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Abstract—Automatic obstacle detection is a key feature for
unmanned surface vehicles (USV) operating in a fully au-
tonomous manner. While there are currently many approaches
to obstacle detection in maritime environments (e.g., LiDAR,
radar) the proposed approach resorts to standard, inexpensive
RGB cameras to perform the detection of such obstacles. Recent
advances in deep neural network detectors achieve state-of-the-
art detection results, and some one-stage networks achieve very
good results while maintaining inference times small enough to
be compatible with real-time capabilities on low-cost embedded
processing units.

In this paper, we train the YOLO v4 network to detect different
types of ships, using publicly available maritime datasets. After
training, we evaluate the obtained network on the processing
unit located onboard the UAV with respect to detection accuracy
and real-time processing capability, thus demonstrating that the
presented detection method can be considered a robust, fast,
flexible, and inexpensive approach to obstacle detection in USV
applications.

Index Terms—Deep Learning, Convolutional Neural Networks,
Object Detection, Embedded Systems, Unmanned Surface Vehi-
cles

I. INTRODUCTION

Unmanned Surface Vehicles (USVs) are increasingly be-
ing used for military purposes, security applications such
as harbour and coastline patrol, environmental monitoring,
bathymetric mapping and robotic research applications [1].
Moreover, USVs can be deployed in dangerous environ-
ments like mine countermeasures operations and hazard areas
contaminated by biological or chemical substances, without
endangering navy personnel. These vehicles offer a greater
autonomy and can carry a larger payload, when compared to
aerial or underwater vehicles, and can be used as communica-
tion relays between heterogeneous vehicles during coordinated
operations, providing a link between acoustic communications
with underwater vehicles and standard radio-frequency com-
munications with aerial, ground, and other surface units.

Construction and development of USVs started to draw a
substantial attention in the beginning of this century, with
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MIT’s catamaran ACES [2] and kayak SCOUT [3], demon-
strating the autonomous navigation and control capabilities of
such vehicles and the possibility of acquiring hydrographic
data autonomously. At the same time other civilian USVs
were being developed in other research laboratories around
the globe, such as Portuguese catamaran Delfim (Lisbon
ISR/IST) [4] and catamaran Roaz (Porto LSA/ISEP) [5], pro-
viding a testbed for cooperation between autonomous vehicles
in maritime operations and data acquisition. This kind of
vehicles usually follow a modular construction approach to
provide an increased flexibility for research purposes and easy
adaptation for different types of payloads and missions.

USVs are also operated by many navies in the context of
military and security applications. With very different sizes
and payloads, they range from the small Israeli Stingray USV1,
built for port security and harbour defence missions, and the
well known Sea Hunter2, a 40m USV operated by the US
navy, going through other types of USVs like the Protector3

(Israel), the ULAQ4 (Turkey) and the JARI5 USV (China), to
name just a few.

While military USVs are typically remotely controlled by
a human operator, the trend in civil applications is shifting
towards fully autonomous operation. This requires, in addition
to autonomous guidance and navigation algorithms, robust
obstacle avoidance methods relying on the vehicle sensors [6]–
[8]. Sensors commonly used for obstacle detection in maritime
environments include active-ranging approaches employing
sonar, radar and/or LiDAR [8]. Sonar and radar provide a
high depth resolution and accuracy, together with a good
near-range (LiDAR) or long-range (radar) obstacle detection
capabilities. However, using this type of sensors to provide
information regarding the type of detected obstacle can be
difficult without complementary information. This is a serious
limitation if the USV is supposed to operate near other human
operated boats and ships, as the International Regulations for
Preventing Collisions at Sea (COLREGS) provides a set of

1https://defense-update.com/20061121 stingray.html
2https://vigor.net/projects/sea-hunter
3https://www.rafael.co.il/worlds/naval/usvs/
4https://www.ulaq.global/
5https://www.china-arms.com/jari-usv-first-trial978-1-6654-8217-2/22/$31.00 ©2022 IEEE
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Fig. 1. CEiiA’s ORCA USV.

