
2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

1

Learning Deep Features for Robotic Inference from
Physical Interactions

Atabak Dehban, Shanghang Zhang, Nino Cauli, Lorenzo Jamone, and José Santos-Victor

Abstract—In order to effectively handle multiple tasks that
are not pre-defined, a robotic agent needs to automatically
map its high-dimensional sensory inputs into useful features. As
a solution, feature learning has empirically shown substantial
improvements in obtaining representations that are generalizable
to different tasks, compared to feature engineering approaches,
but it requires a large amount of data and computational
capacity. These challenges are specifically relevant in robotics
due to the low signal-to-noise ratios inherent to robotic data,
and to the cost typically associated with collecting this type of
input.

In this paper, we propose a deep probabilistic method based
on Convolutional Variational Auto-Encoders (CVAEs) to learn
visual features suitable for interaction and recognition tasks. We
run our experiments on a self-supervised robotic sensorimotor
dataset. Our data was acquired with the iCub humanoid and
is based on a standard object collection, thus being readily
extensible. We evaluated the learned features in terms of usability
for 1) object recognition, 2) capturing the statistics of the effects,
and 3) planning. In addition, where applicable, we compared the
performance of the proposed architecture with other state-of-
the-art models. These experiments demonstrate that our model
is capable of capturing the functional statistics of action and
perception (i.e. images) which performs better than existing
baselines, without requiring millions of samples or any hand-
engineered features.

Index Terms—Convolutional Variational Auto-Encoder
(CVAE), Representation learning, iCub humanoid robot

I. INTRODUCTION

IEEEPARstartExpressive and concise representations from
sensory data are a fundamental requirement of robots that
are designed for unstructured environments [1]. These rep-
resentations should include all the necessary information for
the (possibly unknown) robot task while rejecting all the
spurious observations. Such tasks can include many computer
vision problems e.g. object recognition, in addition to more
specific learning of sensorimotor mappings.

As an example, one may consider the prediction of the fu-
ture outcome of actions on the sensory receptors (i.e. expected

This work was supported in part by Fundação para a Ciência e a
Tecnologia (FCT) projects under Grant UID/EEA/50009/2020, FCT RBCog-
Lab research infrastructure, Lisbon Ellis Unit (LUMLIS), and PhD grant
PD/BD/105776/2014. (Corresponding author: A. Dehban.)

A. Dehban and J. Santos-Victor are affiliated with the
Institute for Systems and Robotics, Instituto Superior Técnico,
Universidade de Lisboa, 1049-001 Lisbon, Portugal (e-mail:
{adehban,jasv}@isr.tecnico.ulisboa.pt).

S. Zhang is affiliated with the Computer Science Department of Peking
University (e-mail: shanghang@pku.edu.cn).

N. Cauli is affiliated with the Department of Mathematics and Computer
Science of the University of Catania (e-mail: nino.cauli@unict.it).

L. Jamone is affiliated with the Advanced Robotics at Queen Mary,
School of Electronic Engineering and Computer Science, Queen Mary Univer-
sity of London, London E1 4NS, UK (e-mail: l.jamone@qmul.ac.uk).

Figure 1: Experimental setup, showing the iCub humanoid
robot at the beginning of a robot–object interaction trial, and
the reference frame annotation. In the background screen, we
show the visual perception routines employed during data
collection.

perception) which is an important step for robotic planning and
action selection [2]. One way to describe how our actions will
influence the environment’s behaviour is provided by the laws
of physics, and given complete knowledge of the parameters
describing such laws, one could predict the motion of objects
in everyday situations. However, this detailed physical knowl-
edge is rarely available to agents and obtaining them from
robotic interaction data is an active research topic [3], [4].
Indeed, Kaiser et al. [5] show that people’s beliefs about the
motion of objects do not necessarily conform to Newtonian
dynamics. E.g. many adults fail to realise that if an object is
dropped from a moving train, it continues to move in the same
direction as the train while falling.

Learning from real-world interactions and observing con-
sequences can offer an alternative route to developing a
predictive model of the environment (Fig. 1). Understanding
the causal relations between actions and their intermediate
perceptual consequences is studied under the concept of
intuitive physics [6], [7], which explores the common-sense
reasoning about simple interactions that happen in the world.
In this paper, we propose a deep probabilistic method based
on Convolutional Variational Auto-Encoders (CVAEs) to learn
generalizable visual representations for multiple robotic tasks,
from both interactions (self-supervised) and labels (super-
vised).

A. Limitations of Existing Work
We categorize the frameworks that attempt to model the

behaviour of objects due to external forces into two groups:

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

2

(1) frameworks that predict action outcomes in the image
space (i.e. the output is immediately an image), and (2) those
that predict action outcomes in a pre-defined or learned feature
space.

Predicting in image space: Recent advances in deep learn-
ing have enabled many models to directly reason and predict
at a pixel level. One common approach is to use auto-encoders
to learn important features in lower dimensions and use them
for predictions [8]. Wahlström et al. [9] used auto-encoders to
learn a model of an inverted pendulum from simulation. Finn
et al. [10] introduced a spatial auto-encoder, emphasises the
object’s location. They have also introduced another heuristic
that penalizes the acceleration of the learned features over
subsequent frames. This model could be applied in a real
robot to perform multiple tasks by training separately for each
of them. Jonschkowski and Brock [11] proposed 5 important
heuristics relating to robotic tasks that can all augment the
reconstruction cost of auto-encoders to learn more useful
representations. However, many of these heuristics rely on the
temporal coherence of the features of the world.

Apart from using auto-encoders, there exist other ap-
proaches that can predict what happens to different parts of
the environment if an agent applies different forces to it. In
a relatively new line of research, most prominently started
by Finn et al. [12] several models were proposed that are
trained on millions of images to predict image motions in sub-
sequent frames. We compared some of the architectures in this
topic from an action perspective [13]. However, predicting the
position of each pixel over every frame is a very challenging
task and requires huge amounts of data [14].

Predicting in feature space: A family of approaches in
this category use the concept of affordances [15] to understand
how actions can change the environment [16], [17] (Jamone
et al. [18] reviewed the concept of affordances from a multi-
disciplinary stand-point including robotics). In this regard, we
introduced applications of auto-encoders in predicting the fu-
ture position of an object given the visual features of the object
and available tools, together with the action performed by a hu-
manoid robot [19], [20]. Mottaghi et al. [21] used images that
are accompanied by their 3D pose and simulated interactions
in a physics engine. Ahmetoglu et al. [22] used an encoder-
decoder architecture and showed the emergence of symbols
from robot interactions in simulations. The object features
were learned from object-centred depth images, though the
effects were defined as translational movement and the robot-
sensed forces. This is another example of using engineering
features in order to maximally benefit from available data and
even though the sensing of objects was collected in continuous
space, discrete symbols suitable for planning have emerged
relating the object’s response to executed actions. However,
constraining the state-space of effects to translations and forces
neglects other aspects such as rotations or topples and thus,
not all action-related effects are captured. Another interesting
approach is proposed by Agrawal et al. [23], in which the
authors provide predictions in a feature space that is learned
and can guide actions. However, since this learned feature
space is not used to reconstruct original images, in order to
generalize to a new task (e.g. object recognition), they need to

incorporate the new considerations and train a new model.
Similar to our study, Ha and Schmidhuber [24] also used
Variational Auto-Encoders (VAEs) for feature learning in a
reinforcement learning scenario to solve video games. Their
experiments show the applicability of VAE-learned features for
control, however, since their environment was simulated, they
had access to an unbounded amount of data and they did not
need to manually encourage the features to only learn action
relevant information (for example to ignore the background).

