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AbstractÐThis work considers socially acceptable behaviors
in traditional reactive navigation systems, allowing a robot to
approach a group of humans in a socially acceptable manner
by considering the personal space and the group space. In
contrast to the fixed parameters of social distancing, this work
presents an adaptive model; that is, the parameters of the
personal and group space’s cost functions adapt according to
the arrangement of the group and space constraints, avoiding
the choice of initial parameters. A socially aware navigation
system capable of approaching groups is implemented for a
general-purpose mobile robot. The adaptive personal and group
space algorithm is integrated with the standard navigation system
of ROS, representing their information in a costmap layer.
The adaptation of spaces is tested using fixed and adaptive
parameters for different groups provided by three datasets. The
navigation system is evaluated through simulation experiments,
demonstrating that the robot is capable of approaching groups
and, at the same time, provides a more realistic space modeling
adapted to the context.

Index TermsÐHuman-robot interaction, social robot, socially
aware navigation, proxemics, adaptive space.

I. INTRODUCTION

Social robotics is moving from controlled environments to
actual social spaces shared with humans. An essential social
ability for a robot is to be proactive and approach a person
or group of people with socially acceptable behavior and
respecting people who are interacting. Approaching a group
adds extra difficulty since it is also necessary to understand
how humans behave in a group and share space. Thus, the
robot needs to model personal and group spaces. This work
aims to consider socially acceptable behaviors in traditional
reactive navigation systems, allowing a robot to approach
humans or groups of humans in a socially acceptable manner.

State of the art methods uses fixed parameters to model
the personal and group space’s shape and size. However, in
crowded situation or narrow spaces, people do not respect
the conventional personal space of other individuals. Personal
space and group space should be evaluated with the obstacles
near the person/group to ensure these spaces do not overlap

This work was supported by FCT with the LARSyS - FCT Project
UIDB/50009/2020, and also by the project IntelligentCare ± Intelligent
Multimorbidity Management System (Reference LISBOA-01-0247-FEDER-
045948), and by the FCT project HAVATAR-PTDC/EEI-ROB/1155/2020

them. Thus, the personal space and group space parameters
should adapt depending on the group arrangement and space
constraints to make it feasible and natural for a robot to
approach a group of humans and navigate around them, rather
than being fixed. The socially reactive navigation system
should detect the situations mentioned above and modify the
personal and group space shape and size by adjusting the cost
function that models them, avoiding the exclusive dependence
on the choice of initial parameters in the modeling of spaces.

The main contributions of this work are: (i) A novel adaptive
modeling of space for individuals and groups of humans,
that work for groups of large size while considering other
humans and obstacles, (ii) Estimation of the approaching pose
to a group using the adaptive spaces, (iii) Implementation of
the adaptive modeling of spaces through costmap layers and
implementation group approach algorithms in a navigation
system using ROS, allowing the robot to navigate in an
environment with groups and approach them.

The remainder of the document is structured as follows. In
Section II, we present the related work. Section III presents the
methodology and some preliminary results. Section IV shows
the evaluation results and approaching results in simulated
environments. Finally, Section V presents the conclusions and
proposes future work.

II. RELATED WORK

A. Proxemics: Management of space

Pioneer studies in proxemics define circular regions around
a person [1]: Intimate (<0.45m), personal (0.45 - 1.2m), social
(1.2 - 3.6m) and public (>3.6m). Subsequent works model
jointly the intimate and personal spaces as a function (i.e.
personal space) with various shapes [2]. In [3] personal space
is egg-shaped, where the frontal area is larger because people
give more importance to their frontal space. In [4], the personal
space is a monotonic decreasing function with equipotential
lines having the form of an ellipse directed in the direction
of motion. [5] proposes an asymmetric personal space that is
smaller on the dominant side and larger on the non-dominant
one. [6] shown that in practice, personal space is dynamic and
situation-dependent and it is a momentary spatial preference.