rules that specify how each vessel should behave and which
vessel should give way in several circumstances like crossing,
overtaking or head-on situations [9], [10]. These rules depend
on the vessel type: sailing vessels, for instance, are limited
as to their manoeuvrability in the presence of forward wind
or in the absence of wind. Low cost optical sensors like
electro-optical and IR sensors, on the other hand, can identify
the type of obstacle when coupled with vision based object
detection algorithms trained on the type of data retrieved by
the sensor, for example an RGB image. With this coupling they
are able to discriminate for instance between ships, sail boats
and buoys, and can complement or replace the aforementioned
active-ranging sensors. Additionally, they typically have lower
acquisition costs and lower power consumption.

Recent advances in deep neural network based approaches
for object detection in RGB images have achieved state-of-the-
art detection performance while, at the same time, keeping
inference times low enough to allow for real-time obstacle
avoidance capabilities in low-cost, commercial off-the-shelf
embedded processing units. In this paper, we train the state-
of-the-art fast detection YOLO v4 network to detect different
types of ships, using publicly available maritime datasets.
After training, this network runs in a Jetson Nano processing
unit on board the ORCA vehicle, an USV developed by
CEiiA for bathymetric mapping, seabed monitoring and other
scientific applications. The ORCA USV6, depicted in Fig. 1, is
a differential-drive electric catamaran. Dimensions are 3.4m
overall length and 1.7m beam, weighing 450 kg. We show
that using such detector is a viable approach for object
detection and classification in maritime scenarios, enabling
real-time obstacle detection resorting to standard hardware and
RGB cameras. As ORCA is intended to operate in crowded
environments in a fully autonomous way, such object detection
is crucial for complying to COLREGS in such situations
(Fig. 2).

The paper is organized as follows: in Section II we provide
some background on deep learning detection algorithms and
vision based obstacle detection in maritime environments; in
Section III we present the details on the approach taken and

6https://orca.ceiia.com/

Fig. 2. ORCA USV operating in a harbour.

on the datasets used; after that we provide and discuss some
experimental results in Section IV and finally, in Section V we
provide some concluding remarks and suggestions for future
work.

II. BACKGROUND AND RELATED WORK

State-of-the-art solutions to object detection in maritime
environments using standard RGB cameras explore either
image segmentation techniques that extract objects from the
background, or the capabilities of detection networks to iden-
tify and locate objects directly in an image.

The WaSR algorithm [11] shows state-of-the-art image
segmentation performance, introducing new encoder and de-
coder paths to perform water segmentation, augmented by
an IMU unit to correct segmentation errors. The use of
IMU units in WaSR takes inspiration from [12] and [13],
both papers demonstrating the use of IMU data in correcting
the perturbations experienced by the surface vehicle that
propagate to the onboard cameras. WODIS [14] also uses
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Fig. 3. Comparison of state-of-the-art detectors with respect to detection
performance (AP) and speed (FPS) in the MS COCO dataset. Image taken
from [21].

semantic segmentation to separate maritime obstacles from the
ocean/sky backgrounds. Despite showing promising results,
semantic segmentation algorithms are notoriously computa-
tionally demanding and are not currently compatible with real-
time operation on standard embedded hardware.

Current state-of-the-art detection neural networks are more
versatile with respect to the required computational power, and
some variants of these networks were developed with faster
inference and real-time detection capabilities in mind. While
most of these networks perform detection on standard RGB
images, some works perform object detection with already
popular or commonly implemented sensors: in [15] a multi-
modal sensor fusion framework is presented that enriches
object detection with the input of multiple sensors instead of a
singular source. The sensors present include a Velodyne HDL-
32E LiDAR, the Delphi Electronically Scanning RADAR
(ESR) and consumer Logitech RGB cameras.

