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ABSTRACT In this work, we propose a new method for real-time ship segmentation during maritime
surveillance missions using aircrafts with onboard video cameras. We propose a cascade model with a
detection stage followed by a segmentation stage. The detection stage selects candidate regions (bounding
boxes) likely to contain ships. These bounding boxes are passed to the segmentation stage, where the
ship segmentation mask is then obtained. By focusing the segmentation effort only in the image regions
recommended by the previous detection stage, it is possible to improve the overall image processing
time and, simultaneously, to obtain a better segmentation score than the one obtained by monolithic
segmentation models that are trained in an end-to-end way. Additionally, we test the viability of using a
Conditional Random Field model as final boundary refinement stage: although such model can improve the
segmentation results when a full segmentation approach is used, our experiments did not show any significant
improvements when using our proposed cascade model. We trained the detection and segmentation models
with aerial ship images from publicly available maritime datasets. We tested the cascade model on the
Airbus ship detection challenge, showing real-time performance and accurate maritime ship segmentation,
comparable to state-of-the-art results.

INDEX TERMS Maritime surveillance, ship detection, ship segmentation, real-time image segmentation,
convolutional neural networks, deep learning.

I. INTRODUCTION
Maritime surveillance missions are of great importance
for search and rescue operations in accident or natural
catastrophe scenarios, and to track, prevent and discourage
illegal activities such as drug trafficking, illegal fishing,
and illegal cargo movement. For security, financial and
environmental reasons, countries need to control the activities
that affect humans and the ecosystem in the corresponding
exclusive economic zones (EEZ).

An effective surveillance of such economic zones may be
impracticable, due to the the lack of sufficient human and
material resources, specially when these zones correspond to
large maritime areas: Portugal, for instance, with a land area
of 92 212 km2, has the 5th largest EEZ within Europe, with
1 727 408 km2. This motivates the use of unmanned aerial
vehicles (UAVs) as an efficient and cost-effective solution
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to extend the surveillance capabilities, as these flexible and
extensible systems can incorporate a vast number of sensors
and can be operated autonomously [1].

While image detection addresses the problem of iden-
tifying the presence of certain classes of objects in the
image, resorting to bounding boxes to locate the detected
instances, image segmentation performs classification of
the image on a per-pixel basis, i.e., assigns a class to
each image pixel. Segmenting possible ships in an aerial
image provides information that can not be conveyed by an
automatic detector’s bounding box alone: besides ship size,
the estimated silhouette can be used to calculate the ship
orientation and route. Moreover, the ship shape, obtained
from image segmentation, can be automatically matched to
the ship Vessel Maritime Mobile Service Identity, given by
the AIS signature provided by the ship transceiver. If all
these calculations are performed onboard the UAV, without
any human intervention, the bandwidth requirements for the
datalink between the UAV and the Ground Control Station
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can be considerably reduced, since only the most crucial
information regarding the identified ships is relayed (e.g.
suspicious situations), thus avoiding a full video stream
transmission. As a consequence, the surveillance mission
range can be significantly increased.

The main goal of this work is to develop a system
for automatic ship segmentation in airborne color image
sequences, taken from standard RGB cameras, that can
be run in real-time in the UAV embedded hardware, thus
extending the autonomy of maritime surveillance missions.
Many UAVs used in this kind of missions also have mounted
thermal cameras that can provide images in the near infrared
spectrum, but for generality we only consider here the use
of commercial off-the-shelf RGB cameras and embedded
processing units. Segmentation of maritime surveillance
images is a challenging task: often the ship represents only
a small portion of the image, and it may be surrounded
by distracting elements such as waves, wave crests and
sun glare. In the past decade deep learning approaches
have consistently achieved state-of-the-art results in image
segmentation tasks, at a cost of large training times and
heavy computations performed at inference time. Even if
there are some specialized accelerated hardware solutions
for image processing and for running deep neural networks
in embedded systems (e.g., Jetson GPU family [2]), image
segmentation in real-time is still a demanding task in this type
of hardware, as its computational power cannot be matched to
the one provided by top desktop GPUs used in deep learning
research. Therefore, it is essential to reduce the computational
complexity of segmentation algorithms in order to process the
images with the required frame rate onboard the UAV.

The main contributions of this paper are:
• An efficient algorithm to segment ships in airborne
aerial images, using a cascaded approach composed
of two distinct deep neural networks, that can run in
real-time in standard embedded processing units;

• The evaluation of performance gain when a post-
processing step based on a Conditional Random Field
model is used.

The first network is a deep convolutional detection network
that extracts image locations with high likelihood of con-
taining ships, and currently many fast detection networks of
this kind can achieve real-time framerates, even on embedded
hardware [3], [4]. Typically, in this detection stage, most
of the original image is discarded and only a small portion
is provided to the second stage of the proposed cascaded
approach. In the second stage, a segmentation network
processes the image regions provided by the detector, thus
significantly saving computation time, as the full image
is no longer processed. Besides the speed gain, we also
verified that this method also improves the performance with
respect to end-to-end whole image segmentation, as will be
discussed in the next sections. Finally, we also evaluated
the segmentation performance when a Conditional Random
Field model is used as a post-processing step: although such
model has shown to improve the segmentation score when

a full segmentation approach was used, it did not show any
significant improvements when using our proposed cascade
model.