In this work, the concept of personal space will be based on
a combination of the egg shape in [3] and the adaptive space
proposed in [6].978-1-6654-8217-2/22/$31.00 ©2022 IEEE
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A group can be defined as two or more individuals who
are connected by a social relationship [7]. When people
spontaneously decide to be in each other’s immediate presence
to interact with each other, a type of group called free-
standing conversational group (FCG) emerges [8], [9]. The
head pose of the members of the group describe an FCG; most
know as Adam Kendon’s Facing Formation (F-Formation).
In an F-Formation, people establish and maintain a convex
space, where everybody in the formation has equal and direct
access. In this work, when we refer to groups, we refer to
F-Formations. An F-Formation has three social spaces [8]: (i)
The space surrounded by the group’s individuals (o-space),
where nobody is allowed to enter; (ii) the ring (p-space) around
the o-space where individuals of the F-Formations are placed
and (iv) the space that surrounds both the o-space and p-space
(r-space), which is monitored by the its members. It separates
the group from the outside world and is where people leave
or try to join the F-Formation.

B. Socially Aware Robot Navigation

When social robots plan and execute navigation actions,
they need to consider proxemics [10] and social aspects of
interaction with people [11]. Assuming that people will follow
the same social space conventions during HRI as they do when
interacting with each other, the incorporation of personal and
group spaces will improve robot’s.

Socially reactive navigation approaches can be divided
into model-based and learning-based [12]. Model-based ap-
proaches define custom costmap functions for persons and
groups. Tuning the parameters of such functions is an issue due
to variations from person to person, regarding culture, social
situation, gender, age, personality, and physical appearance
[13]. On the other hand, learning-based approaches emulate
human behaviors, providing more realistic data. However, the
drawback of these approaches is that they are data-dependent.

Model-based approaches for approaching small groups by
a robot include [14]±[17], which are limited to two to three
elements. [13] define a dynamic social zone that results from
the maximum of the extended personal space (EPS) and social
interaction space (SIS). The EPS models the personal space,
and the SIS models the interaction space. Both spaces are
modeled using Gaussian functions, and are updated by people
detectors. The robot is able to approach and avoid stationary
and moving person/group of persons both simulation and real
world-experiments. The experiments are limited up to 4 indi-
viduals in laboratory scenarios (i.e., groups were created from
a predefined script and not in realistic scenarios). The EPS
and SIS are not adaptive to space constraints. A continuation
of this work [18], estimates the robot approaching pose while
navigating in a socially aware manner.

[19] proposed a data-driven model that estimates the
approaching pose a robot should use to join a group in a
more human-like way. This estimation is based on selecting
the closest approach pose to real-world formations. The model
is able to estimate approaching poses for groups from 2 to
6 persons, tested mostly in simulation. Since data samples

do not cover all scenarios, it does not generalizes to unseen
group configurations. A navigation system that implements
this model is also missing.

C. Adaptive Space

Regarding context adaptation, [20] proposed a flexible spa-
tial density model to automatically adapt the personal space
to spatial context and human intention. They use a narrow
corridor as a simulation environment where the personal
space has to be adapted so that the robot can navigate. [21]
presented an automated system that generates the most suitable
personal space for any environmental condition. It generates
personal space by considering the height, appearance and
familiarity of an individual. [22] represents human activities,
location, culture, or specific situations with adaptive proxemics
shapes. They also introduced a new proxemic shape called the
cooperation zone. This zone is located outside the intimate
zone and inside the personal zone, allowing fluid and natural
cooperation between humans and robots in navigation and
interaction tasks. These works consider the adaptation of
the individuals to environmental conditions, without including
groups.

III. ADAPTIVE SPACE MODEL

Our approach is based on [13], [18], but with a more com-
prehensive approach regarding space modeling. The personal
and group space are represented as cost functions in a map.
The personal space uses the Asymmetric Gaussian function
[23], and the group space a 2D Gaussian function.

1) Personal Space and Group Space: The 2D Asymmetric
Gaussian function [23] considers three widths: Horizontal
σs (corresponds to σx of the Gaussian function), frontal σh

and rear σr. In addition to the widths, θ0 corresponds to
the rotation angle. In Algorithm 1, the person pose provides

Algorithm 1: Asymmetric Gaussian cost at (x, y) [23].

1 function AsymGauss(x, y, x0, y0, θ0, A, σr, σh, σs):
2 θ ← atan 2 (y − y0, x− x0);
3 α← θ + π

2 − θ0;
4 if α ≤ 0 then
5 σ ← σr;
6 else
7 σ ← σh;
8 end

9 d←
√

(x− x0)
2
+ (y − y0)

2
;

10 cost = Ae
−
((

d cos(θ−θ0)√
2σ

)2
+
(

d sin(θ−θ0)√
2σs

)2
)

;
11 return cost
12 end function

x0, y0, θ0, A is the amplitude, and (x, y) a cell coordinate of
the map grid Mn,m [18].
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Let us define the personal space of person pi with pose
(xp

i , y
p
i , θ

p
i ) and parameter set [Ap, σp

h, σ
p
s , σ

p
r ] as

fp
i (x, y) = AsymGauss(x, y, xp

i , y
p
i , θ

p
i , A

p, σp
h, σ

p
s , σ

p
r ).