Detection networks broadly fall into two categories: two-
stage and one-stage networks. Two-stage networks, like R-
CNN [16] and its faster variants Fast R-CNN [17] and Faster
R-CNN [18], first extract regions of objects and then, in
the second stage, perform classification and further refine
the localization of the object. One stage detectors, on the
other hand, employ a single network to predict the bounding
boxes and the corresponding class probabilities and usually
exhibit higher inference speeds. Among one-stage detectors
we can find Single Shot Detector (SSD) [19] and the You
Only Look Once (YOLO) detector family [20]. In particular,
a recent version of YOLOv4 [21] achieves real-time inference
capabilities while maintaining a very high detection accu-
racy (Fig. 3). This network also comes in a version with
a reduced number of layers YOLOv4 Tiny, that achieves a
faster inference time at a cost of lower accuracy, specially
suited for integration in embedded systems. More recently a
new variant of YOLOv4, Scaled-YOLOv4 [22], can be scaled
for both larger and smaller model sizes, providing techniques
to automatically perform these scale changes. In this paper

we will explore the smaller versions of Scaled-YOLOv4. As
opposed to similar works like [23], [24], we test and evaluate
the detector network real-time capabilities on a low power
computational embedded system, that will be used for obstacle
avoidance onboard the ORCA USV.

III. METHOD

Training a deep neural detection network requires the use
of massive amounts of data, due to the millions of parameters
to be determined. Many detection networks are available
in pre-trained versions, with parameters optimized for the
detection of a certain number of predefined classes, which
bring some major advantages: on one hand, this network can
be immediately used to detect objects corresponding to classes
for which the network has been pre-trained; on the other hand,
even if the object class does not exist in such pre-trained
version, it is generally much faster to adjust the network
weights to this new class of objects, which requires a much
smaller set of training data.

In this section we first introduce the datasets used to train
the network; after that we briefly describe how the network
was trained, and after that we provide some details on the
implementation of the detection network on the embedded
processing unit onboard the ORCA USV.

A. Datasets

There are many maritime datasets for object detection:
due to their publicly availability nature and the type of
annotated classes, in these work we used the SeaShips [25]
and ABOShips [23] datasets to train our detection network.
The SeaShips dataset contains 31 455 images taken from video
segments acquired from coastline video surveillance systems.
All images are annotated with ship-type labels and high-
precision bounding boxes corresponding to six classes: ore
carrier, bulk cargo carrier, general cargo ship, container ship,
fishing boat, and passenger ship. An example image from the
SeaShips dataset is depicted in Fig. 4.

Fig. 4. Example annotated image from the Seaships dataset [25].

ABOShips dataset images, on the other hand, were obtained
through a camera mounted on a ferry, providing footage from
the point of view of the vehicle and providing annotations for
nine types of vessels, seamarks and miscellaneous floaters. It
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Fig. 5. Example annotated image from ABOShips dataset [23].

TABLE I
SUMMARY TABLE OF THE DIFFERENT CLASSES USED IN THIS WORK.

Class # Annotations # Images

Motorized Vessel 35 365 14 615

Sailboat 7670 3744

Buoy/Seamark 7670 3744

contains 9880 images containing a total of 41 967 annotations.
A sample image from this dataset is presented in Fig. 5.

The SeaShips dataset has a clear representation of marine
vessels, but does not represent sailboats or buoys which are
essential classes for the proposed goal, which motivated the
use of the ABOShips dataset. To train the network we com-
bined images from these datasets. Due to the heterogeneity of
classes between these two datasets we changed the annotations
to take only into account three different classes: motorized
vessel, sailboat and buoy/seamark. The number of images
and annotations for the aggregated dataset are summarized in
Table I.

B. Training

Two versions of the YOLOv4 Tiny exist in the repository
provided by the authors7 [26]. While the first one (YOLOV4-
tiny) has a 38-layer structure that allows for real-time inference
on resource limited embedded computers like the Jetson Nano
board, the second one (YOLOV4-tiny-3l) adds a detection
layer that takes as input a finer grained feature map, to help
improve the detection of smaller objects, at a cost of higher
inference times. We will train, test and compare both models
with respect to detection performance and inference time.