The remainder of this document is organized in the
following manner: Section II presents a review of the current
state-of-the-art related to image detection and segmentation,
with a focus on maritime scenarios. Then, in Section III,
we explain the proposed methodology and the choice of
the deep neural networks used in the proposed architecture.
In Section IVwe describe the experimental setup, the training
procedure and the datasets used for training, testing and
validation. Section V provides and discusses the results
obtained by the proposed approach and finally Section VI
summarizes the relevant aspects of this work and presents
guidelines for future work.

II. RELATED WORK
Since 2012, when Krizhevsky et al. [5] trained a convolu-
tional neural network (CNN) on ImageNet and achieved
remarkable results in a image classification task, the use of
deep learning methods for image analysis has grown dramat-
ically. Progress in the development of very deep architectures
for performance boost, like VGG [6], and residual networks
like ResNet [7], for improved convergence, led to significant
improvements in detection and segmentation tasks results.

Detection algorithms both localize and classify objects
in images. Localization information is typically represented
through a bounding box (BB) that encloses the detected
objects. Several detection architectures were developed
during the last decade: initial models, such as R-CNN [8],
first generate bottom-up region proposals, then extract
features on the region proposals using a CNN, and then
classify the obtained feature vector with a Support Vector
Machine (SVM). In recognition systems, Feature Pyramids
Networks (FPN) are also useful components for object
detection, providing a top-down pathway to construct higher
resolution layers by generating multi-scale feature maps with
better quality information: in [9] the authors introduced a
newmethod for building them inside a CNN, combining low-
resolution, semantically rich features with high-resolution,
semantically weak features. More recent and efficient
approaches like YOLO [4] entirely skip the region proposal
stage from two stage detectors like R-CNN through the use of
a fixed set of anchor bounding boxes. Features are extracted
by a single CNN applied to the whole image, and then used
to classify the objects in the anchor boxes and adjust their
position and scale to fit tight to the objects of interest.

Segmentation algorithms assign a label to each pixel in
the image. If the label corresponds to a class, this is denoted
Semantic Segmentation. Instead, if the label is assigned to
an instance of a class, this is denoted Instance Segmentation.
In segmentation problems we want to generate an output
image of the same size of the original image, containing
the classification of each pixel. It is convenient that a
segmentation network is able to process images of arbitrary
size to prevent loss of resolution.
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In [10] a Fully Convolutional Network (FCN) is presented
that can segment images of different input sizes. However,
in this architecture some resolution is lost because max
pooling and sub-sampling operations reduce the feature map
resolution, impacting the final segmentation result. Segnet,
on the other hand, is a deep neural network architecture that
introduces the encoder-decoder concept on CNNs to recover
the resolution of the input image [11]. In this architecture the
low resolution encoder features are mapped by the decoder to
full input resolution feature maps, by using pooling indices,
computed in the max-pooling step of the corresponding
encoder, to perform non-linear upsampling. U-Net is an
alternative architecture that was developed for biomedical
image segmentation, based on a fully convolutional network
modified and extended to converge with fewer training
images and to yield more precise segmentations [12]. Fig. 1
shows the U-Net architecture. The left side represents the
encoder composed of a contracting path to compute features.
The right side represents the decoder that has an expanding
path to localize patterns. U-net uses the feature maps
computed in the contraction path to expand the encoder
representation into a segmented frame. Thus, the structural
integrity of the image is preserved, which decreases the
output distortion.

As shown in Fig. 1, the contracting path applies multiple
pairs of two 3*3 convolutions, each followed by a ReLU
layer. After each group of two convolution layers it is
implemented a 2*2 max-pooling operation with stride 2 for
downsampling. At every downsampling step the number of
channels duplicate. The expansive path performs the opposite
operations: it uses 2*2 up-convolutions and decreases the
number of channels to half. Plus, it concatenates high-
resolution contracting path features followed by two 3*3
convolutions, each with a Relu. Since the network uses
feature maps from the initial layers, the loss of pattern
information is prevented. Besides, with a large number of
feature channels, context information can be propagated to
layers with higher resolution. The U-Net final layer consists
in a 1*1 convolution that generates a segmentation map
from the features maps. U-Net does not have fully connected
layers, which leads to fewer model parameters to train; also,
it can achieve competitive results due to the skip connections,
that gather information from multiple scales of the image,
allowing data from the upper and deeper layers of the
architecture to be directly used in the decoder layers, thus
also enabling a better flow of the gradients during the training
phase.

Segmentation networks can be applied to multiple scenar-
ios, and in this paper we focus on maritime scenarios and aim
at segmenting ships from aerial images. This problem can
also be addressed with synthetic-aperture radar (SAR), that
allows creating two-dimensional images or reconstructing
a three-dimension object, and it is quite popular in ship
detection. In [13], the authors present an application of a
Faster R-CNN in SAR ship detection. The Faster R-CNN
generates bounding boxes, and those with a low score

