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Abstract—This paper describes the mathematical model devel-
oped to simulate the behavior of a BUV, the TOBIAS vehicle,
which is being developed at the Portuguese Naval Academy
as part of the SABUVIS project. During the development of
the model the hydrodynamic coefficients of the vehicle were
estimated, as well as the thrust generated by the undulatory
motion of the tail and the effects of the pectoral fins. Using this
model, it is possible to perform a series of maneuvers verifying
the performance of the BUV as a function of different control
parameters.
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I. INTRODUCTION

The significant development in the area of underwater
robotics has led to the emergence of several models of
Autonomous Underwater Vehicles (AUV), engaging them
in military, scientific, or commercial missions, performing
tasks such as mine countermeasures, examining oil and gas
pipelines, or hydrographic surveys and mapping of the ocean
floor [1]. However, it has been found that in certain situations
these propelled AUVs are underperforming, due to their poor
maneuverability at low speeds, resulting in a high radius of
gyration. Therefore, other propulsion configurations such as
azimuthal thrusters or multiple thrusters distributed along the
vehicle body with different orientations have been adopted, at
a cost of an increased energy consumption [1].

Thus, the need arose to develop a propulsion system that
would ensure good maneuverability of the vehicle while
guaranteeing its energy efficiency. For this purpose, nature
was used as inspiration and the swimming modes of fish
where mimicked, resulting in an efficient alternative propul-
sion system. So, the concept of the Biomimetic Underwater
Vehicle (BUV) appears, where the thrusters are replaced by
a tail that reproduces the undulatory movement similar to
a fish [2]. The BUVs, in addition to solving the problem
of energy efficiency combined with good maneuverability
also have other advantages compared to propelled vehicles,
namely the reduction of noise during their movement and their
stealthiness, reducing the probability of being detected, which
are relevant characteristics for military applications of these
devices [3].
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The dynamic behaviour of a vehicle with undulating propul-
sion is more complex than the dynamics of vehicles with
traditional propellers, and there has been a large research
on modeling the dynamics of these kind of vehicles that
mimic fish, stingrays and other type of aquatic creatures [4],
[5]. In [6], computational fluid dynamic simulation is used
to obtain an accurate prediction of the hydrodynamic forces
applied on a robotic fish, while in [7] the dynamic equations
of a BUV are derived and a method to find the optimal
parameters to give a maximum propulsive power is proposed.
[8], on the other hand, presents a dynamic model divided into
a stiff anterior body, a flexible rear body, and an oscillating
lunate caudal fin, using unsteady flow theory to analyze the
motion of the anterior part and the links, and basic airfoil
theory for the caudal fin. An approach based on a six degree-
of-freedom multi-body model, that considers the BUV as
comprised of multiple rigid bodies interlinked through joints,
is presented in [9]. The hydrodynamics of swimming and
undulating propulsion is thoroughly studied in [10], [11], while
in [12], [13] the propulsive thrust of undulating propulsion is
experimentally obtained.

Fig. 1. BUV TOBIAS.

The BUV TOBIAS (Fig. 1) is a vehicle under development
at the Portuguese Naval Academy, as part of the SABUVIS
project, whose main goal is to develop a swarm of biomimetic
vehicles with the ability to operate autonomously and perform
tasks in a cooperative manner [3], [14]. This vehicle is inspired
by fish, with carangiform swimming mode and has a tail
with two joints controlled by servo-motors, which attempt to
replicate the undulatory behavior of biological species. The
BUV TOBIAS is also equipped with two pectoral fins with
NACAOQ012 profile, whose variation in angle of attack allows
for the control of the vehicle’s attitude.



This paper main contribution is the derivation of the dynam-
ical model of the BUV TOBIAS, based on the computational
estimation of its hydrodynamic coefficients, as well as the
thrust generated by the undulatory motion of the tail and
the effects of the pectoral fins on the the vertical motion
of the BUV. Simulation results are presented to validate the
approach. This paper is structurally organized as follows:
Section 2 briefly explains the mathematical model of the
TOBIAS BUYV; Section 3 describe the simulations performed,
testing the performance of the model; and finally in Section 4
are discussed the conclusions of this work and also suggested
some ideas for the future of the project.