To summarize, models that directly output an image present
an interesting property: the features that they use are a general
and compact representation of the image and they can later
be employed for other tasks. But because of the difficulties
associated with predicting the entire image, they are mostly
either deterministic, require a very large dataset, or only
work in simulations and game engines. In these models, it
is common to incorporate task–specific heuristics that help to
simplify the problem.

On the other hand, the approaches that do not provide
predictions in image space can build useful models with less
amount of data and by the virtue of probabilistic represen-
tations, they are better suited to deal with noisy input (e.g.
see [25]). Nevertheless, they either have to define a state–space
model which requires domain knowledge or, if they provide
predictions in a learned feature space, that space must be re-
learned when a new task is introduced.

B. Contributions

It is possible to build on top of these two schools of meth-
ods, by defining a hybrid approach that has the benefits of both
image-based and non-image-based predictions. This model
must capture important low-dimensional un-correlated (ideally
independent) factors of variations in a dataset, in order to re-
construct the image without any predefined heuristics or hand-
engineered features. By ensuring the reconstruction ability of
the input, the learned features will be useful for multiple tasks
without the need to acquire new ones, because they do not
need to be “tuned” to any particular task. A model learned
using these features should provide visual predictions that are
not necessarily pixel-level accurate, yet they shall capture the
essential statistics of the task (forward model). As an example
of task generalization permitted by this approach, we also
trained a classifier that only looks at the learned features and is
able to infer the name of the object. In addition, our model can
be used to propose an action that achieves a desired sensory
state (inverse model).

More specifically, as the first contribution of this work, we
have stepped towards the aforestated goals by training a CVAE
on a dataset gathered by a real robot. Relying on probabilistic
variational techniques, their interpretations are expected to be
more robust to noise by design, since they explicitly represent
uncertainty and, thus, they are a better choice for robotics
applications.

VAEs can choose the number of their latent variables based
on the data and the provided capacity: this way, the burden
of selecting a fixed number of features by the designer is

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

3

alleviated, which introduces biases and requires a re-design
for every new task. This property is considered problematic
for many computer vision tasks where the network falls short
of using all its capacity for modelling the data [26]. In contrast,
here we are promoting how this property can be applied
to obtain a data-driven dimensionality reduction, suitable for
robotic tasks.

In order to test our model, we used it on our publicly
available dataset collected from an iCub humanoid robot [27].
Deep learning techniques will always benefit from the avail-
ability of more data. Deep neural networks are notorious for
being data-hungry, however, here, our goal is not to feed in
raw image data and output pixel-perfect predictions, as this
would require a considerably larger dataset of interactions,
possibly infeasible with non-industrial robots. In fact, we rely
on background subtraction to avoid wasting the capacity of
the VAE in representing the background of images and we
see in section IV the impact of this decision in automatic
dimensionality reduction. Our last contribution is to show
that, through a combination of data augmentation techniques,
common engineering practices (e.g. background subtraction),
and probabilistic modelling it is possible to train very large
and deep models on datasets that are obtainable and man-
ageable with real non-industry-grade robots, to tackle a very
challenging and important problem as described above.

To summarize, this article provides three contributions:
• Proposing a solution to learn task generalizable visual

representations from interactions without using heuristics
or engineered features;

• Empirically promoting the benefits of VAEs such as
(1) data-driven dimensionality reduction, (2) probabilistic
representations, and (3) un-correlated features, in learning
visual representations from interactions for robots;

• Training a deep architecture capable of solving various
robotic tasks without using simulators and game-engines
which often struggle with faithfully simulating real-world
physical interactions.

The rest of the paper is structured as follows. In Section II
we provide a detailed description of the dataset, we report its
properties and some statistics related to it. Then, in Section III
we describe the ingredients necessary to build the model of
understanding the outcomes of actions and learning proba-
bilistic visual representations. The results of our experiments
are described in Section IV. Finally, we conclude the paper
with Section V and propose some possible future research
directions.

II. DATASET

Data-driven learning methods that do not make many prior
assumptions on the underlying distribution of the process tend
to be data-hungry. Deep learning methods [28] are an extreme
example of this observation and their recently achieved re-
markable performance can be largely attributed to the avail-
ability of big datasets. However, sharing data in robotics is
somewhat more challenging because different research groups
use various robots with unequal end effectors. This moti-
vated the collection and use of our dataset which is easily

expandable, swaps the robot end-effector with easily fabricated
tools, and can be re-created by different research groups. To
better facilitate the reproducibility of our results, in this work
we provide a more detailed explanation and analysis of this
dataset, referred to as Tool and Object aFFordances from
Interactions (TOFFI). It includes more than 1000 interactions
of the iCub humanoid robot with objects selected from the
Yale–CMU–Berkeley (YCB) Object and Model dataset [29].
The authors are unaware of any interactive dataset of this scale
from robots that are targeted to developmental learning. TOFFI
contains the following information:

1) The images of the object on the table before and after
doing the action from both cameras;

2) The foreground of these images;
3) The 3D position of the visual Centre of Mass (CoM) of

the object on the table at the beginning and at the end of
the action execution;

4) The 2D pixel position of the object’s visual CoM in the
left camera, associated with the above 3D measurement;

5) Visual features of objects and tools on the table from ten
different viewpoints.

Details about the data acquisition protocol and visual feature
extraction routines are available in Appendix A 1.

Our dataset is about sensorimotor mappings associated with
understanding the effects of actions when performed on ob-
jects. It is assumed that the statistics of the effect only depends
on the object and tools visual appearances and actions. This
assumption holds for many objects that the robot normally
interacts with, nevertheless, can be broken in several cases.
For example, when an object looks rigid initially but in fact
is articulated and shatters upon contact or when an object is
so heavy that the robot fails to move it.

In each trial, the robot holds one of the designed tools in its
left hand, as in Fig. 1. We have considered three tools: Rake,
Stick, and Hook. Four categorical actions were selected for
the robot to perform: Push, Draw, Tap-from-left, and Tap-
from-right 2. Combined with the number of tools, the robot
performs 12 actions on objects. By taking into consideration
the fact that different objects behave differently when being
subject to different actions, we have selected 11 objects from
the YCB Object and Model dataset. These objects cover a
vast range of shapes and colours. Although we emphasise that
in the experiments in this paper, the colour information is
removed. Fig. 2 shows the distribution of the effects when
the robot performs different actions with different objects.
From this figure, for example, it is immediately observable
that pulling with a stick is pointless because the object will
not move (i.e. the distribution of the effect is centred around
zero).