pass through a constant false alarm rate (CFAR) detector.
CFAR is a pixel-based detection method that calculates the
probability of false alarm associated with a detection thresh-
old. Image acquisition and processing with SAR sensors
requires additional computation resources and has limited
data acquisition speed and real-time capabilities compared to
RGB images acquired fromUAVs. [14] presents a framework
called Rotation Dense Feature Pyramid Networks (R-DFPN)
capable of detecting ships in the ocean and in ports with RGB
images. The Feature Pyramid Network gathers multilevel
information and achieves state of the art results in small
object detection tasks, and in R-DFPN this architecture
is improved by adding connections between feature maps.
The authors of [15] use recorded data to help identify
a vessel. They investigate how temporal features could
improve ship detection in video sequences captured by a
small aircraft. They build a convolutional long short-term
memory (LSTM) to learn those features and increase ship
detection rates. In [16] the authors propose a method capable
of performing ship detection in challenging surveillance
conditions. They track vessels with a correlation filter
complemented with image segmentation. To compensate for
drifts in the correlation filter, they apply blob analysis to
re-center the target in the tracking window. To perform
segmentation, the authors use the Otsu’s method [17] to
segment the image into two classes, bright and dark parts of
the image, that will correspond to the ships and the ocean
surface, respectively. In [18], a robust detector for aerial
images captured during maritime surveillance missions is
presented. They modify a CNN and create tracks with the
successive detections to predict the position of the objects in
future frames. That method combines a CNN that generates
detection proposals, bounding box-shaped, with a Multiple
Hypothesis Tracker (MHT). The MHT increases robustness
by creating associations between detections and tries to
predict the future position of the vessel.

The Kaggle Airbus Ship Detection Challenge provides a
good testbed for ship segmentation in aerial images, as in
this competition it is required to locate ships in images and
to put an aligned bounding box segment around the located
ships [19]. Although the ground-truth segmentation masks in
this challenge consist simply in rotated rectangles, a feature
that some competitors can exploit, it nevertheless provides a
large annotated maritime dataset for training and testing of
deep learning algorithms, allowing for comparison of results
in an independent test set with different approaches and algo-
rithms. This independent test set, not available to the com-
petitors, comprises 93% of the test data: the segmentation
score on this dataset is called the challenge private score. The
remaining 7% of the test data are available to the competitors:
the results obtained using these data are denoted the public
score.

In [20], the authors present an algorithm to segment ships
from aerial images. They implemented the U-Net network
and achieved a private score of 0.845 with an inference
time of 1.21 frames per second, which comes quite close
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FIGURE 1. U-Net architecture. Figure taken from [12] with permission from authors.

to the results of the winner of the contest (private score
of 0.854).

Our main goal is to develop a segmentation algorithm
that still maintains a good segmentation performance, i.e.,
that can achieve a competitive score on the Kaggle Airbus
Ship Detection Challenge, while significantly lowering the
inference time required to process an image in order to
meet real-time demands. We implement a cascade model
capable of identifying ships in aerial images captured
by a UAV. The algorithm has two different stages: first,
we use a detection network to search for possible ship
location regions, and then we pass these regions through a
segmentation network based on the U-Net, thus narrowing
the image region where segmentation is performed, which
significantly improves the overall image processing speed.
We train the two different stages of this cascade model
using the Seagull [21] and Kaggle [19] datasets. Additionally
we evaluate the possible performance gain if conditional
random fields are used to improve the segmentation results,
using it as a post-processing step after the segmentation
network.

III. METHODOLOGY
The embedded computers on the UAVs assigned for maritime
surveillance missions by the Portuguese authorities typically
have limited computational power for computer vision tasks,
and current state of the art segmentation networks like U-Net
are not compatible with real-time processing on this kind of
hardware. Since during these missions the ships we intend to
segment only represent a small part of the image, we propose
a cascade approach to reduce the computation time and
make it compatible with real-time demands, composed of the
following stages:

• Detection: possible ships locations are identified on the
whole image;

• Segmentation: Ship segmentation is performed solely on
the locations provided by the previous detection phase;

• Post-processing: as a final pos-processing phase, the
individual segmentations carried out in each detection
bounding box are merged by the Bounding Box Mask
Aggregator to provide a single segmentation mask for
the image. In this stage the final segmentation can also
be improved by using post-processing techniques like
Conditional Random Fields models.

With this approach we expect the processing time to be
significantly reduced, since detection using state of the art
detectors is a much faster operation than segmentation, and
the segmentation network only runs on a small part of the
image, provided by the detection stage, therefore avoiding
large areas of the image corresponding to the ocean, sky
or coastline. As a final stage the individual segmentation
masks for each detection are aggregated to provide an output
mask with the same size as the input image. Fig. 2 show
the global system architecture. The implementation of the
cascade model was made in C and Python and is available
on GitHub.1

A. DETECTION NETWORK
There are currently many efficient and fast detection algo-
rithms such as R-FCN [22], RetinaNet [23], and YOLO [4],
to name just a few: their performance on a detection task on
the COCO dataset is summarized in Table 1.

Since detection speed is the main concern we will use
the YOLOv3-tiny model in our work. The YOLO network
is a one stage detector that splits the image into a grid,

1https://github.com/Cpires97/Ship-seg
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FIGURE 2. Segmentation global system architecture.

TABLE 1. Accuracy and speed of some detection networks on the COCO
dataset (values taken from [4] and [23]).

where each cell of the grid is responsible for predicting
the bounding boxes and the probabilities of containing
an object. According to Table 1, YOLOv3 can process
20 frames per second on the COCO dataset, and its faster
version, Tiny Yolo, can reach 220 frames per second,
a consequence of having fewer parameters and a lower
number of layers. The inference results presented in Table 1
are usually obtained using top performance graphic cards
(in [23], for instance, an Nvidia M40 GPU is used to
evaluate RetinaNet performance). We expect these numbers
to substantially drop when using single-board computers
like, for instance, the Nvidia Jetson Nano or Nvidia Jetson
TX2, but, nevertheless, optimized versions of the Tiny YOLO
network can achieve real-time performance on this kind of
embedded systems [24].