(1)
We propose to adapt the parameter set of the personal space

in (1), considering the persons and the obstacles detected by
the onboard sensors of the robot. To consider all the individual
spaces, at each cell we compute the maximum of the personal
spaces:

F p(x, y) = max (fp
1 (x, y), . . . , f

p
N (x, y)) . (2)

To consider groups, we rely on the group detector in [9]
that provides the center and members of each group. The
group space corresponds to a Gaussian function, whose set of
parameters is gk = (xg

k, y
g
k, r

g
k), where (xg

k, y
g
k) is the center

point of the o-space, and its radius rgk, which corresponds to
the widths of the Gaussian rgk = σg

x = σg
y . The group radius is

given by the average Euclidean distance of the group members
to the center of the group.

Considering a set of N groups detected in the scenario, the
function F g(x, y) that represents all the o-spaces of the groups
(fp

1 (x, y), . . . , f
p
N (x, y)) is computed as:

F g(x, y) = max (fg
1 (x, y), . . . , f

g
N (x, y)) . (3)

Finally, the function that incorporates both the functions
that represent all the personal spaces (F p(x, y)) and all the
o-spaces (F g(x, y)) detected is computed as:

F (x, y) = max (F p(x, y), F g(x, y)) . (4)

An example of personal space using an Asymemtric Gaus-
sian, the functions defined in (2), (3), and (4) for a group of
four individuals is displayed in Figure 1.

A. Space Adaptation

We present the approach to choose the parameters that
model the spaces’ functions (widths of the Gaussian func-
tions). We address two types of adaptation: (i) Human-human
and (ii) Human-Obstacles.

1) Human-human Adaptation: We assume that each person
starts with the standard personal space dimensions (e.g., 1.2m
width of personal space for circular regions), which do not
consider group formations and proximity to other persons.
Let us define the initial width parameters px and py , which
are related through the personal area ratio pr = px/py . We
assume that persons maintain the same pr for different group
interactions, reducing the Gaussian widths while keeping the
personal area factor constant. The adaptive parameters Sx and
Sy are related by a factor pr.

Then, we adapt the parameters depending on the group con-
figuration: (i) Vis-a-vis, (ii) side-by-side and (iii) otherwise. If
the group has two members with a vis-a-vis configuration, the
orientation of one member is π radians w.r.t. the other. The
Sx parameter adapts to be half the Euclidean distance between
the persons, and Sy = Sx/pr. If they are in a side-by-side

Fig. 1: Functions considered to model the personal space (top-
left), group space (bottom-left) and the maximum of all spaces
for a group of four individuals. Each person is displayed as
a dark blue ellipse. Each contour line corresponds to a cost
value, where red is the maximum (1) and light blue is the
minimum.

configuration, they have approximately the same orientation,
Sy is the half Euclidean distance between the persons, and
Sx = Sypr. In the remaining cases, we start by computing
the overlapping area between the personal spaces ellipses of
group members, reducing the parameters Sx and Sy until the
area is zero; that is, there is no overlapping. Next, we verify
that Sx and Sy are higher or equal than the human dimensions
humanx and humany , respectively. If one of the parameters
is smaller, we set its value to the respective human dimension.
Finally, the parameters Sx and Sy are mapped to the desired
parameters of the Asymmetric Gaussian:

σp
h = Sx, σp

s = Sy, σp
r = Sx/br, (5)

where the br = σh/σr. Regarding group space, for this type
of adaptation the widths of the 2D Gaussian (σg

x, σ
g
y) share the

same value and are equal to the o-space radius.
2) Human-Obstacles Adaptation: The personal space and

group space obtained on the previous step, are further adapted
to consider obstacles in the map. It aims to ensure that the
personal space and group space do not overlap with obstacles
and facilitates navigation of the robot in tight spaces, such
as corridors, without invading personal spaces and group
space. This adaptation extends with some adaptations the work
proposed in [20], by considering the group space’s adaptation
in addition to the personal space adaptation. Also, we modify
their approach by searching for obstacles using the costmap
information instead of using a list of identified obstacles.