III. METHODS

In this section, we describe our VAE-based pipeline to solve
various multi-modal robotic tasks. We first explain the design

1TOFFI is accessible from https://vislab.isr.tecnico.ulisboa.pt/datasets_
and_resources/#toolaff.

2A video of the robot performing the trials can be viewed at https://youtu.
be/pKa6GNeBfjk.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#toolaff
https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#toolaff
https://youtu.be/pKa6GNeBfjk
https://youtu.be/pKa6GNeBfjk

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

4

Rake

Hook

Push Pull Tap from left Tap from right

Stick

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3
− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

m
o

v
e

m
e

n
t

o
n

 o
p

p
o

s
it

e
 d

ir
e

c
ti

o
n

 o
f

x
 a

x
is

 [
m

]

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3
− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3
− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

m
o

v
e

m
e

n
t

o
n

o
p

p
o

s
it

e
 d

ir
e

c
ti

o
n

 o
f

x
 a

x
is

 [
m

]

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3

m ovem ent on y axis [m]

− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3

m ovem ent on y axis [m]

− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3

m ovem ent on y axis [m]

− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

− 0 .3 − 0 .2 − 0 .1 0 .0 0 .1 0 .2 0 .3

m ovem ent on y axis [m]

− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

m
o

v
e

m
e

n
t

o
n

 o
p

p
o

s
it

e
 d

ir
e

c
ti

o
n

 o
f

x
 a

x
is

 [
m

]

Figure 2: Distribution of the effects measured with the differ-
ent tools and the actions, as seen from the robot’s viewpoint.

of a Convolutional Variational Auto-Encoder (CVAE) to learn
important latent features of the robot data. These features are
first used in an object recognition task in a supervised manner.
Then, we combine the learned features with the action as
the multi-modal input of a forward-backward model, which
is responsible for estimating the changes in the environment
caused by the robot’s actions. In robotics and machine-
learning, multi-modality commonly refers to having more than
one sensor modality [30], [31] such as vision, sound, tactile,
joint trajectories, etc. However, in this paper, we work with
high dimensional image data and low-dimensional encodings
of the actions. Combining these two sources of information
in neural networks is non-trivial as the higher dimensional
modality (images) can easily dominate the lower dimensional
modality (action encodings) during training. We explain our
approach to overcome this difficulty in section III-C.

The model architecture is illustrated in Fig. 3. At a glance,
the Input Image is a 128 × 128 grey-scale image of pixel
intensities – described in section IV and referred to as x in
the rest of this section – that is fed into the CVAE to extract
the hidden code, i.e. latent variable z. This code can be used to
reconstruct the image and the convolutional neural networks
Encoder and Decoder are trained according to eq. (2). Af-
terwards, we select the most informative latent variables in
a process explained in section IV-A. These informative latent
variables will be used in the bottom part of Fig. 3 together with
a one-hot encoded vector representing 1 in 12 Actions in the
forward and backward models, as explained in section III-C.

A. Variational Auto-Encoders

A Variational Auto-Encoder [32], [33] is a generative model
which aims to find latent factors of variation explaining the
observations while being as independent as possible. Consider
a dataset of observations D = {xi | i = 1, . . . , N}, where
each xi ∈ Rn. The goal is to find a distribution qφ(zi | xi),
z ∈ Rm from a family of Gaussian distributions parametrized
by mean µφ(x) and standard deviation σφ(x) that minimizes
the Kullback–Leibler divergence (KL divergence): DKL(qφ(z |
xi) ‖ pθ(z | xi)), where z are the latent random variables.

Based on the definition of KL divergence, we can derive the
following:

log pθ(x
i) = DKL(qφ(z | xi) ‖ pθ(z | xi))

+ Eqφ(z|xi)
[
log pθ(x

i | z)
]
− DKL(qφ(z | xi) ‖ pθ(z))︸ ︷︷ ︸
O

Since the KL divergence is positive by definition, we get the
lower-bound (O) of the evidence marginal log probability,
called Evidence Lower BOund (ELBO):

log pθ(x
i) ≥Eqφ(z|xi)

[
log pθ(x

i | z)
]

− DKL(qφ(z | xi) ‖ pθ(z)),
(1)

In VAEs, qφ(z | xi) = N (z;µφ(x
i),σφ(x

i)), where N
represents the normal distribution and the parameters µφ(xi)
and σφ(xi) are approximated with convolutional neural net-
works which we refer to as the encoder network. The KL
divergence term in ELBO (1) tries to minimize the differ-
ence between the learned distribution and our prior over
the latent variables pθ(z), which is commonly assumed to
follow a standard normal distribution with zero mean and unit
variance. This assumption simplifies the computation of the
KL divergence, as now it becomes the divergence between
standard Gaussian distributions and a Gaussian distribution
with a known mean and diagonal covariance matrix, which
has a closed-form solution.

The first term in O measures how well an observation can
be reconstructed from the latent variables sampled from the
posterior. In the case of Bernoulli observations, the mean of
the distribution is approximated via a second dilated convolu-
tional network called the decoder that takes samples from the
posterior qφ

(
z | xi

)
and outputs the mean value along each

dimension of the input (see Fig. 4). Since both the encoder and
decoder are implemented as convolutional neural networks, the
architecture is called Convolutional Variational Auto-Encoder.

It was shown by Kingma and Welling [33] that if the batch
size is large enough, a single sample will be adequate to have
a good estimate of the log-likelihood (but see Burda et al.
[34] for an extension to this). The second term prevents the
estimated posterior of the latent variable z from diverging from
its prior.

To calculate the gradient of O with respect to the parameters
of the encoder φ and decoder θ, the latent variable must be re-
parametrized in terms of a base distribution and a differentiable
transformation. This can be done via the observation that

z ∼ N (µ,σ)⇐⇒ z = µ+ σ � ε, ε ∼ N (0, I),

where � is element-wise multiplication, 0 is a vector of zeros
with size m representing the mean and I is a m×m identity
matrix representing the covariance.