YOLOv3-tiny model has 24 layers, most of them convo-
lutional and max-pooling layers. It also contains two route
layers that concatenate outputs from previous layers and
merge them into one layer, thus mixing feature maps from
earlier layers with semantic information from upsampled
features. In the end, YOLO predicts a 3D tensor with the
bounding box coordinates, the class predictions and the
corresponding confidence score, indicating the probability
that an anchor box contains an object predicted by the YOLO
network. Although this network can be trained to detect
multiple class objects, we will use it to predict only the
‘‘Ship’’ class.

Additionally, by adjusting the detection threshold so that
only objects detected with a confidence score above that
value are considered, we can tune the network sensitivity:
for high threshold values the network will only detect
objects with a high confidence score, potentially missing
some target objects on the image, while for low threshold
values the number of false positives will increase, potentially
misidentifying ocean or coastal regions as a ship.

FIGURE 3. Example of possible detection scenarios: PR and GT bounding
boxes in red and green, respectively. Top-left: The ship is there and the
network detects it with IoU above the threshold; top-right: The ship is
there but the IoU is below the threshold; bottom-left: there is no ship but
the model detects one; bottom-right: the network does not detect the
ship in the image.

The evaluation metric for the detection stage resorts to the
standard intersection over union (IoU) score, given by

IoU =
PR ∩ GT
PR ∪ GT

, (1)

where PR is a bounding box predicted by the YOLO detector
for the Ship class and GT is a ground-truth bounding box.
For a given annotated image, a detection is considered a true
positive (TP) if a ship exists in the image and IoU > 0.5 for
any ground-truth bounding box, otherwise it is considered
a false positive (FP). A false negative (FN) occurs if a ship
in the image is not detected, i.e., if IoU < 0.5 for all the
detections provided by the YOLO network for this particular
ground-truth bounding box. In Fig. 3 we represent examples
of TP, FP, and FN situations in maritime surveillance images:
keep in mind that in one image it is possible to have multiple
TP, FP and FN occurrences.

The precision of the detector is given by

Precision =
#TP

#TP+ #FP
,

where the number of true positives and false positives is
evaluated over a given set of images, while its recall is equal
to

Recall =
#TP

#TP+ #FN
. (2)

The detection threshold value chosen for the YOLO
network influences these two metrics: if this threshold is
low the detector will correctly identify almost all ships in
the image, but the number of false positive cases will also
increase, thus lowering the detector precision. On the other
hand, increasing the threshold value will lower the false
positive rate but will increase the probability that a target is
missed, thus lowering the detector recall.

In this cascade architecture the goal of the detection stage
is to discard large regions of the image, thus narrowing down
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the size of the bounding boxes presented to the segmentation
stage. This means that we want to have a detection stage with
a very high recall, so that no ship goes undetected. To achieve
such high recall a low detection threshold is desired: even if
such approach results in a high number of false positives this
is not a serious issue, as these bounding boxes will still be pro-
cessed by the segmentation stage. The choice of the detection
threshold will be discussed in the following sections.

B. SEGMENTATION NETWORK
After the detection stage the segmentation stage provides
a pixel-wise classification of the candidate bounding boxes
into two distinct labels: Background and Ship. Although
other state-of-the-art segmentation networks exist, like Mask
R-CNN [25], we choose to implement the U-Net archi-
tecture [12], as it has fewer parameters to train, allowing
the training process to achieve competitive results using
smaller datasets. Also, using a lighter network allows a faster
segmentation during real-time operation.

For the encoder part of the U-net, one can apply standard
convolutional operations for feature extraction or one can
apply an existing backbone from other detection CNNs,
like VGG [26], ResNet [7], or DenseNet [27]. In this
work we choose this later option and we will study five
different architectures for the backbone of the U-Net:
VGG [26], ResNet [7], SEResNet [28], DenseNet [27], and
InceptionResNet [29]. In the following sections experimental
results will be provided regarding the assessment of the
performance of these backbones in the context of ship
segmentation using maritime surveillance images.

To assess the segmentation results, we compare, pixelwise,
the ground-truth masks for the Ship class with the segmented
masks provided by the U-Net for the same class, calculating
the corresponding IoU score. By defining a segmentation
threshold over the IoU value we can obtain the number of
true positives, false positives and false negatives over a set of
annotated images, and thus calculate the precision and recall
values for the segmentation stage. Additionally, to compare
the obtained results with those provided by the Kaggle Airbus
ship detection challenge [19], we also calculate the Fβ score,
given by

Fβ =
(1+ β2) ∗ TP

(1+ β2) ∗ TP+ β2 ∗ FN+ FP
. (3)

The Fβ score is the harmonic mean of precision and recall,
and having Fβ = 1 means that both precision and recall are
equal to one. This metric is helpful whenwe are learning from
imbalanced data, as its parameter β can balance precision and
recall. The value of β defines how many times the recall is
more important than precision: with β > 1, for instance, Fβ
score weights recall higher than precision.