Initial parameters are obtained in (5). Then, we compute the
adaptation for the personal space for individual pi. The algo-
rithm receives as input the pose of each person (xp

i , y
p
i , θ

p
i ),

and its corresponding space parameters (σp
h, σ

p
s , σ

p
r ), human
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dimensions (hx, hy), robot width rw, the costmap and infor-
mation related to it (resolution, costmap, origin, width) and
finally the threshold costmap cell value to consider as object
ot.

Since obstacles are not parametrized, the obstacle adaptation
searches for occupied cells in the person’s neighborhood and
reduce the Gaussian width. Ideally the search should build
concentric rays from person’s center covering all orientations
and then adapt the shape. We implemented a simplified version
that builds 4 concentric rays aligned with the principal axes
of the personal space. The rays’ lengths are limited to:

θpi → d1 = σp
h + rw,

θpi +
π
2 → d2 = σp

s + rw,
θpi +

3π
2 → d3 = σp

s + rw,
θpi + π → d4 = σp

r + rw,

(6)

where rw is the radius of a circle that circumscribe the
robot. For obstacles farther than the distances in (6), the robot
will always be able to navigate without invading the space,
and also, there will be no space overlap.

The rays are mapped to cells in the map by applying
the Bresenham’s line algorithm [24]. This algorithm returns
a list of indexes that correspond to points in the line. If
obstacles are found in map indexes where the line goes
through, the parameters corresponding to that orientation are
reduced; otherwise the parameters do not change.

We explain the adaptation for one direction, where the
same reasoning applies to all directions. First, we compute
the difference between the person’s distance to the obstacle
and the corresponding width. According to its value, one of
the following applies:

• If the difference is higher than rw, there is enough room
for the robot to navigate. However, if the difference is
less than the person’s space width, the personal space
overlaps with the obstacles, so we reduce personal space
in that direction to be at least the distance to the obstacle.
Then, we ensure that the adapted parameters are at least
the size of the human.

• If the distance to the obstacle is higher than the parameter,
we verify if the distance to the obstacle minus the rw
is larger than the human dimensions. If the distance is
higher, it is possible to adapt the parameter while keeping
the parameter higher than human dimensions, making it
possible for the robot to navigate without invading the
personal space. The new parameter is computed as the
distance to the obstacle minus the robot dimension.

Finally, we obtain for the individual pi its own parameters
represented by σpi

h , σpi
s and σpi

r .
Regarding the adaptation of the parameters of the groups,

the ray algorithm for individuals is applied to the group
parameters. For each one of the four orientations, we only
verify if the difference from the center of the group to the
obstacle and the group width is less than the rw. If it is, we
adapt the parameter to be equal to the difference between the
distance to the obstacle and the robot width.

B. Approaching Pose Estimation

After modeling the personal space and group space, it is
possible to estimate the position and orientation to approach
the groups. The approaching pose estimation will be based on
the algorithm presented in [13].
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(a) Approaching area
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blue line.
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(b) Approaching area
filtered by personal
spaces and group
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represented as the ap-
proaching areas’ cen-
tral point (red dots
and black arrows).

Fig. 2: Approaching Pose estimation steps.

The algorithm is divided into two steps: 1) approaching area
estimation and 2) approaching pose estimation. An example
of the algorithm steps is presented in Figure 2. It starts by
estimating the approaching area. First, a circle with a radius
equal to the group radius is created around a group, as shown
in Figure 2 (a) represented by a thick blue line. Then, a filter
that considers the obstacles and the maximum personal space
of all group members and the group space is applied, as shown
in Figure 2 (b). If the filter’s output is empty, the circle’s
radius increases by a preset value, only if it still lies in the F-
Formation’s p-space. As mentioned in Section II-A, the group
members position themselves in the p-space; this condition
assures that the approaching pose is inside the p-space. The
potential approaching poses are determined as the central point
of each approaching area, as represented in Figure 2 (d) by
red dots and black arrows. The final approaching pose will
be selected by computing the robot’s distances to these points
and choosing the closest to the robot’s current position.

