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Abstract. Skin cancer cases have been increasing over the years, mak-
ing it one of the most common cancers. To reduce the high mortal-
ity rate, an early and correct diagnosis is necessary. Doctors divide
skin lesions into different hierarchical levels: first melanocytic and non-
melanocytic and then as malignant or benign. Each lesion is also assessed
taking into consideration additional patient information (e.g., age and
anatomic location of the lesion). However, few automatic systems explore
such complementary medical information. This work aims to explore
the hierarchical structure and the patient metadata to determine if the
combination of these two types of information improves the diagnos-
tic performance of an automatic system. To approach this problem, we
implemented a hierarchical model, which resorts to intermediary deci-
sions and simultaneously processes dermoscopy images and metadata.
We also investigated the fusion of a flat and hierarchical model to see if
their advantages could be brought together. Our results showed that the
inclusion of metadata has a positive impact in the performance of the
system. Despite hierarchical models performing slightly worse than flat
models, they improved certain lesion classes, and can narrow down the
lesion to a sub type, as opposed to the flat model.
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1 Introduction

Skin cancer impact has been increasing due to the alarming growth in the num-
ber of cases over the years. According to the World Health Organization, 2/3
million cases of non-melanoma and 132,000 cases of melanoma occur worldwide
every year. These numbers reinforce that skin cancer is one of the most common
cancers [1]. Melanoma in particular has a high mortality rate when detected in
the latest stages. Therefore, an early and accurate diagnosis must be achieved.
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The creation of the ISIC Challenges [2] promoted the development of the
skin cancer classification models using deep learning techniques. While a variety
of deep learning methods were proposed to diagnose dermoscopy images, they
were still found to lack in one or more aspects. Deep learning techniques do
not understand the information they are dealing with, they simply try to detect
patterns or correlations among the different skin lesions. When dealing with
only images, important traits can be neglected, such as the anatomical site,
which can be a decisive diagnostic feature in some lesions. This conveys that a
significant portion of the knowledge acquired by doctors during their medical
training is not being put to use in the existing models. This is also true for
lesion taxonomy, i.e., the hierarchical organization of lesion types defined by
dermatologists which could be used to provide a better understanding of the
diagnosis made by the system. While some works on recent literature try to
innovate how hierarchical classifiers are used [3,4], others study which method
between flat and hierarchical models is better [5], or which hierarchical model
prevails among all the different hierarchical structures [5,6]. However, none of
these works has explored the incorporation of patient metadata.

Most skin lesion diagnosis systems are based on the analysis of dermoscopic
images using flat classifiers. Due to the lack of two previously mentioned topics in
the current literature, this work has two main goals. First, it aims to complement
dermoscopic images with clinical information/metadata (age, gender, location of
the lesion) and to evaluate differences in performance. The second objective is
to use medical information about the taxonomic structure of the lesions shown
in Fig. 1, using hierarchical classifiers. It is also intended to combine these two
types of information and assess whether they allow to improve the performance
of the system. The hierarchical structure that this work used can be seen in
Fig. 1. This figure displays the eight skin lesions found in ISIC 2019 training
dataset [7–9], which are Nevus (NV), Melanoma (MEL), Dermatofibroma (DF),
Basal cell carcinoma (BCC), Squamous cell carcinoma (SCC), Actinic keratosis
(AK), Benign keratosis (BKL) and Vascular (VASC).

This document is organized as follows. Section 2 explains all the methodolo-
gies used to classify skin lesions with and without metadata. Section 3 describes
the experimental setup and presents the results with their associated analysis.
Lastly, Sect. 4 discusses the conclusion and future works topics.

2 Methodology

In this work we compared 3 approaches: (i) a flat model, that performs a single
decision, (ii) a hierarchical model, which resorts to intermediary decision before
predicting the final diagnosis, and (iii) a mixed model which combines the two
previous models. Additionally, we compare different ways to combine images and
metadata for each of the previous approaches. Note that, in all models, images
are processed using a convolutional neural network (CNN), while metadata are
processed using fully connected layers (FCLs).
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Fig. 1. Hierarchical organization of skin lesions in ISIC 2019 dataset. Dermoscopy
images taken from [7–9].

2.1 Flat Classifier

Flat classifiers are simple, straight-forward models. They only need a single clas-
sifier to predict all of the categories as it does not take into account the inherent
hierarchy among them. Therefore, this model is only required to, given an image
and the corresponding metadata, predict one of the classes out of the eight-
possible.