The ELBO (1) is an interplay between two terms, where one
of them penalizes posteriors that fail to reconstruct the input,
and the other one tries to make them as close as possible to an
independent standard Gaussian distribution. Although learning
factors of variations that are as independent as possible is a
desirable property, as noted by Higgins et al. [35] it is a strong
burden on the learning algorithm and makes the network more
difficult to train. To mitigate this problem, a new cost function

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

5

Figure 3: Schematic of the complete model.

x z xEncoder

μ

σ
Decoder

Figure 4: Schematic of the Variational Auto-Encoder. Circles
represent random variables, rectangles represent neural net-
works.

inspired by the negative free energy (notice the sign change)
is defined as:

L = β DKL(qφ(z | x) ‖ pθ(z))− Eqφ(z|x) [log pθ(x | z)] ,
(2)

where β is a hyper-parameter that reflects the desirability of
having an independent posterior distribution. If β is zero, then
the objective function only tries to maximize the likelihood
of the data and by learning to have small values for σφ(x)
the VAE acts almost identical to a conventional auto-encoder.
Higgins et al. [35] kept β at a constant value and demonstrated
the effects that it has on learning powerful latent variables for
different datasets. In this work, we have adopted this approach,
keeping β = 0.01 throughout all experiments. Alternatives to
keeping beta constant are proposed by Chen et al. [36] and
Bowman et al. [37].

B. Classifier Network

After the Convolutional Variational Auto-Encoder (CVAE)
is trained, its weights are frozen for all subsequent experiments
and it becomes possible to investigate the latent variables and
find important dimensions of variation. The KL divergence
term in (2) forces many hidden variables to be generated
from the standard Gaussian distribution. The remaining di-
mensions of the latent variables which have survived the KL
divergence part of the loss are later utilized by the decoder
network to reconstruct the input. In view of this, we can
inspect the variables in the posterior and only select those
that have relatively higher KL divergence values across the
whole training set to reconstruct the input image. Because the

loss function penalizes dependencies between variables, low-
dimensional independent factors of variation which are good
enough to reconstruct the input start to emerge.

By having an auto-encoder that learns the features of an
image, it is possible to use those features in a multitude
of tasks, as opposed to scenarios where the features are
learned in a task-oriented setting. As the first example of this
generalization to new problems, we have used the important
latent variables to learn a classifier over objects. We emphasize
that the goal of this paper is not object recognition and this
network is trained only to provide experimental support for
the aforementioned points. It also serves to experimentally
validate the benefits of having stochastic visual representations
for other downstream tasks.

C. Forward and Backward Models

We have used the same important latent variables of
section III-B to train a fully–connected neural network
model (called forward model) which predicts how the robot’s
action affects its future perception and sensory state of the
environment. As explained in Section II, we have 4 directional
pushes and 3 tools, and we consider each combination as a
unique action. By using a one-hot representation, we end up
with a vector of size 12 which constitutes the action encoding.

The goal of the forward model is to output an image
that is brighter in the probable positions where the object
is expected to end up. This is achieved by only predicting
the value of important latent variables, and we fill in the
rest of the variables by sampling from our prior. Similarly,
we train a backward model to retrodict the probable previous
appearances of the object, given the current view of it and
the applied action. Referring to our second contribution in
section I-B, since we are learning probabilistic representations
and the important features are stochastic random variables, it
is possible to sample from them periodically. This allows an
artificial augmentation of datasets with a relatively smaller

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

6

number of samples, potentially leading to better test time
performance.

IV. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

Here we explain the implementations of the proposed
method and extensively evaluate its performance. In order to
obtain the input image in Fig. 3, we need the foreground
object. To this purpose, we first detect object edges based
on the method from Dollár and Zitnick [38]. We learn an
accurate edge detector from the inherent structure present in
local image patches. A random forest is used to capture the
structured information and learned from structured labels to
determine the splitting function at each branch in the tree. Each
forest predicts a patch of edge pixel labels that are aggregated
across the image to compute the final edge map. After the
edges are detected, an object bounding box is generated based
on the edge information [39], and edges outside the bounding
box are filtered out. A threshold is also applied on the edge
image to get more accurate object contours. Then, we use a
flood-fill operation to fill in the contour and generate the object
mask [40]. As a result, the object foreground is obtained based
on this mask. A more detailed description of the segmentation
pipeline is available in Appendix B.

Our experiments suggest that the more information about
the background is available, the more capacity of the network
is used to reconstruct it. Even training the same CVAE with
the images segmented with the baseline segmentation method
of background subtraction and thresholding resulted in an
increase of 40% in the number of important latent variables.

The segmented images are then converted to grey-scale
and resized to 128×128 resolution. This was motivated by
the limitations in the available computing resources. These
images are further smoothed out with a Gaussian kernel with
a standard deviation of 0.5 with the purpose of mitigating
the robot’s camera noise. The pixel intensities are scaled
between 0 to 1.0 and are modelled as independent Bernoulli
distributions given the latent variables z where the mean
reflects the intensity of each pixel. These images constitute the
dataset D. Because images that are used in this work are very
specific and, as such, they are different from natural images,
we trained all the networks using the glorot [41] initialization
procedure instead of relying on pre-trained models on natural
scenes.

A. Reconstruction and Feature Extraction

The top part of Fig. 3 shows the architecture of the CVAE.
The details of the network are provided in Appendix C. The
CVAE network is trained with the loss function defined in (2).

In order to augment the size of the training set, each image
is rotated by 90 degrees three times, which quadruples the
size of the training data. We have selected 80% of the images
at random to train all the networks, and we have used the
remaining 20% for evaluations.

After training, we have calculated the KL divergence term
of (2) over our training set. Only 15% of all units have a mean
KL divergence that is bigger than the average KL divergence
of all units. This sparse representation suggests that many of

0 100 200 300 400 5000

10

20

30

40
Mean norm
of weight
vectors

Figure 5: L2 norm of weight vectors associated with each
latent variable.

the hidden units are coming from the prior and the network has
automatically selected only enough units to perform a decent
reconstruction. Fig. 6 shows the 60 units with the lowest and
the 60 units with the highest mean KL divergence.

Because the network has a small weight decay of 0.0001, the
norm of the weight vector coming out of the latent variables is
also sparse (see Fig. 5) and can also be used as an approximate
proxy for how informative each hidden variable is. Fig. 7
shows the 60 biggest weight norm vectors along with the
weight vectors associated with the highest KL divergence
units. The units which are more deviated from the standard
Gaussian distribution get bigger weights. This observation is
present for almost all 500 hidden units, i.e., the bigger the KL
divergence, the bigger is the norm of the associated weight
vector.

B. Predicting Object Labels

To gain an understanding of how to use the features learned
by the CVAEs, we have trained a deep network to learn
object classes from the important components of images. As a
baseline, we have only sampled once from important latent
variables and trained the network using these samples. By
contrast, we have trained another classifier in which at each
epoch, at most 10% of latent variables were re-sampled and,
after 1000 iterations, there will be a new re-sampling for the
whole dataset. Both networks are trained for 2000 epochs
and all other hyper-parameters are shared between the two
networks. The result of this experiment is depicted in Fig. 8.

The network is expected to predict the class of an object
from a pool of 11 objects given the sample from important
latent variables which were learned from the black and white
images by the CVAE in the previous sections. The output of
the network goes through a softmax layer and the cross-entropy
loss is used to train the network. On average, without re-
sampling, the network provides an accuracy of 61%, whereas

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

7

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6

Mean KL divergence
across all latent variables

440 450 460 470 480 490 500

Figure 6: Sorted KL divergence for each latent variable across all samples of the training set.