IV. EXPERIMENTS

A. Evaluation of the adaptive model

We evaluate the adaptation of the parameters and the
approaching pose estimation in two datasets: Synthetic Data1

[9] and IDIAP Poster Data [25]. All the algorithms, code
developed for this results and datasets used are available
online2. The evaluation criterion for human-human adaptation
is the amount of space available for the robot to enter in the
groups of the two datasets. We define the circular segment in
the center of p-space area which do not overlap neither with
the personal space nor with the group’s o-space (e.g. in Fig. 2.
For all the experiments of this section we set the parameters
A = 1, hx = 20cm and hy = 45cm.

1http://profs.sci.univr.it/∼cristanm/datasets.html
2GitHub repository: https://github.com/franciscormelo/Adaptive-Space

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

94
Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 19:16:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Number of groups each dataset has of different sizes
(number of individuals in the group).

Dataset
Group Size

Total
2 3 4 5 6 7

Synthetic 180 80 - - - - 260
IDIAP Poster 152 106 56 20 5 6 345

1) Adaptive Width Distribution: We evaluate the frequency
distribution of the horizontal (Sx) and frontal (Sy) widths
after adaptation. This evaluation is performed for the pair of
parameters represented by a 2D Histogram. The 2D histogram
of the adpated widths are shown in Figure 3, for the Synthetic
dataset and the IDIAP Poster dataset. The initial widths are
px = 120cm, py = 100cm, and the factors pr = 1.2 and
br = 1.3, where the widths correspond to the boundary of
social space.

Figure 3 shows the variability of the parameters. For the
Synthetic dataset the most frequent pair of values (Sx, Sy)
appears on the 23.1% of the groups, and for the IDIAP dataset
the most frequent widths appears on 14.5%. Note that for some
cases the pr is not kept because of the final verification of
Sx or Sy being less than the human dimensions. We see the
advantage of the adaptive widths, which consider the persons
around and reduce the size if needed.
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(a) Synthetic dataset.
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(b) IDIAP Poster dataset.

Fig. 3: 2D histogram of the personal space parameters.

2) Approaching Area Perimeter: We obtain the mean and
standard deviation across groups, of the available space to
enter in the group. The initial parameters of personal space
are set to px = 55cm, py = 45cm, pr = 1.22 and br = 1.3,
which are the ones used in [18], so we can compare their
approach with ours.

First, we compare the total perimeter sum of approaching
areas for (i) each group size and (ii) total over all group sizes.
Fig. 4 shows the results on the Synthetic dataset and Fig. 5 on
the IDIAP Poster data set correspondingly. We see an increase
of about 45% from the fixed parameters for the Synthetic
dataset and about 107% for the IDIAP Poster dataset.

Next, the approaching area perimeters mean and standard
deviations are measured for the different group sizes and
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Fig. 4: Histograms of the sum of perimeters of approaching
area using fixed and adaptive parameters for the Synthetic
dataset.
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Fig. 5: Histograms of the sum of perimeters of approaching
area using fixed and adaptive parameters for the IDIAP dataset.

both datasets. These results are described in Table II for the
datasets. There is an increase of the mean and the standard
deviation for all group sizes and both datasets with adaptive
parameters compared to the fixed parameters approach.

TABLE II: Approach area perimeter mean and standard de-
viation using fixed and adaptive parameters for the Synthetic
and IDIAP Poster datasets.

Fixed Adaptive

Dataset Group Size
Mean (µ)

[cm]
SD (σ)
[cm]

Mean (µ)
[cm]

SD (σ)
[cm]

Synth
2 179.38 86.37 218.54 89.30
3 37.25 38.23 147.03 41.11

IDIAP

2 103.88 78.17 149.92 63.84
3 73.28 57.43 157.67 71.68
4 49.93 58.72 179.39 103.53
5 25.05 32.08 184.60 97.04
6 24.00 28.40 247.80 129.72
7 22.67 24.63 301.00 183.36

B. Results in simulation

We evaluate the system in simulated scenes to demonstrate
that the robot can simultaneously model the adaptive spaces
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for multiples groups, estimate the possible approaching poses,
approach groups, and navigate around them without invading
personal and group spaces. Three new open-source ROS pack-
ages were developed to implement the system: (i) The set of
messages for group information3, (ii) adaptive human spaces
in the costmap4, and (iii) the group approaching algorithm5.