In the training phase, the flat classifier is trained with all the images and/or
metadata of the eight classes. To train the model we use the training dataset and
to choose hyperparameter values we use the validation dataset. The training is
done with categorical cross-entropy loss function and Adam optimizer [10].

2.2 Hierarchical Classifier

Unlike the flat model, this one takes into account the taxonomy of several lesions
by making intermediary decisions before reaching the final decision. With Fig. 1
in mind, we consider 3 levels of hierarchy: (i) melanocytic vs non-melanocytic,
(ii) benign vs malignant, and (iii) the final diagnosis. We can see the visual
representation of the proposed hierarchical model in Fig. 2. The model is an
aggregation of 5 different classifiers (a, b, c, d and e) with (a) and (c) as inter-
mediary decision classifiers and (b), (d) and (e) as final decision classifiers. The
inside architecture of the individual classifiers is the same as its flat counterpart,
with the only difference being in the softmax block. Since classifiers (a), (b)
and (c) distinguish between 2 types of lesion, their softmax has 2 neurons and
classifiers (d) and (e) have three, because they separate three lesions.

To predict a lesion, it is not mandatory that the data passes through all
classifiers. There are 3 possible paths that it can go through. Path 1 starts in
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classifier (a) and ends in classifier (b), path 2 goes from classifier (a) to (c) and
ends in classifier (d) and path 3 is the same as path 2 but ends in classifier (e)
instead. For example, if classifier (a) predicts the lesion to be melanocytic, then
the lesion goes to classifier (b) and never reaches classifier (c), (d) and (e). Thus,
the adopted path depends on the predictions of the intermediate classifiers (a)
and (c).

Fig. 2. Generic structure of the classifier block diagram in the hierarchical model.
Classifier (a) distinguishes melanocytic lesions from non-melanocytic, (b) NV from
MEL, (c) benign non-melanocytic lesions from malignant non-melanocytic lesions, (d)
distinguishes between BKL, DF and VASC lesions and classifier (e) sets apart AK,
BCC and SCC.

The training phase of the hierarchical models has the same loss function and
optimizer as the flat classifier. However, the hierarchical model’s classifiers (a)-
(e) are only trained with the corresponding subset of the lesions it diagnoses.
For example, classifier (d) is trying to diagnose BKL, DF and VASC so it is
only trained with data of these three lesions. It is important to note that each
classifier is independently trained.

2.3 Methods to Combine Images and Metadata

To combine the metadata with images, we opted to use only early fusion meth-
ods, where the combination is done at the feature level. We developed 3 different
methods.

The first method is the concatenation between both features. First, the
features are extracted from the images and from the metadata. Then they are
concatenated into a single vector and sent to the classification block, which
returns the diagnosis.

The second method is the multiplication of features as suggested in [11].
It tries to replicate an attention module by making the model learn which feature
maps are less relevant and assigning lower values or even zero to their respective
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positions. Here, the metadata goes through a FCL of d neurons, where d repre-
sents the dimension of the last convolutional layer of the CNN. After the feature
extraction, they are multiplied element-wise and the corresponding vector is sent
to the classification block, which returns a diagnosis.

The third method was inspired on [12] and it consists on reducing the
number of image features. It fixates the number of metadata features, m,
and changes the number of image features according to hyperparameter r. Its
relation is shown in Eq. 1, where n is the number of the reduced image features,
m is the number of metadata features and r is the ratio (0–1) of image features
present in the combined feature vector.

n =
m

1 − r
−m (1)

We also set the number of metadata features, m, as an additional hyper-
parameter. To reach the number of reduced image features, n, the output of
the CNN goes through an extra FCL layer with n neurons and ReLU activation.
Simultaneously, the metadata goes through a similar layer but with m neurons
instead. Both results are concatenated to form the combined feature vector and
sent to the classification block to diagnose the lesion. Figure 3 illustrates this
method.

Fig. 3. Classifier block diagram of third method, image feature reducer.

2.4 Selection Between Flat and Hierarchical Models

Hierarchical and flat classifiers have different strengths. By considering the diag-
nosis from both classifiers, we tested whether both models’ advantages can be
brought together and if their individual weaknesses can be eliminated. For this,
we created three new models which are based on the confidence of the diagnosis
of both models.

The first mixed method is a direct competition between the hierarchical and
the flat classifiers and it returns the decision of the model with the higher confi-
dence. In this case, each classifier returns the class with the highest probability.
Note that the probability is given by the softmax layer, present in both mod-
els. The higher the probability, the higher is the confidence of the model in its
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decision. For each data, the flat probability is compared to the correspondent
hierarchical individual probabilities. If one of these probabilities is lower than
the flat, the flat classifier makes the final decision. Otherwise, the decision falls
upon the hierarchical classifier. In this and the following mixed models, the flat
model has only one probability, while the hierarchical model has either 2 or 3,
depending on which path the data goes through. If the data follows path 1, then
it will have 2 probabilities, correspondent to classifiers (a) and (b). Otherwise,
it will have 3 individual probabilities, which are from classifier (a), (c) and (d)
or (e).

