general, for
each of these networks, reducing the processing time
required to process an image also leads to a decrease in
the detection performance of the same network. Since in
this work we intend to use a detection network capable of
processing data in real time, even if it runs on hardware
with reduced computational capacity, we focused on the
YOLOv4-tiny network, as a consequence of its high
real-time processing capacity while, at the same time,
maintaining a very decent performance [11].

This YOLOv4-tiny network has a 38-layer structure
and is reported to run at around 30fps on a Jetson Nano
board, a small embedded computer specially designed
for tasks related to artificial intelligence and vision and
image processing, resorting to an optimized model using
TensorRT [12]. A pre-trained version with the COCO
dataset [13], with the capability to detect 80 different
classes of objects, was used in this work to initialize
the network weights, and then refined for a single class,
corresponding to the rescue target, using the labelled
aforementioned datasets.
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Fig. 4. Example images belonging to Dataset 2, taken near a beach.

Fig. 5. Example images belonging to Dataset 3, obtained during the field exercises in the Portuguese Naval Academy.

In order to try to increase the performance of the
network during the training for the detection of the
new “Rescue Target” class, due to the reduced size
of the training dataset, we proceeded to augment the
existing data, through the application of several random
transformations such as tonality change, image rotation
and flipping, and adding random noise. The study of the
influence of several network meta-parameters, such as the
learning rate and the batch size, was also carried out, in
order to try to obtain the best possible performance.

IV. Results
After training the YOLO network, using the set of

images augmented from the 3 training datasets, a pre-
cision of 68 % and a recall of 55 % were obtained, for
a detection threshold of 0.4, where precision and recall
have the standard definitions:

Precision = TP
TP + FP

and
Recall = TP

TP + FN ,

where TP, FP and FN correspond to the number of detec-
tions, in the test set, categorized as true positives, false
positives and false negatives, respectively. Each YOLO
network detection in the image comes with a confidence

value (between 0 and 1), and the detection threshold
mentioned above corresponds to the minimum level of
that confidence level for which a detection is considered,
i.e., detections with a confidence score less than 0.4 are
discarded. By increasing the value of this threshold, there
is more selectivity in what is considered a detection:
this generally leads to an increase in precision and a
corresponding decrease in recall. This value of 0.4 was
chosen as a good compromise between detection precision
and recall, based on the precision-recall curve obtained
after training the YOLO network (Fig. 6). Since precision

Fig. 6. Precision-Recall curve for several threshold values.
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corresponds to the percentage of detections that are con-
sidered correct detections, and recall is the percentage of
true positives in the dataset that are effectively detected
by the network, this detection threshold can be changed
to suit a particular objective. For instance, the threshold
value can be lowered to increase the detection recall
while lowering the precision: this increases the chance of
detecting a victim in the water, at a cost of a higher rate
of false detection positives reaching the human operator.

Fig. 7 compares the detection results of the YOLO
network, before and after being trained with images from
Dataset 1. Note that the pre-trained network does not
have the “Rescue Target” class, but it is still able to
detect objects of the “boat” and “surfboard” classes in
the images. After training with this new class, using only
dataset 1, the network can detect the presence of possible
castaways in images from Dataset 2 in a satisfactory way.

The training sets used to train the network, as ex-
pected, decisively influence the final performance of the
network and the results obtained: in Fig. 8, the detection
in the scenario corresponding to Dataset 3, before and
after training, is analysed.

Before training, using default YOLO weights and
classes, the detector can only identify the boats in the
two example images (Fig. 8, left). After training using
Dataset 1 (YouTube images) the network already detects
people in the water, while also erroneously identifying
people on the vessel and on the dock as rescue tar-
gets (Fig. 8, middle). After training with the remaining
datasets (2 and 3), the network is able to correct the
false positives and false negatives that arose previously,
as shown in Fig. 8, right.

Three small video sequences are available on YouTube
to demonstrate de detection capabilities after the train-
ing process, corresponding evaluation on Dataset 1
(YouTube)1, on Dataset 2 (Kayaks and Beach)2 and on
Dataset 3 (River)3.

V. Conclusions and Future Work
The recent developments in detection using deep neu-

ral networks make it possible to easily integrate state-of-
the-art detectors on board an UAV, without the need to
use dedicated hardware, as some of these detectors are
able to operate in real time in affordable and lightweight
processing units for embedded applications, that are
particularly suited for artificial intelligence and computer
vision tasks, while still keeping a good detection accu-
racy. In this way, human operators no longer need to
constantly monitor the video sequences acquired by an
UAV performing a SAR mission, as the UAV will only
transmit the most relevant frames, corresponding to a
high confidence of having a rescue target. This reduces
the bandwidth required in the UAV datalink and thus
allows for an extended autonomy and search range.

1https://www.youtube.com/watch?v=sQuIbAba6CY
2https://www.youtube.com/watch?v=z33d4B3_f_I
3https://www.youtube.com/watch?v=8uQBeveMxkc

Despite being carried out with a limited training set,
we present, in this work, a proof of concept that auto-
matic and robust detection of maritime rescue targets
is possible if a diverse and representative dataset is
gathered to train such a detector. Also, for practical ap-
plications, a filtering stage should be employed, resorting
to temporal filtering techniques like Kalman or particle
filters: this topic will be addressed in future work.
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Fig. 7. Detecting rescue targets in Dataset 2: before training, using pre-trained YOLO weights (left) and after training with Dataset 1
(right).

Fig. 8. Detecting rescue targets in Dataset 3: before training, using pre-trained YOLO weights (left), after training using Dataset 1
(middle) and after training with all Datasets (right).
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