II. TOBIAS MATHEMATICAL MODEL

The development and use of mathematical models to simu-
late the behavior of vehicles is a common practice, acting as a
decision support tool throughout vehicle design and assembly.
Thus, the modeling of the behavior of the BUV TOBIAS will
be driven acording to the model presented by Fossen in [15],
however, adapting it by adding or replacing terms, in order to
represent the biomimetic nature of the vehicle.

Underwater vehicles have 6 Degrees Of Freedom (DOF)
associated with translational and rotational movements about
all three axes (Fig. 2). A common practice in this type of
models is to adopt, by convenience, reference frames that al-
low, through reference points, to know the position, orientation
and velocity of the vehicle [16]. Thus, Fossen considers two
reference frames, one inertial fixed to the Earth and the other
fixed to the vehicle body which moves with it [1], [15], as
shown in Fig. 2.

Body Fixed

Sway, v

Pitch, q

Earth Fixed

Surge, u

Heave, w

Fig. 2. Degrees of freedom and reference frames.

For the purpose of developing this model, the variables
that describe the position, orientation, velocities, as well as
the forces and moments acting on the vehicle are defined
according to equation (1)
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where 7; and 72, respectively, correspond to the position and
orientation of the vehicle in the inertial reference frame fixed
to the Earth; vy and vy are the linear and angular velocity
vectors defined in the body fixed reference frame; 7 and 7 are
the forces and moments acting on the vehicle, also expressed
in the reference frame fixed to the body.

The model mentioned in [15] describes the behavior of the
vehicle through its kinematics and dynamics, as presented in
the following sections.

A. Vehicle Kinematics

As mentioned earlier, the vehicle velocities derived from
the dynamic component of the movement are associated with
the reference frame fixed to the body. Thus, to represent these
velocities in the inertial reference frame fixed to the Earth, the
Euler angles are used, establishing a geometrical relationship
between both reference frames [15]. These relationships be-
tween the two reference frames are expressed through two
transformation matrices J; and J,, the first being applied
to the linear velocities (v1) and the second to the angular
velocities (12), as shown in equation (2)

m = Ji(n2)v1,
N2 = Ja(n2)v2,

the transformation matrices are defined according to equa-
tion (3), where c stands for cosine and s for sine
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B. Vehicle Dynamics

The dynamic behavior of the BUV TOBIAS in the 6 DOF is
mathematically modeled, with respect to the reference frame
fixed on the vehicle body, through equation (4) [15]

Mv+Cw)v+ DWw)v+g(n) =, 4)

where M represents the mass and inertia matrix (including
added mass), C(v) is the matrix of Coriolis and centripetal
terms (also including the effect of added mass), D(v) corre-
sponds to the damping matrix, g(n) is the vector of restoring
forces and moments, and 7 represents the vector of forces and
moments produced by the tail and pectoral fins as a result of
the different control parameters [1].

A number of assumptions will be considered on a first
approach to modeling the dynamic behavior of the BUV
TOBIAS as a way to simplify the process. The vehicle is
assumed to have neutral buoyancy, with its Center of Gravity
(CQG) at the origin of the reference frame fixed to the body,
ry =[0 0 0]7, and the Center of Buoyancy (CB) slightly
above the previous, 1, = [0 0 2]7.