Fig. 4. Diagram of first mixed model, (a), and of the second and third mixed mod-
els, (b).

The second mixed method works similarly to the first one. However, rather than
using the flat probability, the hierarchical probabilities are compared to a thresh-
old T. This parameter is a percentage that determines how much the hierarchical
decision should be preferred above the flat decision, with values ranging from 0%
to 100%. If all of the equivalent hierarchical individual probabilities are higher
than T, then the hierarchical classifier makes the final decision. Otherwise, the
flat model makes it.

In the third mixed model, the confidence of the decision relies in the difference
between the two highest softmax probabilities outputted by each classifier. The
greater the difference, the higher is the likelihood of the decision being correct. In
order to find what is the value of the optimal difference, we created a parameter
P. Same as mixed 2, it represents a percentage used to figure out to what extent
the hierarchical decision should be prioritized over the flat decision. Similar to
mixed 2, the decision is made by the hierarchical classifier unless one of its
probabilities is below P, in which case the decision passes to the flat classifier.
Figure 4 presents the diagrams of the mixed models.
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3 Results

This chapter starts by introducing the dataset, followed by the metrics used
to evaluate all the results. Then, it presents the experimental results and its
discussion of all the methods proposed. In all tests, 5 CNN architectures were
considered ResNet50 [13], ResNet101 [13], DenseNet121 [14], EfficientNet-B0
[15] and EfficientNet-B2 [15] and were evaluated using the validation set unless
otherwise specified.1

3.1 Dataset

This work used the database of ISIC 2019 challenge [7–9] to train and evaluate
the proposed models. The training data has 25,331 dermoscopic images and 8
different classes: NV, MEL, DF, VASC, BCC, SCC, AK, BKL. To perform all
of the experiments we divided the original training dataset into 2 subsets, the
training set with 80% and the validation set with 20%. The best model obtained
after training will be tested using the held out test set that is also provided by
the challenge organizers. Table 1 presents the total number of images and how
they are divided among all skin lesion classes in the reduced training set, the
validation and test sets. No labels are provided for the test set, so there is no
information about the number of cases in each class.

Table 1. The total number of samples in training, validation and test sets. The number
of samples per class in the training and validation set.

Dataset MEL NV BCC AK BKL VASC DF SCC Total

Train 3,617 10,300 2,658 693 2,099 202 191 502 20,262

Validation 905 2,575 665 174 525 51 48 126 5,069

Test - - - - - - - - 8,238

3.2 Performance Metrics

In this work we will use two metrics to evaluate the results. Sensibility (SE ),
also known as recall or True positive (TP) rate, measures the ratio of all the
positive samples that were correctly classified as positive for each class.

To give equal importance to all classes, we used Balanced Accuracy (BACC )
instead of the weighted accuracy. BACC is the average of the SE obtained for
each class and it is given by Eq. 2, where N represents the number of classes. In
this work, N is set to eight, as there are eight classes.

BACC =

N−1∑

i=0

SEi

N
(2)

1 Source code to reproduce all experiments is available at https://github.com/Bia55//
Skin cancer AI.
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3.3 Impact of Metadata on Hierarchical and Flat Models

We tested the five previously mentioned CNN as well as different combinations
among them in the hierarchical classifiers for all the methods. These combi-
nations proved to be better and their results can be seen in table 2 alongside
the results of the models that only use metadata or images. Table 3 reports the
CNNs used in each configuration.2

Table 2. BACC scores of all the models best performance. Cells highlighted in green
represent the best score of each classifier. The highlights of the individual classifiers,
(a)-(e), also represent the classifiers of the Combined 4 model. Note that the flat score
is from the method the Combined model belongs to.

Model\Classifier (a) (b) (c) (d) (e) Final score Flat

Only Metadata 74.55 71.85 59.75 59.73 49.93 27.83 35.30

Only Images 90.69 86.95 86.66 91.75 69.30 66.48 73.05

Concatenation 92.21 88.10 89.40 94.64 77.76 71.98 79.05

Multiplication 91.94 87.75 90.54 95.05 80.57 73.99 79.02

Image feature reducer 91.84 88.00 90.12 96.12 78.96 72.92 79.08

Combined 4 92.21 88.10 90.54 96.12 80.57 73.82 -

Table 3. CNN configurations of the best hierarchical and flat models shown in table
2. Only configurations of the models that incorporate images are presented.