0 10 20 30 40 50 60
Latent variables

0

10

20

30

40

L2
 N
or
m
 o
f w
ei
gh
t
m
at
ri
x

Sorted 60 of the biggest
weight norm vectors
Weights associated with 60
hidden units that maximize
KL divergence with the prior

Figure 7: The most informative latent variables, corresponding to the biggest weight vector norm.

by using the introduced re-sampling technique this value can
increase to up to 65%. Note that in this setup, we are learning
features from down-sampled grey-scale images. This makes
it very hard to distinguish between yellow and orange cups,
or lemon and the blue ball or the yellow lego, as observed
from the confusion matrices. The similarity in sizes, together
with the removed colour information makes object recognition
very challenging, however, the significantly better than chance
performance of the network means that in most cases, the
features can be used to distinguish between different classes
of objects.

In robotics, it is usually more important for learned features
to capture the affordances of objects (roll-able, drag-able, etc.)
since it is a necessary property for reasoning about how the
object would behave in response to an executed action, as
evaluated in the next section.

C. Reasoning on the Outcome of Actions

In order to learn how different actions affect the agent’s
perception of the world, we have selected samples from the
previously learned 60 important latent random variables and
concatenated them with actions that were performed with
different tools. 3 tools and 4 actions were encoded as a one-
hot vector of size 12. Together with the samples from the
latent variables they make a feature vector of size 72. The
target output will also be a vector of size 72, which includes
the 60-dimensional sample from important latent variables
and the input action; since the action shapes the perception
of the robot, we did not want the network to lose sight of
this information and force the network to auto-encode the
actions as well. Combining multiple input modalities in neural
networks is currently challenging (for example, see [42]).
One reason is that, just because one modality has bigger

dimensions, it encompasses more variation and the network
tends to ignore other modalities. When using CNNs, one
common approach is to convert every modality to images in
order to balance the variations in input modalities [21]. Since
the forward and backward models are composed of fully-
connected layers, we have constrained the network to auto-
encode the actions as well.

The schematic of this architecture is depicted in the lower-
left corner of Fig. 3. For more details regarding the structure
of the network, we refer the reader to Appendix C. The robot
performs more than 1320 trials and, because we are using
both cameras, we end up with almost 3000 examples of action
executions. We have randomly selected 80% of these trials for
training, with the remaining data used for evaluation.

Two models were trained. One forward model which sees
a sample from the important latent variables of the im-
age (henceforth, features) before applying the action along
with the action tag to predict the features of the resulting image
together with auto-encoding the action tag. Contrary to this,
another backward model was trained which sees the features of
the image, after the action was applied on it and retrodicts the
features of the image before the robot had applied the action.
The backward model also auto-encodes the action. The full
schematics of these architectures are depicted in Fig. 3. Apart
from encoding the actions, the other output of the forward and
backward models is the estimation of the 60 important latent
variables corresponding to the outcome image with respect to
the executed action. The rest of the 440 latent variables are
sampled from the prior and the vector of 500 latent variables
is fed to the decoder network to generate the outcome image.

In order to obtain a smaller model and to avoid over-fitting,
we adopted a joint training scheme, in which the two above
models share the weights of the aforementioned first two

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

8

bb
all

lem
on

oc
up

or
an
ge

pe
ar

sy
cu
p

wb
all

yb
all

yc
up

yle
go

ple
go

Predicted label

bball

lemon

ocup

orange

pear

sycup

wball

yball

ycup

ylego

plego

Tr
ue

 la
be

l
0.48 0.34 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.13 0.0

0.15 0.62 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.2 0.0

0.0 0.0 0.53 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.04

0.0 0.0 0.0 0.5 0.18 0.04 0.0 0.23 0.0 0.0 0.0

0.0 0.0 0.0 0.22 0.54 0.12 0.0 0.08 0.0 0.0 0.01

0.0 0.0 0.02 0.04 0.18 0.63 0.0 0.0 0.0 0.0 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.0 0.0 0.08 0.0

0.01 0.02 0.0 0.2 0.06 0.0 0.0 0.67 0.0 0.0 0.0

0.0 0.0 0.19 0.0 0.0 0.0 0.0 0.0 0.79 0.0 0.01

0.05 0.15 0.0 0.0 0.0 0.0 0.09 0.0 0.0 0.7 0.0

0.0 0.0 0.06 0.0 0.04 0.12 0.0 0.0 0.01 0.0 0.74

Normalized confusion matrix

0.0

0.2

0.4

0.6

0.8

(a) With re-sampling.

bb
all

lem
on

oc
up

or
an
ge

pe
ar

sy
cu
p

wb
all

yb
all

yc
up

yle
go

ple
go

Predicted label

bball

lemon

ocup

orange

pear

sycup

wball

yball

ycup

ylego

plego

Tr
ue

 la
be

l

0.53 0.3 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.11 0.0

0.3 0.44 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.23 0.0

0.0 0.0 0.52 0.0 0.0 0.0 0.0 0.0 0.41 0.0 0.04

0.0 0.0 0.0 0.47 0.24 0.05 0.0 0.19 0.0 0.0 0.01

0.0 0.0 0.0 0.26 0.42 0.15 0.0 0.11 0.0 0.0 0.02

0.0 0.0 0.01 0.05 0.14 0.67 0.0 0.01 0.0 0.0 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.08 0.0

0.03 0.01 0.0 0.19 0.07 0.01 0.0 0.67 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.79 0.0 0.0

0.06 0.16 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.65 0.0

0.0 0.0 0.09 0.0 0.03 0.14 0.0 0.0 0.01 0.0 0.69

Normalized confusion matrix

0.0

0.2

0.4

0.6

0.8

(b) Without re-sampling.

Figure 8: Confusion matrices for object recognition. The
numbers are rounded after 2 decimals for readability.

hidden layers, differing only in the last hidden layer and output
layer. This way, the majority of the weights become tied and
are updated with a dataset that has twice the size of the training
data. Pinto and Gupta [43] suggested that using one model for
learning multiple tasks provides better generalization and the
ability to learn better features.