The detection network presented in this paper is designed
to have a high recall, providing to the segmentation stage
many bounding boxes with just background pixels; addition-
ally, the dataset used in the Kaggle Airbus ship detection
challenge is highly unbalanced, with a lot of images without

ships. This competition uses the Fβ score, with β = 2,
calculated at different IoU thresholds as a metric to evaluate
and score the different segmentation algorithms competing
in this challenge. To obtain a final score, the threshold value
is varied from 0.5 to 0.95, with a step size of 0.05, and the
arithmetic mean of the F2 score for these different threshold
values is obtained, i.e.,

Kaggle Score =
1
#T

∑
t∈T

F2(t), (4)

where T represents the set of all thresholds for which the
F2 score is calculated.

C. CONDITIONAL RANDOM FIELDS
In complex segmentation scenarios, where small or partially
occluded objects are present in the image, U-Net and
other CNN based segmentation networks can output a very
coarse segmentation boundary between different classes.
To overcome this problem we can use post-processing
techniques over the results provided by the segmentation
stage like Conditional Random Fields (CRF), a very popular
graphical model used in computer vision [30].

A CRF uses neighboring context, such as the relationship
between adjacent pixels to assign a class to a given pixel. This
model considers a cost, to be minimized, that depends both
on each pixel prediction class probability (unary potential),
as given by the segmentation stage, and on the similarity
of predictions between pairs of pixels (pairwise potential),
to enforce a correlation between the pixel predictions given
by the previous segmentation stage, thus leading to the
smoothing of the segmented objects boundary. For the
pairwise potential we can use the similarity between all pixels
in the image (dense CRF) or, alternatively, we can consider
only the similarity between adjacent pixels (grid CRF).

In [30], using grid CRF leads to over-smoothing around
the object boundaries, while it is shown that dense CRF
can recover narrow edges in the image, thus improving the
segmentation performance. In our work we implement the
dense CRF algorithm, as it allows long-range interactions
between pixels, no shrinking bias, and a probabilistic
interpretation for segmentation. We follow the dense CRF
model detailed in [30], that uses the energy function given
by

E(x) =
∑
i

θi(xi)+
∑
ij

θij(xi, xj) (5)

as a cost to be minimized, where x represents the set of pixel
labels for all the pixels in the image and xi and xj represent
labels for individual pixels i and j, respectively. The first term
on the right side represents the unary potential, wherewe have

θi(xi) = − log p(xi), (6)

with p(xi) corresponding to the label probability at pixel
i provided by the segmentation stage. The second term in
Equation 5 denotes the pairwise potential, given by

θij(xi, xj) = µ(xi, xj) (w1K1(i, j)+ w2K2(i, j)) , (7)
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FIGURE 4. Upper left: original image; upper right: ground truth
segmentation; lower left: segmentation using U-Net; lower right:
segmentation using U-Net and CRF.

where K1(i, j) and K2(i, j) are Gaussian kernels that measure
the similarity between pixels i and j, w1 and w2 are the
corresponding weights, and where µ(xi, xj) is an indicator
function, denoted label compatibility, that only considers
pairs of pixels that have different class labelings when
calculating the cost. It is given by

µ(xi, xj) =

{
1 if xi 6= xj ,
0 otherwise.

(8)

K1(i, j) is the appearance kernel, given by

K1(i, j) = exp

(
−
‖pi − pj‖2

2σ 2
α

−
‖Ii − Ij‖2

2σ 2
β

)
, (9)

which depends on pixel positions and color, denoted by p and
I respectively, and assumes that nearby pixels with similar
colors are likely to be in the same class. The parameters
σα and σβ , respectively, control the degrees of nearness and
similarity in this kernel.
K2(i, j) is the smoothness kernel that discourages labeling

very small isolated regions of the image as the same class.
It is given by

K2(i, j) = exp

(
−
‖Ii − Ij‖2

2σ 2
γ

)
, (10)

where σγ is a pixel similarity parameter.
Fig. 4 illustrates the potential benefits of using CRFs

as a post-processing stage for ship segmentation on aerial
images.

Note that the CRFmodel used in this work has 5 parameters
that need to be set beforehand: w1, w2, σα , σβ and σγ .
These parameters values are defined using the available
maritime images, as will be explained in the following
sections.

FIGURE 5. Example images from the Seagull dataset [21] and
corresponding detection bounding boxes (in red).

IV. EXPERIMENTS
A. DATASETS
Machine learning models require a diversified set of training
data to create a robust algorithm capable of segment-
ing vessels in multiple maritime scenarios. We use a
combination of images from two distinct datasets: Seag-
ull [21] and Kaggle [19]. The Seagull dataset contains
RGB and multispectral video sequences acquired from
a fixed-wing drone surveying maritime areas at altitudes
around 150-300m, labeled with frame-based bounding boxes
(Fig. 5). The Kaggle dataset, on the other hand, is composed
of single-frame aerial images from different sources, with
pixel-based labels, i.e., segmentation masks (Fig. 6).
To train the detection network we selected 90 000 images,

50% from the Seagull dataset (RGB images only, from several
videos, all with bounding box annotations) and 50% from
the Kaggle dataset (the first 45 000 images from the training
folder, which has pixel-level annotation). Since Kaggle has
pixel-level labels, we had to create a bounding box towrap the
segmentation mask. For testing, we used 197 and 200 images
from the Seagull and Kaggle datasets, respectively. Again,
we had to generate the ground truth bounding boxes for the
Kaggle images.