Model\Classifier (a) (b) (c) (d) (e) Flat

Only Images EffNetB2 ResNet101 EffNetB2

Concatenation DenseNet EffNetB2 ResNet50 EffNetB0 ResNet101

Multiplication ResNet101

Image feature reducer ResNet101 ResNet50

Combined 4 ResNet50 -

There were 3 CNN that stood through. When dealing with only images,
the EfficientNet-B2 distinguished itself from the other networks with the best
results in every classifier except classifier (e) and the flat one. However, when
we add metadata into the mixture, the two ResNet networks take over as the
best networks. These two together lead to 5 out of 7 best performances. While
ResNet-101 has the best results in the individual classifiers (c) and (d), ResNet-
50 has the best results in the flat, the overall hierarchical classifier and classifier
(e). Classifier (a) best score belongs to DenseNet121 and EfficientNet-B2 holds
the best score for classifier (b).

The inclusion of the metadata proved to be beneficial regardless of the com-
bination method or the CNN in use. It performed particularly well in classifier
2 The results for each CNN model can be found in our supplementary material https://

github.com/Bia55/Skin cancer AI/blob/main/Supplementary Results.pdf.
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(e) and the flat classifier. Despite this, the flat models consistently outperformed
their hierarchical model counterpart. While the hierarchical model has a higher
accuracy in diagnosing melanocytic lesions (MEL and NV), the flat classifier
performs better in non-melanocytic lesions, particularly malignant ones.

Additionally, we created the hierarchical model Combined 4, which besides
combining different CNN, it also combines different image-metadata fusion
approaches. Despite having a slightly lower BACC score than the multiplication
method, it misdiagnosed MEL as a benign lesion less frequently so we considered
it the best hierarchical model.

3.4 Comparison of the Mixed Models

Using the mixed models, we tested if it was possible to improve the results
by combining the flat and hierarchical models (recall Sect. 2.4). We used the
ResNet101 flat classifier from the image feature reducer model with r = 0.8 and
m = 200, and Combined 4 model as the hierarchical classifier. Table 4 presents
the results.

Table 4. Comparison of the mixed models with the best hierarchical and flat models.
Flat transfers represent the number of cases, in percentage, that the hierarchical model
passed to the flat model and the last column represents the BACC of the flat model
in the transferred lesions. The cells highlighted in green represent the best result for
each column.

Model BACC (%) Flat transfers (%) Flat BACC (%)

Mixed 1 80.76 59.12 84.58

Mixed 2 80.62 49.60 70.40

Mixed 3 80.57 49.10 71.40

Flat 79.08 - -

Hierarchical 73.53 - -

The mixed models performed very well with mixed 1 being the best one.
They had a 7% improvement from the hierarchical model and outperformed the
flat model by 1% to 2%. The model with more transfers from the hierarchical
to the flat model was mixed 1. However, this model has a 15% higher chance
of a lesion being correctly diagnosed when sent to the flat classifier. The results
of mixed 2 and 3 were nearly identical. Thus, the third mixed method becomes
redundant.

We also observed that the mixed 1 model diagnosed malignant lesions as
malignant more often than benign. Hence, even if the diagnosis is incorrect, the
model determines that it is a detrimental lesion. On the other hand, the false
positives of the malignant lesions are not so concerning, as they could be further
analyzed by a pathologist and end up being correctly diagnosed by them.
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3.5 Elimination of Classifiers (d) and (e)

Throughout the hierarchical model experiments we observed that classifier (c)
confuses malignant with benign lesions very often. We decided to investigate
what would happen if all the non-melanocytic lesions were to be diagnosed in
classifier (c), thereby eliminating classifiers (d) and (e). Three different architec-
tures were tested for the new classifier (c). They were chosen due to each one
being the best model for the previous individual classifiers (c), (d) and (e). The
final score uses the same classifiers (a) and (b) as the model Combined 4.

The new classifier (c) with the best performance belongs to ResNet50 using
the multiplication method with a ReLU activation, which is the same model as
the best previous classifier (c). Its final score is extremely similar to Combined 4,
less than 1% of difference. This modified hierarchy only altered the performance
of the AK class with a 6% improvement and BKL with a decrease of the same
order.