The loss function which was used to train this model is
composed of three terms: (1) the cross-entropy loss between
the predicted action and the input action; (2) the sum of
squared losses between the predicted feature and the target
feature; and (3) the cross-entropy loss at pixel level between
the predicted image and the target image, after the fea-
tures have been passed through the decoder network. During
training, 50% of each mini-batch contains samples for the
forward model, and the other half contains samples for the
backward model. Then the loss of each model is calculated

0 50 100 150 200 250 300 350

Epoch

0

100

200

300

400

500

600

700

800

900

Reconstructed image loss

L2 loss on latent space

Decrese learning rate

(a) Jointly trained forward model
loss;

0 50 100 150 200 250 300 350

Epoch

0

100

200

300

400

500

600

700

800

900

Reconstructed image loss

L2 loss on latent space

Decrese learning rate

(b) Jointly trained backward model
loss;

Figure 9: Evolution of losses for the forward and backward
models.

h
o
o
k

ra
k
e

s
ti

c
k

push draw tap from Left tap from right

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

− 50 − 25 0 25 50

− 40

− 20

0

20

40

Figure 10: The true movement of the objects in pixel space.

and the variables of forward and backward models are updated
according to their associated losses. Fig. 9 shows the two latter
losses of the jointly trained forward and backward models. The
action loss is not depicted, as it is smaller compared to the
other two.

As described in the introduction of this paper in section I,
one of the goals of our model is to understand how physical
actions affect the perception of the environment. Since the only
perceptual modality that our robot currently employs is vision,
it should be able to infer the changes caused by its actions in
the visual space. Fig. 10 shows how much the visual centre
of mass of the object changes by applying different actions.
These changes were calculated from images of the train set
and, even though they resemble the measured effects in 3D
space (see scatter plots of effects in supplementary materials),
they are determined in the 2D pixel space.

The actions show trends that are easily observed. For ex-
ample, in Fig. 10 the action of drawing usually makes objects
come toward the robot, however drawing with a hook tool
yields a bigger variance on the horizontal axis, whereas when
the robot draws objects toward itself with the rake, not only
do they come closer, but they tend to go to the right (which
is expected, as in our experiments the robot only uses its left
arm). The only difference happens when the robot tries to pull
objects using a stick, in which case objects move only a little,
with a small tendency to shift to the right. Similar observations
can be said about other actions of Fig. 10.

A few representative samples from the output result of these
two jointly trained models are shown in Fig. 11. In most cases,
both networks have learned to spread out a cloud of predictions
over the possible locations of the object. It is interesting to
note that none of these networks have ever seen any dragged

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

9

(a) Forward model predictions. (b) Backward model retrodictions.

Figure 11: Possible object locations (shown as grey-scale
points, best seen in colour) computed by the jointly trained
forward and backward networks, overlaid with ground truth
segmented coloured images. The first two rows are “good”
outputs, as the smoky output of the network sufficiently covers
the position of the object. The last row shows outputs that do
not have enough overlap with the position of the object.

h
o
o
k

ra
k
e

s
ti

c
k

push draw tap from Left tap from right

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

− 40 − 20 0 20 40

− 40

− 20

0

20

40

Figure 12: Scatter plots of movement computed by the forward
model. Red spots correspond to model outputs, blue spots are
the ground truth.

out image, however, they have learned that they can generate
these “conservative” predictions/retrodictions by manipulating
the 60-dimensional vector of important latent variables. This
observation hints that these features can be considered as
generative independent factors of variations [44].

Fig. 12 shows the CoM movement output of the jointly
trained forward model for test images (the results of the
backward model is not presented due to brevity). Because
of the smaller sample size divided between each action–tool
pair, the robust means and covariances [45] are also depicted.
Both models have managed to capture the mean and standard
deviations reasonably well, making the most identifiable mis-
take at capturing the correlation coefficient (orientation of the
covariance ellipse). It can be explained by the fact that actions
are performed along the principal axis and a priori we would
have expected to observe mainly diagonal covariance matrices.
This assumption is better satisfied in Fig. 10, because of the
availability of more samples, even though, unlike Fig. 12,

FW BW J FW J BW BL
Different architectures

0

1

2

3

4

5

6

7

M
ea

n
ab

so
lu
te
 e
rr
or
 [
pi
xe

l]

x-axis
y-axis

(a) Averaged absolute errors (lower is better).

FW BW J FW J BW BL
Different architectures

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl
ai
ne
d
va
ri
an
ce

x-axis
y-axis

(b) Explained variances of objects’ movements (higher is better).

Figure 13: Evaluation of different architectures averaged
across all tool–action pairs. FW: forward model predictions;
BW: backward model retrodictions; J: jointly trained; BL:
baseline.

Fig. 10 shows sample means and covariances.
To have a more quantitative analysis of the performance of

the various architectures, Fig. 13 compares the average mean
absolute errors made by each architecture. In addition, we
also present the result for a baseline, which is using the mean
displacement across the train set (visible as the bigger light
blue spots in Fig. 10) as the estimated movement.

A thorough inspection of Fig. 13a, which provides the
averages of the mean absolute errors across action–object
pairs, one may conclude that the baseline does as good a job as
any other model by having a comparable mean absolute error.
However, this observation can be misleading. The baseline
can provide reasonable approximations of displacement, on
average, because the first two statistical moments (i.e., mean
and covariance) are very similar in the train and test set.
Nevertheless, it cannot be a reliable estimator of an object’s
motion. To show how this baseline fails, for each action–object
pair we have sampled from a multivariate Gaussian distribution
with the parameters calculated from the train set and depicted
in Fig. 10 in light blue, and we used that sample as the
effect estimation. Fig. 13b demonstrates how much each model
manages to reduce the variance of the observed movement.
Even though the baseline still performs better than chance
by explaining 10 to 20 per cent of the observed variance (a
constant predictor achieves exactly 0% and a bad estimator
can even get negative scores), it is significantly overshadowed
by other architectures.

Regarding the jointly trained or separately trained schemes
that we used in this work, we see no significant decrease in

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

10

FW BW J FW-BW Baseline
0.0

0.1

0.2

0.3

0.4

0.5

pe
rc

en
t %

Correct action prediction

Figure 14: Correct action predictions of different variations of
the model. For abbreviations refer to Fig. 13.

performance of the joint model, even though joint training
results in smaller models with fewer parameters.

D. Action selection

If a system has truly grasped the statistics of executing
actions, the user should be able to exploit that capacity
and select actions for achieving a desired effect. In order
to quantify how well the model can be used for action
selection, we used an experiment similar to [23] in which,
given two images, taken before and after executing an action,
the network must infer which action was the most probable
one that caused the observed effect in the images. This was
done by first calculating the movement of the centre of the
mass of the object in the two images similar to Fig. 10.
Then, given the before image and the forward model, we
obtain the forward predicted image for all twelve actions
and measure the displacement. The action which produces
the most similar effect is selected as the target action. A
similar procedure can be used for the backward model, or both
models can be used simultaneously and the action which on
average produces the smallest disparity between the observed
and inferred displacement can be selected. The result of this
analysis is depicted in Fig. 14.

Each model is trained 100 times and the jointly trained
model performs superior to the forward or backward models.
The baseline of Agrawal et al. [23] was modified to produce
a one-hot encoded action and parameters were selected based
on the validation set, as the authors have not yet provided
the details of their model. As evident by Fig. 14, the jointly
trained forward and backward model performs comparably
and more reliably than the baseline, even though it was never
trained to infer actions. In contrast, the cost function of the
baseline directly takes into account the loss in action selection.
Additionally, the baseline model is not suitable for task gener-
alization (e.g. predicting object labels, section IV-B) without
incorporating task-specific information into the training loss
of the features.