To train the network for the segmentation stage we selected
a total of 20 000 images: 19 800 images from the Kaggle
dataset and 200 images from the Seagull dataset. In this latter
dataset, we had to manually create the ground truth mask for
the images. This was done with LabelMe: Image Polygonal
Annotation with Python [31], a graphical image annotation
tool written in Python capable of creating semantic and
instance annotations.

Since the input to the segmentation stage consists in
image patches delimited by the bounding boxes provided by
the previous detection stage, we passed the aforementioned
20 000 images through the detection network and then we
used the resulting bounding boxes to train the U-Net with
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FIGURE 6. Example images from the Kaggle dataset [19] and
corresponding segmentation masks. Left column: original image. Right
Column: ground truth segmentation mask.

the ground truth labels. To evaluate the segmentation stage,
we selected images from the Kaggle and Seagull datasets and
built a local test set, where, as before, we had to manually
annotate the Seagull images to provide the ground truth
segmentation mask. Table 2 summarizes the set of images
used for training and testing.

B. DETECTION STAGE
For the detection task we use the tiny-YOLO network from
darknet, an open-source framework written in C and CUDA,
which supports GPU and CPU computation [32].

TABLE 2. Training and test sets for the segmentation network. # Images
denotes the total number of images in each dataset and # BB is the
corresponding number of bounding boxes obtained after presenting
these images to the detection stage.

We use a pre-trained YOLO model, with a set of
convolutional weights that result from the pre-training of the
network using the ImageNet dataset. Since this pre-trained
model is capable of detecting multiple objects categories,
we replace the final layer with a simple binary output, since
in our architecture we only intend to detect objects belonging
to the Ship class. After that we fine tune the network, training
this model with the aforementioned training images from the
Seagull and the Kaggle datasets, keeping 70% of the 90 000
images for training the network and using the remaining 30%
for validation. We use a batch size of 24, the sum of square
error loss, and a learning rate of 0.001. We do not freeze any
layer in the model during the training phase.

C. SEGMENTATION STAGE
For the segmentation task we used a recent implementation
of U-Net where it is possible to customize some parameters
like the loss function and the encoder architecture [33]. Since
the input to the segmentation stage consists in image patches
provided by the detection stage, there is a higher likelihood
of an image pixel presented to the segmentation stage to
belong to the Ship class, as most of the background pixels
are discarded in the detection stage. The training set for the
segmentation stage is different from the detection training set,
to prevent biases in the detection stage from influencing the
input distribution in the segmentation stage.

We passed the 20 000 images of the segmentation training
set through the YOLO network, to obtain the bounding boxes
for training the segmentation network. As a result, we got
61 775 bounding boxes, with only 6911 boxes having a ship.
To create a balanced training set, we selected all the bounding
boxes containing a ship and randomly picked another 6911
bounding boxes containing just background. This resulted
in a training set with 13 822 bounding boxes. Then, the set
was splitted in training and validation with a 70-30% ratio,
respectively. During the training stage, we used a learning
rate equal to 0.001 and the Adam optimizer. We trained
the network during 50 epochs and we used the IoU as an
evaluation metric.

During the training phase, we tried three different loss
functions in the segmentation network: the dice loss, the
cross-entropy loss, and the focal loss.

The dice loss is given by

DL = 1− (1+ β2)
Precision ∗ Recall

β2 ∗ Precision+ Recall
(11)
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FIGURE 7. Number of false positive, false negative and true positive
detections for the Seagull dataset as a function of the detection threshold.

and in our work we set β = 1. The standard cross-entropy
loss, on the other hand, is calculated pixelwise and is given
by

CEL =

{
− log px if x = Ship,
− log(1− px) otherwise.

(12)

Here x denotes the true class label for a particular pixel and
px denotes the predicted probability that such pixel belongs
to the class Ship, calculated by the segmentation network.
The focal loss is a variation of the cross-entropy loss that
addresses the class imbalance problem, down-weighting well
classified examples so that in the training stage an increased
focus on hard to classify pixels is achieved. It is given by

FL =

{
−α(1− px)γ log px if x = Ship,
−(1− α)pγx log(1− px) otherwise,

(13)

where α and γ correspond respectively to a weighting factor
and to a focusing parameter: based on [23] we use α =
0.25 and γ = 2.
To assess the influence of the segmentation backbone

in the overall performance, we trained the U-Net with
several encoders: VGG, ResNet, SEResNet, DenseNet, and
InceptionResNet. All of them are pre-trained in the ImageNet
dataset [34] and available in [33]. Additionally, we also varied
the batch size during the training phase to check its influence
on the final evaluation score and on the training time.

D. POST-PROCESSING STAGE
We implemented a dense CRF model and evaluated its
contribution as a post-processing stage to the overall
segmentation performance. In this situation, the segmentation
network output probability map is provided to the CRF
model, which tries to minimize the energy function presented
in Equation (5), given the pixel prediction values and
corresponding locations. Due to the cascaded implementation
proposed in this work, this operation has a reduced
computational cost, since it is only performed on the
bounding boxes provided by the detection stage and not on the
entire image. As a final post-processing stage the individual
segmented bounding boxes are aggregated to provide the final
full segmented image.

FIGURE 8. Number of false positive, false negative and true positive
detections for the Kaggle dataset as a function of the detection threshold.

FIGURE 9. Detection precision-recall curves for the Seagull and Kaggle
datasets.