1) Simulation Setup: The socially reactive navigation sys-
tem was tested in simulation using the Gazebo simulator.
The platform used for the implementation was Vizzy [26],
a humanoid on wheels robot. The simulation environment
considered is an indoors scenario, and several scenes are
created by placing individuals in Gazebo with different 2D
poses to generate different group arrangements. The pose of
each person was obtained directly from Gazebo.

The personal and group space functions of spaces are no
longer normalized to 1 since the maximum value possible to
represent in the costmap is 255, so A is set to 255. The robot
width rw considered was set to 1.0m and the parameters of
the adaptive space model were px = 120cm, py = 100cm,
pr = 1.3 and br = 1.3. The costmap obstacle threshold ot
is set to 254 since the obstacles are marked in the costmap
with this value. In the subsequent visualization images, 254
corresponds to pink and then decays as light purple to free
space (no color). We present the respective scenario in Gazebo
for each experiment, and its costmap.

2) Multiple Groups scenes: This experiment evaluates if the
system can detect various groups and model the respective
spaces. Figure 6 shows the pink circles that correspond to
the ªsocial obstaclesº, i.e. personal spaces of each person and
the groups’ o-space. Note that the light purple areas around
the persons have different sizes, meaning that groups with
individuals closer to each other have smaller parameters while
the ones with individuals farthest have higher parameters.

(a) Top view of the scene (b) Costmap visualization

Fig. 6: The robot detects individuals and multiple groups and
models their respective spaces. The robot’s field of view is
displayed with the triangle with two white lines.

3) Approaching Pose scenes: We show examples of the
approaching area, displaying it as red stripes, and the ap-
proaching poses as red arrows. We show two examples, one

3https://github.com/franciscormelo/group msgs
4https://github.com/franciscormelo/adaptive social layers
5https://github.com/franciscormelo/approach group

with five individuals in Figs. 7 (a-b) and the other with seven
individuals in Figs. 7 (c-d). The largest approaching area is
selected as entering pose for the robot and sending as goal to
the navigation algorithm.

(a) Visualization of the costmap (b) Vizzy joins the group

(c) Visualization of the costmap (d) Vizzy joins the group.

Fig. 7: Top images show Vizzy approaching a five members
group. Bottom images show Vizzy approaching a seven mem-
bers group. The approaching area is marked as red segments,
approaching pose as a red arrow and approaching trajectory
as green segments.

4) Obstacles Adaptation Scenes: The first scene consists of
an individual in a corridor next to the wall, and the robot needs
to pass next to the human to reach its goal. In this case, the
initial width parameter of the rear personal space overlap with
the wall, and the frontal width parameter does not allow the
robot to go through. Figure 8 shows the personal space after
adaptation, where the rear space do not overlaps with the back
wall and there is enough distance from the wall in front to the
person, to go through without invading the personal space.

(a) Top view of the scene (b) Costmap visualization

Fig. 8: Obstacles adaptation for an individual in a corridor.

The second scenario consists of a group placed between a
wall and cylindrical objects. A goal pose is sent to the robot
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(red arrow in Fig. 9 (b)). The group space without obstacle
adaptation does not allow the robot to reach the goal pose.
Figure 9 shows the trajectory after adapting the group space.

(a) Top view of the scene (b) Costmap visualization

Fig. 9: Group parameter adaptation considering obstacles

V. CONCLUSIONS AND FUTURE WORK

We propose and implement a socially reactive navigation
system, which allows a robot to approach a group of humans
in a socially acceptable manner. The personal space and group
space are adapted according to the group arrangement and
space constraints, avoiding the dependency on the choice
of initial parameters. In addition, those spaces are adapted
to the obstacles, providing social navigation skills to the
robot. The socially reactive navigation system was tested in
challenging scenarios for conventional navigation approaches
on simulation, and the results demonstrated that the robot
could detect and approach groups of different sizes while using
adaptive personal and group spaces. It also demonstrated that
the robot could adapt the spaces based on the distance to
obstacles providing more realistic navigation in tight spaces.

However, the system presents some limitations. The first
is that the approaching pose estimation algorithm does not
remove the approaching areas where the robot does not fit.
The second limitation is related to the obstacles adaption,
which does not consider human-object interactions. The robot
should detect the interactions and not adapt the spaces in these
cases. Finally, a more flexible group space function should
have been considered since the function that represents the
group space only has two parameters. Thus, when there is
an adaption in one direction, the function also adapts in the
opposite direction. In the future, we also intend to test and
make experiments of the system in the real world and evaluate
the safety and comfort through surveys with different humans.