E. Summary

Reasoning directly on the 2D space of pixels of an image
is a difficult task. In order to avoid this problem, we have first
trained a Convolutional Variational Auto-Encoder (CVAE) on
the images of a dataset. This part of the architecture does not
see the actions. It merely gets an augmented set of images and
tries to reconstruct them by using samples from the posterior
that are penalized to be as independent as possible. We have

run further analysis on the learned important latent variables
and it turns out that, over the whole training set, only one of
those hidden variables has an absolute correlation coefficient
bigger than 0.5 with another. I.e. the CVAE has learned to
decompose the images into disentangled factors of variation.

More importantly, even though we have selected 500 ran-
dom variables a priori, the network has learned to discard 85%
of those variables. These latent features are further used in
three distinct scenarios. In one task we have used the important
features determined by CVAE to classify objects based on their
representative latent variables. This task served as an example
of the usefulness of the features for several tasks.

In another scenario, we trained a fully-connected neural
network to estimate the expected perceptual outcome of an
action. Since these latent variables representing images were
uncorrelated, it was unnecessary to normalize them before
feeding them into the neural network. The result of our exper-
iments with a normalized version of features (unreported) has
validated this hypothesis. We have shown that this approach
not only captures the statistics of actions but also that the
model, on average, makes an error of about 6 pixels in each
dimension, which is roughly equal to 5 cm on a table that
measures 1 m in latitude and 80 cm in longitude. This result
is obtained without defining any explicit state–space model,
heuristics or hand-engineered features. Since a fully-connected
neural network has a lot of parameters, we have used a multi-
task learning approach to train a majority of the parameters
of the network with double the size of our train set. These
hyper-parameters are reported in the appendix.

Finally, we have used these networks for action prediction.
Our experiments show that even without explicitly training
the network for inferring actions, it is possible to obtain an
accuracy on par with state of the art methods that learn features
only for action predictions.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Predicting the outcome of actions over the whole perceptual
space (put into context, reconstructing the entire expected
sensory input) is a challenging task. It is possible to simplify
the problem by defining an appropriate state-space or by
using some task-related priors. However, a biological agent
acting in an environment may not have access to such state-
space a priori [46] and must infer it from experience (For a
more detailed description, look at windowless–room thought
experiment described by [47, p. 258]). We believe that, in
order to approach this problem, it is important to define what
must be the output of such a system. Arguably, the goal of
understanding the outcome of actions would be to guide action
selection and, thus, we have defined capturing the statistics of
action outcomes in the perceptual space as the desired output
of our model. By learning task agnostic features, to the best of
our knowledge, a novel formulation of this problem is provided
that can learn image features that are useful across multiple
tasks.

Given that our perceptual modality is vision, it is not surpris-
ing that a deep learning method can provide a good solution to
the problem, but perhaps even more surprising is how it was

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

11

possible to get these results with relatively few data samples.
First, we have avoided end-to-end approaches, relying instead
on engineering techniques to remove all the non-informative
parts of the visual space (namely, the background). Secondly,
we have adopted a multi-task learning framework (forward and
backward models) where, by learning two disjoint tasks, not
only have we increased the training data for a big portion of
model parameters, but we have also forced them to be useful
for different tasks and, as a result, we have reduced the number
of trainable parameters.

In the opinion of the authors, the biggest limitation of this
work is the need for background segmentation. An end-to-
end approach with many thousands of samples appears to be
able to learn to reject the background, but that method is
not very data-efficient. One way that humans deal with this
problem is attention. We think that it is possible to use our
segmentation mask to learn an implicit attention model and
replace the segmentation pipeline with this model at test time.

Another limitation of the current study lies in the way we
represent the actions. By using a one-hot encoded represen-
tation, we would need to train new forward and backward
models to generalize to novel actions. However, naïvely using
joint trajectories is also (in our opinion) akin to using un-
processed images and not useful when the amount of available
data is moderate. An engineered representation of actions [48]
is a more suitable choice that we will explore in future work.

In this work, the CVAE does not differentiate between true
image samples and augmented image samples. In order to use
the available data most efficiently, it is possible to utilize only
a quarter of hidden variables to reconstruct original images
and use the remaining latent variables to reconstruct rotated
images, in an approach similar to the one by [49], to further
reduce the dimensionality of hidden variables.

Last, in this work, we have adopted a very simple approach
for multi-task learning. Our model learns the features for the
two tasks at the same time. This could be replaced by the
learning without forgetting technique introduced by Li and
Hoiem [50], which has shown to learn better features for both
tasks.

APPENDIX A
TOFFI DATASET DETAILS

To facilitate research in the field of action-conditioned
sensory prediction, we have prepared a publicly available
dataset, TOFFI which includes more than 1000 interactions
of the iCub humanoid robot with objects selected from the
YCB Object and Model dataset [29].
This dataset contains the following information:
• Image of the object on the table before and after doing

the action from both cameras;
• the foreground of the above images, calculated as ex-

plained in Appendix B;
• 3D position of the visual CoM of the object on the table

at the beginning and at the end of the action execution;
• 2D pixel position of the object’s visual CoM in the left

camera, associated with the above 3D measurement;
In Appendix A-A we describe the elements that were used

for our data, including a dexterous humanoid robot, everyday

a b c

2
5
 c

m

3
0

c
m

10 cm

3
0

c
m

10 cm

Figure 15: Tools employed for the experiments, with their
respective sizes. (a) stick, (b) rake and (c) hook.

tools, and common objects taken from the standard YCB
Object and Model dataset. In Appendix A-B we give details
about the data acquisition protocol as well as the statistical
distribution of the recorded data.

A. Robot–Object Interaction Trials

In each trial of our experiments, the robot holds one of the
designed tools in its left hand, as in Fig. 1. The transformation
from the centre of the palm to the tool’s end effector/tip is
provided by the experimenter. Gibson defines tools as objects
that are detached and rigid [15, p. 40] and we have selected
tools that are primitive and built from PVC pipes, in order to
be easily re-fabricated. We have considered three tools, shown
in Fig. 15:

Rake This tool is most effective when the robot tries to pull
objects towards itself or push them away. However,
because of the curvature on its left side and its pointy
head on the right, the results of tapping left and right
with this tool is less predictable.

Stick The stick was selected to be somehow complemen-
tary to the rake. Its pointy head makes it less suitable
for pushing since small errors in the initial placement
of the tool with respect to the object results in
the object slipping away. It also cannot be used to
draw objects towards the robot. However, it gives the
most consistent results when the robot tries to move
objects laterally to the left and right.

Hook Trying to add a tool that acts somewhere in between
the aforementioned ones, the hook does a good job
pulling smaller objects towards the robot but for the
bigger objects, it is less reliable. Its asymmetrical
shape also results in different outcomes when the
objects are pulled to the left or right.