The added mass terms due to the movement of the vehicle in
the water, are obtained by approximating the body of the BUV
TOBIAS to a prolate ellipsoid. Thus, due to the symmetry of



the ellipsoid, the added mass derivatives are reduced to the
diagonal terms [17], calculated according to equation (5),
Qo
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where m corresponds to the vehicle mass, a and b to the
major and minor radius of the ellipsoid, oy and S are defined
according to equation (6)
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Therefore, the mass and inertia matrix (M) and the Coriolis
and centripetal terms matrix (C(v)) are defined according to
equations (7) and (8), respectively, including in addition to the
rigid body properties, the added mass derivatives.
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In an early stage of modeling the BUV TOBIAS, only

quadratic damping will be considered [18], which is math-
ematically defined by the equation (9),

1
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where p is the water density, C'p is the drag coefficient
that varies with Reynolds number and body geometry, A is
the cross-sectional area and U is the vehicle velocity. This
equation is not only used to calculate the drag force acting in
surge, sway and heave, but also to estimate the rotational drag
terms in roll, pitch, and yaw [1], [18].

Although previously the BUV TOBIAS has been approx-
imated to a prolate ellipsoid, it has fins (pectoral, dorsal
and caudal) and appendices that generate significant drag
at certain DOFs. Thus, to obtain the drag coefficients of
the different components, rough approximations are made to
simpler structures with known values. The dorsal fin and
appendices are approximated to a flat plate C'p ~ 1.2 [19]. The

caudal fin is approximated to a wedge Cp ~ 0.5, considering,
at first, only its initial position aligned with the body [1], [19].
The pectoral fins will be discussed later. The drag coefficient
of the main body is obtained by approximating it to a prolate
ellipsoid, getting Cp = 0.2 [1], [19]. Considering the fins
and appendices of the BUV TOBIAS, it has only one plane of
symmetry formed by the axes { Xy, Z}, so the damping matrix
(D(v)) will be defined according to equation (10), with the
terms estimated through equation (9) [16].

Xufullul 0 0 0 Xyjqlal 0
Yopu)[v] 0 | Yol Pl 0‘ Yopr|r|
0 Zlw| W] 0 q| 0
D) = — ) wlw| : alal 10
) 0 Kool 0 Ky lp 0 (10)
Myjuy|ul 0 M) 0] 0 Myjq)lal 0
0 Nyjolol 0 0 0 Nyjolr|

Due to the previously mentioned assumptions concerning
the neutral buoyancy of the vehicle and the positions of
CG and CB, the restoring forces and moments caused by
the Weight (W) and Buoyancy (B) are described through
equation (11)
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C. Pectoral Fins

The BUV TOBIAS has two pectoral fins, with the known
profile NACAQ0012, which produce an effect that is similar to
an aircraft’s wings, where Lift (L) and Drag (D) forces are
function of the angle of attack («) [2], [20]. These forces are
mathematically approximated by

L= %pAuQCL and D = %pAuQCD, (12)
where A is the cross-sectional area of the fin, u is the water
flow velocity (assumed to be equal to the surge velocity), C,
and Cp are the lift and drag coefficients which vary their
values depending on «.

Therefore, considering the location of the pectoral fins on
both sides, Port (P) and Starboard (S), relative to the CG of
the vehicle (Fig. 3), the forces and moments associated with
each one of them are described in equation (13).

Fig. 3. Forces acting on the pectoral fins.
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D. Biomimetic propulsion system

The biomimetic propulsion system of the BUV TOBIAS
(Fig. 4) consists of two servo motors, mounted on the support
bases, which transmit motion to their associated plates. The
plates are coupled to rods attached to the ribs of the vehicle,
thus generating the undulating movement of the tail.

Fig. 4. The biomimetic propulsion system.

The tail mechanism is modelled by considering 2 revolute
joints, as being the articulations of the biomimetic propulsion
system. Thus, through this simplification, the system can be
modeled as a robot manipulator, using the Denavit-Hartenberg
(D-H) representation to describe the tail kinematics [1], [2],
[21]. The D-H representation consists of assigning to each
joint a reference frame, according to a set of rules and
procedures [21], as shown in Fig. 5.

Fig. 5. D-H representation of the tail with 2 revolute joints.