V. RESULTS
A. DETECTION STAGE
Since the segmentation stage is computationally demanding,
in the detection stage we filter out unpromising image regions
to reduce the size of the images presented to the segmentation
stage, thus decreasing the overall image computation time.
After training the YOLO network we tested it on both
datasets for detection thresholds Th in the set Th ∈

{0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2}. The number of false
positive, false negative and true positive detections for the
Seagull and Kaggle test datasets as this threshold is varied
is presented in Fig. 7 and Fig. 8, respectively.

The corresponding precision-recall curves for both datasets
are presented in Fig. 9, where we ommited the values
corresponding to Th ∈ {0.00001, 0.0001} for clarity, as they
are very similar to the values calculated for Th = 0.001.

As discussed before, in the detection stage a high recall is
desired, even if at a cost of generating a large number of false
positives, as these false detections will have a high chance of
being discarded at the segmentation stage. Fig. 10 illustrates
the results obtained in the detection stage using three different
threshold values.

Notice that, for a high detection threshold value, the ship
in the lower part of the image would remain undetected
and, as a consequence, the corresponding region of the
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FIGURE 10. Detection network output for different threshold values.

TABLE 3. Detection network results with Th = 0.001.

image would not be processed by the segmentation stage.
On the other hand, for very low values of this threshold, the
YOLOnetwork generates some false positive detections. This
however, is not problematic, as these detections will still be
processed by the segmentation stage.

Taking into account these results we set the detection
threshold at 0.001: the corresponding detection results are
summarized in Table 3.
Despite the low precision value — a high number of

bounding boxes is provided by YOLO — we are able to
discard between 95–96% of the background image, thus
effectively greatly reducing the computational burden on the
segmentation stage.

B. SEGMENTATION STAGE
To evaluate how the choice of a particular encoder in
the U-Net influences the performance in the segmentation
stage, we we tested different encoder backbones: VGG,
ResNet and SEResNet. Table 4 shows the average IoU
of the cascaded model (detection + segmentation) on the
segmentation test sets of Kaggle and Seagull images (S1
and S2, respectively). Although the differences are not very
significant, the ResNet-type networks seem to present a better
overall performance, and ResNet-18 shows the best IoU score
in both datasets.

In the following tests we selected the ResNet-18 network
as the encoder of the segmentation network and searched for
the best training loss function and batch size combination
for this network. We tested the loss functions presented in
Section IV.C both individually and in pairs, by averaging
the corresponding scores. For the dice loss we also tried a
weighted version where positive and negative examples are
weighted differently, in order to balance the datasets – the
weight is computed by the ratio of the number of pixels
of each label in the training dataset. The tested batch size

TABLE 4. Segmentation IoU for multiple encoders with focal and dice
losses, and batch size = 8.

TABLE 5. Airbus ship detection challenge score for the cascade model
with the encoder Resnet-18 in the segmentation stage.

parameters were 8, 16, and 24. Notice that this study is
not exhaustive and that we did not cover all the possible
combinations of loss functions and batch sizes: instead, due
to the limited computational resources available, we made
a manually guided search, trying to change the parameters
in order to achieve the best possible segmentation results
in the Airbus ship detection challenge. Once again there is
not an overwhelming difference in the results when we use
different values for the loss function and the training batch
size, but, nevertheless, Table 5 shows that the best results are
achieved with a combination of the Focal and Weighted Dice
losses, for large batch sizes. Fig. 11 presents some examples
of segmented ships using the ResNet-18 encoder, trained
with the average of Focal and Weighted Dice losses, in the
segmentation network.

After selecting the encoder backbone, the batch size and
the training loss function, we checked how it compared in
the Airbus ship detection challenge to different encoder back-
bones. Additionally, we tried deeper encoders — ResNet-34,
ResNet-50, DenseNet121 and InceptionResNetV2 — to see
how encoder depth affected the performance of the global
architecture. Table 6 presents the private score for six of
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FIGURE 11. Segmentation results using the ResNet-18 encoder. Left
column: original image. Middle column: ground truth segmentation mask.
Right column: predicted segmentation mask.

TABLE 6. Airbus ship detection challenge results for multiple encoders
using focal and weighted dice losses.

these networks, together with the corresponding training and
testing time. Although, as expected, the best score is achieved
using Densenet121 and InceptionResNetV2 — the deeper
encoders of the set of tested backbones — their training time
is significantly higher when compared to the other networks.
However, this difference is not so noticeable if we look at
the test time: in the worst case scenario InceptionResNetV2
achieves a processing time of 2h30min for the full test set,
against the 1h20min achieved by ResNet-18. In the following
experiments we chose the DenseNet121 backbone for the
segmentation stage, as it provides the best private score on the
Airbus ship detection challenge at a decent processing time;
keep in mind that this encoding network can be replaced, e.g.,
by the ResNet-18 if the fastest processing time possible is
desired.

C. POST-PROCESSING WITH CRF
To improve the segmentation accuracy we post-processed
the segmentation probability map with a dense Conditional
Random Field model whose energy function is given by
Eq. (5), using a validation set of 200 images to tune its

TABLE 7. Segmented bounding boxes IoU with and without CRF.