For YOLOV4-tiny the recommended size input is 416×416,
while for YOLOV4-tiny-3l the recommended size input is
608× 608. Since reducing resolution may decrease detection
accuracy but increase inference speed, we will compare a
wider variety of input resolutions, training both networks in
five different configurations, corresponding to images with size
352× 352, 416× 416, 480× 480, 544× 544 and 608× 608.
We divide the dataset into a training set (70% of the data)
and a validation set (remaining 30%): as usual, the first one

7https://github.com/AlexeyAB/darknet

is used to adjust the network parameters, while the validation
images are used to calculate accuracy scores and decide on
early stopping points to control overfit.

C. Hardware Implementation

YOLO v4 detection network can be trained using high
performance GPUs, a process that typically can take around
6 to 12 hours, taken from our own training runs using a
NVIDIA GTX 1070. The obtained network weights must then
be uploaded to the processing unit onboard the USV to enable
the real-time detection of obstacles during the autonomous
operation of the vehicle.

ORCA USV has a Linux based Jetson Nano board that is
able to run the aforementioned trained models. To detect ob-
stacles as fast as possible in this kind of embedded processing
units a software library exists that allows for object detection
models to be converted from their base frameworks into an
optimized form, designed to run specifically on the target
system. This optimized form of a neural network is called
an engine and is created using NVIDIA’s TensorRT8package.
The optimizations made take several forms, of most note,
TensorRT takes into account the architecture of the GPU
and writes specific instructions on how the model should
run calculations on it. These instructions are automatically
generated and compiled into the engine by the software.
The conversion process was made using the TensorRT Demos
repository9, which provides a simple framework for converting
YOLO networks into TensorRT engines.

IV. RESULTS

To assess the detection capabilities of the trained YOLO v4
model we use the standard mean Average Precision (mAP)
score, the area under the Precision-Recall curve as the detec-
tion threshold is varied, averaged for all the existing classes,
and where Precision and Recall have the standard definitions:

Precision =
TP

TP + FP
and Recall =

TP
TP + FN

,

with TP, FP and FN correspond to the number of detections,
in the test set, categorized as true positives, false positives and
false negatives, respectively. We consider a network detection
to be a true positive if the Intersection Over Union (IoU)
value between the predicted and ground-truth bounding boxes
is above a given threshold for which the mAP value is obtained
(e.g., a mAP@0.5 is a mAP score obtained for detections
corresponding to IoU > 0.5. Each YOLO network detection in
the image comes with a confidence value (between 0 and 1),
and a network detection is only considered if that confidence
level is above a given detection threshold. By increasing the
value of this threshold, there is more selectivity in what is
considered a detection: this generally leads to an increase in
precision and a corresponding decrease in recall.

Both YOLOv4-tiny and YOLOv4-tiny-3l were trained with
multiple image resolutions on the SeaShips, ABOShips and

8https://github.com/NVIDIA/TensorRT
9https://github.com/jkjung-avt/tensorrt demos
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TABLE II
DETECTION ACCURACY FOR YOLO V4 NETWORK AT DIFFERENT

RESOLUTIONS AND TRAINED WITH DIFFERENT DATASETS.

Model Resolution
mAP@0.5

SeaShips ABOShips Combined

yolov4-tiny

352× 352 84.37 35.24 49.77
416× 416 82.63 38.33 55.10
480× 480 85.63 40.02 56.88
544× 544 85.31 42.07 58.81
608× 608 84.63 42.89 60.28

yolov4-tiny-3l

352× 352 84.06 37.39 54.86
416× 416 85.21 40.67 58.15
480× 480 83.98 41.54 59.64
544× 544 84.58 41.30 61.80
608× 608 83.45 42.88 62.09

combined datasets. The detection accuracy at mAP@0.5 is
given in Table II.

In the SeaShips dataset, vessels are represented as large
bounding boxes occupying most of the screen: as a result, input
resolution has a reduced effect in detection accuracy, and the
effect of the extra detection layer of the yolov4-tiny-3l model
is not noticeable in the detection performance (Fig. 6).