Using this representation, it is possible to estimate the
kinematics of the biomimetic propulsion mechanism, verifying
parameters such as the lateral displacement of the caudal
fin in relation to the first joint [2], which corresponds to
the first servo motor attached to the vehicle body. As a
way of showing the usefulness of this representation, Fig. 6
presents the kinematics of this mechanism in four different
oscillation positions, with the first two points corresponding to
the position of the servo motors and the last one corresponding
to the tail tip. The distances between the points correspond to
the lengths a; and as mentioned in Fig. 5.

The thrust generated by the undulatory motion of the
tail will be estimated using the Lighthill’s Large Amplitude

y(m)

0 0.05 0.1 0.15 0.2 0.25 0.3

2(m)

Fig. 6. Simulated tail kinematics.

Elongated Body Theory [22], [23]. This approach concentrates
on the end of the caudal fin, as this is the point with the
largest lateral displacement (and therefore the greatest impact
on the water), and it considers that the total rate of change
of momentum results from the sum of three components: ()
the rate of change of momentum that is left behind at the end
of the tail blade, (i¢) the rate of change of momentum due
to pressure differences between the part of the water around
the fish and the wake behind the fish, (#i7) the reactive force
Fprop propelling the fish forward [23]. Thus, the thrust force
(Fprop) produced due to the periodic undulatory motion of
the tail is expressed by equation (14)

Fprop = (mwk sinf + %mw2 cos 9) , (14)

tail

where m is the added mass of the tail per unit length, € is the
angle between the tail surface and the swimming direction z,
k and w are the tangential and perpendicular components of
the instantaneous velocity vector of the tail tip, as shown in
Fig. 7.

Fig. 7. Diagram from the 2% servo motor to the tail tip.

These components of the instantaneous velocity vector of
the tail tip are mathematically defined by equation (15)

l{::%sinﬁ—i—d—xcosH7
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The 6 angle results, as seen in Fig. 6, from the combined
actuation of both servo motors. In an initial approach to mod-
eling the BUV TOBIAS, it is assumed that they produce, at the
tail tip, a sinusoidal oscillation behavior that is mathematically
defined by equation (16)

0(t) = 04 sin(27 ft), (16)



where 64 and f are control parameters of the biomimetic
propulsion, defining, respectively, the oscillation amplitude
and frequency of the tail tip.

That said, taking into account the trigonometric relation-
ships presented in Fig. 7, the derivatives Z—f and ‘é—f men-
tioned in equation (15), can be roughly approximated by
equation (17)

dx  d(agcos?)
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where ay is the length of the 2"¢ link (Fig. 5).

Another biomimetic propulsion control parameter is the Tail
Deflection Angle (67 p 4), which consists of the angle between
the vehicle centerline and the tail oscillation centerline [1].
Thus, the maneuvering of the BUV TOBIAS in the horizontal
plane is accomplished by changing this parameter, which
consequently changes the direction of the generated thrust
force, as shown in Fig. 8.

i — - F,
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T frov Yawing %
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Fig. 8. Maneuvering through changing the angle 67 p 4.

Therefore, the forces and moments produced by the
biomimetic propulsion system are defined according to equa-
tion (18) [1]

FProp COos (QTDA)
FP'I‘O]) sin (HTDA)
0
TProp = 0 y
0
(FPTOp sin (eTDA)) ZCG

(18)

where o is the perpendicular distance between the tail tip
and the CG. The recoil motions expressed through roll and yaw
moments will be neglected, assuming that tail mass represents
a small portion of the total mass of the vehicle and that the
cross-sectional area of the vehicle is large enough [1], [22].

III. NUMERICAL SIMULATION

To verify the performance of the developed model, 3 basic
maneuvers will be simulated: forward swimming, turning
circle, dive and emersion.

A. Forward Swimming

It is shown in Fig. 9 the simulation results of the forward
swimming, for various oscillation frequencies while keeping
the amplitude equivalent to 10% of the vehicle length [23],
implying roughly that 6, = 27°. This shows the effect of
increasing the oscillation frequency on the surge velocity, and
it also indicates that the average values in each configuration

0.2Hz
0.4Hz
g 0.6Hz
[ 1 1Hz

0 5 10 15 20
£(s)

Fig. 9. Simulated forward swimming - surge velocity.

are slightly below the expected for a real fish [23], however
this result would be expected as the vehicle, unlike a fish, has
a rigid body [2].