TABLE 8. Comparison of Cascaded models vs full image segmentation.

parameters in order to maximize the IoU score over that
set. Parameters were optimized by grid search in the ranges:
σα ∈ [1 : 5 : 100], σβ ∈ [1 : 1 : 20], σγ ∈ [1 : 1 : 20],
w1 ∈ [1 : 2 : 20], and w2 ∈ [1 : 2 : 20]. The best
values found were σα = 1, σβ = 4, σγ = 3, w1 = 1,
and w2 = 5. Subsequently, we evaluated the results in the
test sets S1 and S2. Table 7 presents the performance of the
full system, comparing it with the results obtained without
this post-processing stage. The final IoU score is marginally
better when the post-processing stage is used, but this comes
at a cost of an increased overall computation time. This will
be discussed in the following section.

D. EVALUATION OF THE FULL CASCADED MODEL
To assess the computational advantages of the proposed
cascade model, we compare it with the classical full image
segmentation method. We trained a U-net for full image
segmentation, using the same encoder and hyper-parameters
as the ones used in the cascade model, and then evaluated its
performance in the Airbus ship detection challenge. We also
applied the CRF based post-processing step to the resulting
output. Table 8 compares these different approaches with
respect to the obtained private score in the Airbus ship
detection challenge and the corresponding processing time.
These results were obtained using a single GTX 1070 Ti
graphics card, and show that the CRF post-processing stage
can significatively improve the segmentation score when
full image segmentation is performed (in line with results
reported in [30]), but that such improvement is no longer
visible when a cascade model is used. It also becomes aparent
that the cascade model achieves the best results with respect
to both segmentation performance and computation time;
in particular, using the proposed cascaded model allows a
real-time operation using UAV embedded hardware.

Fig. 12 shows some examples of segmented images taken
from the Kaggle Airbus ship detection challenge dataset,
using the proposed cascademodel, wherewe can qualitatively
notice that there is no significant difference when the CRF
post-processing stage is performed. We also noticed that
the cascade model segmentation accuracy sometimes drop
when the ships are located near land (e.g. in harbours),
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FIGURE 12. Segmentation using the proposed cascade model. Left
column: original images. Middle column: segmentation without CRF
post-processing. Right column: segmentation with CRF post-processing.

in which case sometimes it is difficult to distinguish the land
background from the ship. This, however, is not a critical
issue, as maritime surveillance missions typically occur in
open sea scenarios.

According to [19], the winner of the Airbus ship detection
challenge reached a private score of 0.85, against the
0.82 score achieved by our method. However, note that
inference time was not taken into account to evaluate the
performance of the algorithms competing at the Airbus ship
detection challenge: since the proposed cascaded approach
is intended to run on an UAV embedded hardware, real-time
ship segmentation is the critical constraint in the proposed
approach. Even if the average processing rate of 11 images
per second achieved on a single GTX 1070 Ti graphics card
will significantly drop on an embedded card like the Jetson
Nano or Jetson TX2, this framerate, nevertheless, is still
compatible with the maritime surveillance requirements.

VI. CONCLUSION
This work presents a new algorithm to perform fast and
accurate maritime ship segmentation. The goal is to develop
an autonomous system capable of doing maritime surveil-
lance by using UAVs with onboard cameras. In the acquired
maritime images the ships tipically represent a small portion
of the image, and it can be challenging to recognize them

when there are other elements such as waves, sun reflections,
and ship wakes. Additionally, since all the computations
are to be performed on onboard hardware with limited
computational power, the final segmentation model must be
fast enough to run on an embedded processor. To deal with
these challenges we propose a cascademodel with a detection
and a segmentation stage: in the first stage we extract possible
ship location regions, and then, in the following stage,
we perform ship segmentation on these candidate regions.
The initial stage discards parts of the image considered
irrelevant, i.e., with a very small probability of containing
a ship according to the detector network, which greatly
speeds up the segmentation stage. Our experiments show
that this procedure also leads to a better performance, when
compared to full image segmentation, even in challenging
conditions, such as sun-glare and waves. We also tested
a post-processing stage based on a CRF model: although,
in Table 8, the experimental results show an improvement on
the performance of a full segmentation model, this does not
happen in the proposed cascade model, which presents the
best segmentation performance at the fastest processing time.

The annotated images from the Kaggle dataset used for
training the segmentation network provide a rudimentar
segmentation mask, simply consisting of rotated rectangles
that fit the ships present in the image. We noticed that
this issue may decrease the overall score obtained in the
Airbus challenge, as the segmentation masks produced by
the proposed method seem to provide a better approximation
to the real ship contour than the rectangular mask used for
evaluation— see, for instance, the last row of Fig. 11. Table 4
also seems to confirm this observation, since the evaluation
of the proposed method on the Seagull dataset, where the
ground-truth segmentation masks were manually annotated
with a finer detail than those of the Kaggle dataset, leads to a
better IoU score.

For future work we intend to study the use of temporal
correlation with the previous video frames to improve ship
segmentation. This can be done by introducing some sort
of memory in the detection and segmentation stages (e.g.,
by introducing Long Short-Term Memory (LSTM) layers
in these networks) or by considering the time dimension
in a post-processing stage (for instance, by using 3D CRFs
[35]–[37] where the third dimension corresponds to time).
This will require annotated sequences of images that the
Kaggle dataset does not provide, which can make the training
phase of a LSTM much more difficult due to the absence of
this rich and diverse dataset. Furthermore, the processing time
is expected to increase when this additional information is
used, so a compromise must be made between segmentation
accuracy and real-time processing requirements.
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