Fig. 6. Example of detections in the Seaships dataset [25]. In green,
annotations, in red, detections.

On the other hand, the detection on the ABOShips dataset
achieves a lower value of mAP@0.5, as a result of image ob-
jects occupying smaller portions of the image when compared
to the SeaShips dataset. As expected, training and evaluating
the performance on the combined dataset with 3 different
classes achieves an intermediate result with respect to the
mAP@0.5. In this latter dataset a performance gain when
using the YOLOv4-tiny-3l model is more noticeable (Fig. 7).

To evaluate detection speed we employ the same sample
video in all tests. We present inference times, measured in
frames per second (fps) for the models trained on the combined
dataset, corresponding to the average fps value for the duration
of the video sample. We run these tests on the Jetson Nano
using both the Darknet implementation and the model engine
obtained through TensorRT, obtaining the results presented in
Table III.

Fig. 7. Example of detections in the ABOShips dataset [23]. In green,
annotations, in red, detections.

TABLE III
INFERENCE SPEED COMPARISON: YOLO V4 RUNNING ON JETSON NANO.

Model Resolution
Inference (fps)

Darknet TensorRT

yolov4-tiny

352× 352 20.6 30.5
416× 416 16.1 24.8
480× 480 13.8 21.6
544× 544 9.3 15.7
608× 608 8.3 14.3

yolov4-tiny-3l

352× 352 18.7 27.9
416× 416 14.4 22.9
480× 480 12.3 19.3
544× 544 8.4 14.5
608× 608 7.5 12.9

This table show us that we achieve a performance increase
of around 50% when using the TensorRT optimized version
of the Yolo v4 Tiny network. This decrease in inference
time, however, does not correspond to any noticeable detection
accuracy loss, as can be observed in Table IV.

TABLE IV
DETECTION ACCURACY MAP@0.5 COMPARISON: YOLO V4 RUNNING ON

JETSON NANO.

Model Resolution
mAP@0.5

Darknet TensorRT

yolov4-tiny

352× 352 50.08 49.27
416× 416 55.10 54.21
480× 480 57.14 56.94
544× 544 59.06 58.38
608× 608 60.28 59.75

yolov4-tiny-3l

352× 352 54.86 53.92
416× 416 58.36 57.29
480× 480 60.02 59.56
544× 544 61.91 60.72
608× 608 62.23 61.20

For visualization purpose, a small video sequence, taken
from the ORCA USV, is available on YouTube, depicting the
detection bounding boxes provided by the trained network,
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specifically, yolov4-tiny-3l with 416x416 input resolution10.

V. DISCUSSION AND FUTURE WORK

The recent developments in detection using deep neural
networks allow the integration of state-of-the-art detectors
onboard an USV without the need to use costly and dedicated
hardware. We show in this work that the YOLO v4 can be suc-
cessfully trained on publicly available datasets to detect mar-
itime obstacles. As opposed to LiDAR and radar approaches,
the proposed method is able to differentiate between different
types of obstacles and thus makes possible the enforcement
of maritime collision regulations. Additionally, we show that
such detection network exhibits a real-time performance when
TensorRT is used, surpassing the 10 fps mark even at higher
image resolutions.

To fully integrate this detector in the navigation and control
software running onboard some topics must be first addressed:
• A new dataset with images taken from the ORCA USV

camera in different times of day and in different atmo-
spheric conditions should be collected and annotated, to
train the YOLO detection network with images corre-
sponding to the situations where inference will occur;

• Inclusion of a tracker to ensure temporal coherence
between detections in different time frames and outlier
rejection, e.g., by resorting to multiple object trackers
like [27]–[29].

• Calculation of obstacles locations in vehicle/world coor-
dinates. Conversion from image coordinates can be im-
plemented resorting to the knowledge of camera intrinsic
and extrinsic parameters, but obtaining depth information
must resort to the use of two cameras [30] or to data
fusion with other sensors like LiDAR or radar [15].

These topics will be addressed in future work.
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