B. Turning Circle

Fig. 10 shows the simulation results of the turning circle
maneuver, while keeping the oscillation frequency and ampli-
tude at 1Hz and 20°, and varying the tail deflection angle.
The BUYV initializes the movement by performing the forward
swimming, stabilizing the surge velocity, and after that, at the
instant indicated by the black star, it begins the maneuver by
varying the parameter 6rp4. This shows the rudder effect

Orpa = +15° Orpa = +30°
— — —=f0rpa=—15° — — —brpy = —30°

Orpa = +45°
Orpa = —45°

20

. . .
-20 -15 -10 5 0 5 10 15 20
y(m)

Fig. 10. Simulated turning circle.

produced by the tail deflection, verifying that the vehicle turns
to starboard if 67 p4 > 0 and to port otherwise. Furthermore,
this simulation also shows, as expected, that the larger the
Orpa the smaller the tactical diameter will be, obtaining
values of 15.6m, 6.1m and 3.5m, respectively.

C. Dive and Emersion

Shown in Fig. 11 are the simulation results for dive and
emersion, while keeping the parameters f, 64 and Orpa
constant throughout the maneuver with the values, 1Hz, 20°
and 0°, respectively. The vehicle starts the simulation by
performing a forward swimming, stabilizing the surge velocity,
and after that, at the instant indicated by the black star, the
pectoral fins on both sides (Port (P) and Starboard (S)) are
actuated, varying their angle of attack. This figure shows the
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Fig. 11. Simulated dive and emersion.

effect produced by the pectoral fins, causing the BUV to dive
when o < 0° and ascend otherwise, also showing that the
depth change is proportional to the increase in the angle of
attack. The reason for this is due to the C'; provided in the
NACAOQ012 data sheet, since for each angle of attack set, it
affects the direction and magnitude of the lift force, causing
the vehicle to vary its depth.

The depth variations, while diving and emerging, occur in
an approximately symmetrical way, for the same actuation, in
absolute value, of the pectoral fins. This occurs because the
pectoral fins that equip the BUV TOBIAS have a symmetrical
profile in relation to its horizontal plane, which also causes
symmetrical lift coefficients.

IV. CONCLUSION

This paper presents an initial, and simple approach, to devel-
oping a mathematical model to describe the behavior of the
biomimetic vehicle TOBIAS. The vehicle has an articulated
tail, with two servo motors, that attempts to replicate the
undulatory motion similar to a fish, and in order to control
its motion it is also equipped with a pectoral fin on each
side. The actuation of these servo motors and the pectoral
fins allows testing different configurations of propulsion and
maneuvering, verifying the vehicle’s performance in a wide
range of situations, being however aware of the physical
operational limits of these actuators.

During the development of the mathematical model some
assumptions were considered, in order to simplify the mod-
elling process, namely in obtaining the hydrodynamic coeffi-
cients of the vehicle, where it was roughly approximated to
simpler geometric shapes, and in the estimation of the thrust
force generated by the undulatory motion of the tail where
only the events occurring at its tip were taken into account.

The performance of the model under the different simulated
maneuvers occurs as physically expected. However, due to
the assumptions previously mentioned and others described
throughout the paper, these results have a slight degree of
uncertainty. That said, there is room for improvement, sug-
gesting as future work, after the BUV TOBIAS construction is
completed, the experimental validation of this model, as well
as determining the hydrodynamic coefficients of the vehicle

in a test tank. After this validation and tuning of the model,
control algorithms can be developed to simulate and test more
complex maneuvers. In addition, by taking into account and
including environmental events, such as ocean currents and
waves, it will be possible to increase the realism of the model,
producing more reliable simulations.
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