REFERENCES

[1] E. Hall, The Hidden Dimension: Man’s Use of Space in Public and
Private. Bodley Head, 1969.

[2] J. Rios-Martinez, A. Spalanzani, and C. Laugier, ªFrom Proxemics
Theory to Socially-Aware Navigation: A Survey,º International Journal
of Social Robotics, vol. 7, no. 2, pp. 137±153, 2015.

[3] L. A. Hayduk, ªThe shape of personal space: An experimental inves-
tigation.º Canadian Journal of Behavioural Science/Revue canadienne
des sciences du comportement, vol. 13, no. 1, p. 87, 1981.

[4] D. Helbing and P. Molnar, ªSocial force model for pedestrian dynamics,º
Physical review E, vol. 51, no. 5, p. 4282, 1995.

[5] M. GÂerin-Lajoie, C. L. Richards, J. Fung, and B. J. McFadyen, ªChar-
acteristics of personal space during obstacle circumvention in physical
and virtual environments,º Gait & posture, vol. 27, no. 2, pp. 239±247,
2008.

[6] L. A. Hayduk, ªPersonal space: Understanding the simplex model,º
Journal of Nonverbal Behavior, vol. 18, no. 3, pp. 245±260, 1994.

[7] D. Forsyth, Group Dynamics. Cengage Learning, 2009.
[8] A. Kendon, Conducting Interaction: Patterns of Behavior in Focused

Encounters. Cambridge University Press, 1990.
[9] F. Setti, C. Russell, C. Bassetti, and M. Cristani, ªF-formation detection:

Individuating free-standing conversational groups in images,º PLoS
ONE, vol. 10, no. 5, pp. 1±26, 2015.

[10] E. Pacchierotti, P. Jensfelt, and H. I. Christensen, ªTasking every-
day interaction,º in Autonomous Navigation in Dynamic Environments.
Springer, 2007, pp. 151±168.

[11] M. L. Patterson, Y. Iizuka, M. E. Tubbs, J. Ansel, M. Tsutsumi, and
J. Anson, ªPassing encounters east and west: Comparing japanese
and american pedestrian interactions,º Journal of nonverbal behavior,
vol. 31, no. 3, pp. 155±166, 2007.

[12] Y. F. Chen, M. Everett, M. Liu, and J. P. How, ªSocially aware
motion planning with deep reinforcement learning,º IEEE International
Conference on Intelligent Robots and Systems, vol. 2017-Septe, pp.
1343±1350, 2017.

[13] X. T. Truong and T. D. Ngo, ªDynamic Social Zone based Mobile Robot
Navigation for Human Comfortable Safety in Social Environments,º
International Journal of Social Robotics, vol. 8, no. 5, pp. 663±684,
2016.

[14] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H. I. Christensen,
ªNavigation for human-robot interaction tasks,º IEEE International
Conference on Robotics and Automation, 2004, vol. 2, pp. 1894±1900
Vol.2, 2004.

[15] J. Rios-Martinez, A. Spalanzani, and C. Laugier, ªUnderstanding hu-
man interaction for probabilistic autonomous navigation using risk-rrt
approach,º in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2011, pp. 2014±2019.

[16] A. Escobedo, A. Spalanzani, and C. Laugier, ªUsing social cues to esti-
mate possible destinations when driving a robotic wheelchair,º IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3299±
3304, 2014.

[17] J. V. GÂomez, N. Mavridis, and S. Garrido, ªFast marching solution for
the social path planning problem,º IEEE International Conference on
Robotics and Automation (ICRA), pp. 1871±1876, 2014.

[18] X.-T. Truong and T.-D. Ngo, ªªTo Approach Humans?º: A Unified
Framework for Approaching Pose Prediction and Socially Aware Robot
Navigation,º IEEE Transactions on Cognitive and Developmental Sys-
tems, vol. 10, no. 3, pp. 557±572, 2018.

[19] R. Livramento, J. Avelino, and P. Moreno, ªNatural data-driven ap-
proaching behaviors of humanoid mobile robots for f-formations,º in
2020 IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC). IEEE, 2020, pp. 338±344.

[20] A. Vega-Magro, L. J. Manso, P. Bustos, and P. NÂuñez, ªA flexible
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