We also tested the modified hierarchy with the previous best model, mixed
1. It reached a performance of 80.45%, just 0.3% less than the original hierarchy.
Overall, the number of malignant lesions diagnosed as malignant increased and
significant changes can be seen in MEL, where this lesion was 4% worse and
greatly augmented the chances of being diagnosed as a benign lesion, especially
BKL and NV. These results show that the division of malignant and benign
non-melanocytic lesions does not have the impact previously thought and may
not be needed. Although more testing would be necessary to know for certain,
these findings cause one to reconsider the previously defined hierarchy.

3.6 Evaluation on Held-out Test Set

As mentioned previously, ISIC Challenge provides a test dataset with 8,238
images with no ground truth. The evaluation of the best models established
previously was performed in the Challenge online platform [2]. Tables 5 and 6
present the results using the test and validation datasets, respectively.

Overall, the models performed in a similar way in both datasets regarding
their order from best to worst, that is, the best model is still mixed 1, followed by
the flat and then the hierarchical models. However, in the test set they suffered a
decrease of roughly 25% in their final BACC scores. The individual performance
of the lesions decreased sharply in every lesion except NV, MEL and BCC for
all the different models.

NV and BCC were the lesions with the best performance in the test set
as opposed to the validation set. MEL closely followed them having the third
best perfomance. The other lesions suffered very drastic downgrades with perfor-
mances below 50%. While SCC remained one of the hardest lesions to diagnose,
VASC went from being the best in the validation set to one of the worst in the
test set.

In the test set, the original hierarchy was better at diagnosing malignant
lesions and the modified hierarchy was better at diagnosing benign lesions. While
in the validation set there is no clear best mixed 1 model, in the test set it is
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Table 5. SE scores of each lesion for the best hierarchical and flat image and metadata
models using the test dataset. Cells highlighted in green represent the best result in
each column.

MEL NV BCC AK BKL DF VASC SCC BACC

Mixed 1 65.60 79.20 76.70 47.10 45.40 48.90 49.50 38.90 56.41

Mixed 1 with new Hier 66.10 79.30 75.60 47.60 43.80 54.40 50.50 40.10 57.18

Flat 59.80 77.10 74.90 46.80 42.20 51.10 47.50 32.50 53.99

Hier 65.60 75.30 68.10 38.00 39.70 36.70 31.70 28.70 47.98

New Hier 62.60 78.20 63.20 38.20 37.20 42.20 39.60 26.80 48.50

Table 6. SE scores of each lesion for the best hierarchical and flat image and metadata
models using the validation dataset. Cells highlighted in green represent the best result
in each column.

MEL NV BCC AK BKL DF VASC SCC BACC

Mixed 78.67 87.77 85.86 70.11 77.52 83.33 92.16 70.63 80.76

Mixed 1 with new Hier 74.25 89.20 85.86 72.99 75.62 83.33 94.12 68.25 80.45

Flat 73.59 84.82 86.17 71.84 74.10 83.33 92.16 66.67 79.08

Hier 77.90 86.83 81.65 59.20 70.10 66.67 82.35 65.87 73.82

New Hier 77.90 86.83 78.95 65.52 65.33 66.67 82.35 64.23 73.53

a different story. Here, the majority of the lesions do better with the modified
hierarchy in the mixed 1 model.

4 Conclusion

This work addressed the shortage of the current literature on hierarchical models
and metadata. To achieve this, we used two types of models, hierarchical and
flat. Each model was tested using only metadata, only image, and image with
metadata. Furthermore, we developed three models that combine hierarchical
and flat models and tested their performances using images and metadata.

The experimental setup consisted in the comparison of five different CNN
architectures in the hierarchical and flat models of only images and image and
metadata. Our results show that the inclusion of metadata has a deep positive
impact either in flat or hierarchical models as it always improves their perfor-
mances. However, it is not sufficient on its own. Despite hierarchical models
performing slightly worse than flat models, they provide a rationale for the deci-
sion.

The first mixed model ended up being the model with the best performance,
which makes the models compete directly with each other. This shows that the
combination of flat and hierarchical models can increase both the individual
performance of the lesions and the overall score of the model.

Additionally, we studied the prospect of reducing the original three-level
hierarchy to a two-level hierarchy, eliminating the intermediary decision of non-
melanocytic lesions between malignant and benign. The modified hierarchy
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showed that the pruning the original tree can be beneficial to some lesions as it
ended up performing better in the test set.

We believe that the findings of this work point towards several research direc-
tions, in particular: i) using the hierarchical model to see if it helps with the
diagnosis of the unknown category/lesion; and ii) explore a different hierarchical
structure, where the first level is benign and malignant lesions and the second
melanocytic and non-melanocytic.
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