Four categorical actions were selected for the robot to
perform. Combined with the number of tools, the robot per-
forms 12 actions on objects. The actions are also primitive and
consist of drawing the object along the four cardinal directions.
In order to make the actions repeatable, the initial position
of the tooltip with respect to the object’s visual centre of
mass is held consistent across all trials for all actions up to
the accuracy provided by the robot controllers. Fig. 16 shows
how different tooltips are placed with respect to objects before
carrying out the actions.

After the tooltip is placed on the table, each action is carried
out as the following. The length of movement is kept at 12
cm for all cases:

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

12

Figure 16: Initial placement of tooltips, in accordance with
tool type and action performed by the robot.

a

b

c

d

e

f

g

h

i

j

k

Figure 17: Objects selected for the experiments. Using the
abbreviations s–small, y–yellow, b–blue, p–purple, w–white
and o–orange, we refer to the objects as: (a) sycup, (b) bball,
(c) ylego, (d) ycup, (e) pear, (f) plego, (g) orange, (h) wball,
(i) ocup, (j) yball and (k) lemon.

Push The tooltip is placed below the object and
moves away from the robot along the x-
axis (see Fig. 1);

Draw Opposite to pushing, the robot draws the
object toward itself and along the x-axis
by placing the tooltip on the table over the
object and moving it horizontally;

Tap-from-left For this action, the tooltip is placed on the
left side of the object and, by moving it to
the right and along the y-axis, the object
moves to the right;

Tap-from-right Unlike the previous action, the robot has
to place the tool’s end effector to the right
side of the object from its own point of
view, and drag the object to the left.

By taking into consideration the fact that different objects
behave differently when being subject to different actions, we
have selected 11 objects from the YCB Object and Model
dataset. These objects cover a vast range of shapes and colours
and they were selected for two main reasons. First, It was
previously shown by Jamone et al. [51] that the iCub can
manipulate these objects. Second, because they are accessible,
other researchers can validate our results or augment the
number of trials. In the dataset, each object is identified with
a tag, as shown in Fig. 17.

Figure 18: Images resulting from pulling a lemon towards the
robot when using the rake tool, as seen from the left and right
cameras.

B. Data Acquisition Procedure

Before a trial, the robot takes one image of the object on
the table with each camera and records the 3D position of
the object as well as its 2D pixel position in the robot’s left
camera image. Afterwards, the robot proceeds to carry out the
action and, upon finishing, it returns to its initial position, it
takes one more image with each camera and notes the new
position of the object. If the experimenter decides that the
action which was executed complies with the definitions in
the previous section, then all the images and object positions
are saved to disk, otherwise, the buffers will be flushed and
the robot prepares for the next trial.

The whole experiment includes information about 3 tools, 4
actions, 11 objects and at least 10 repetitions of each trial,
which results in more than 1320 unique trials. Considering
that 4 images are recorded during each trial, more than 5280
images are provided. The images were originally taken from
the robot with a resolution of 320×240 pixels. The top 40 rows
of each image are cropped out, as they corresponded to areas
outside of the table, resulting in final images of size 320×200.
Further modifications and masking were performed to remove
undesirable parts and objects that have appeared during trials.
Fig. 18 demonstrates images of an example trial of drawing
closer a “lemon object”, using the rake tool.

In addition to images, we also extract some visual features
of objects and tools from their segmented silhouettes. This
procedure and its motivation are explained below.

APPENDIX B
OBJECT SEGMENTATION

Our segmentation procedure was briefly mentioned in sec-
tion IV, because it is not a major contribution of the paper.
However, for completeness, we describe here the segmentation
pipeline with more details.

Despite dealing with a single object in a relatively uniform
background, segmenting objects accurately from all the images
of our dataset, and accurately preserving object contours, is
a task that presents several challenges: First, the background
presents severe noise and illumination variance (see Fig. 20a);
Second, as there is no training data for the foreground segmen-
tation, the deep learning based segmentation methods lose its

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

13

Table I: Hyper-parameters of all architectures. B: applying batch normalization before the activation function of a layer.
[T]C(k, f, s): [Transpose] convolution with kernel size k, number of filters f , and strides s. D(p): Dropout with probability p
of keeping activations. FC(n): Fully connected layer with n number of neurons. R(x): Resize x times the original shape with
bilinear interpolation.

Network Hyper-parameters

CVAE Encoder BC(7,32,2)-BC(5,32,2)-2×BC(5,64,2)-BC(4,128,2)-FC(1000)
CVAE Decoder BTC(4,128,1)-2×BTC(5,64,2)-BTC(5,32,2)-BTC(5,16,2)-C(5,8,1)-R(2)-C(8,1,1)
Classifier FC(80)-D(0.7)-FC(30)-D(0.7)-FC(11)
Forward/Backward FC(80)-D(0.7)-FC(50)-FC(72)

Figure 19: Methodology to segment objects with accurate
contours, described in Appendix B.

efficacy on our data; furthermore, the object shadows induce
large segmentation errors; In addition, our proposed frame-
work requires that the segmentation process outputs reasonably
accurate object contours, yet traditional segmentation methods,
often relying on morphology operations such as dilation and
erosion, smooth the object contour and reduce the contour
segmentation accuracy (see Figs. 20b and 20e).

To overcome these challenges, we design an approach
to segment objects with accurate contours. As illustrated in
Fig. 19, we first detect object edges based on the method by
Dollár and Zitnick [38]. We learn an accurate edge detector
from the inherent structure present in local image patches. A
random forest is used to capture the structured information
and learn from structured labels to determine the splitting
function at each branch in the tree. Each forest predicts a
patch of edge pixel labels that are aggregated across the
image to compute the final edge map. After the edges are
detected, an object bounding box is generated based on the
edge information, as in [39], and edges outside the bounding
box are filtered out. A threshold is also applied on the edge
image to get more accurate object contours. Then, we use
a flood-fill operation [40] to fill in the contour and generate
the object mask. As a result, the object foreground is obtained
based on this mask. Fig. 19 depicts the steps used to acquire an
object’s mask. Some examples of the output of this method,
together with simpler baseline segmentation techniques, are
shown in Fig. 20.

APPENDIX C
DETAILS OF THE ARCHITECTURES AND TRAINING

In this section, the details of the architectures we used in
this work are described. All the hyper-parameters are listed in
table I.

A. Convolutional Variational Auto-Encoder

The architecture of CVAE is the upper branch of the whole
mode described in Fig. 3. In the CVAE, we have used the
ELU activation function [52], except for the outputs of the
encoder and decoder. The encoder’s output layer for mean
values goes through a linear activation function, and for the
standard deviation values, we have used the softplus function,
to guarantee positive standard deviations. The output layer of
the decoder has a sigmoid activation function. The CVAE is
trained for 500 iterations using the ADAM optimizer [53] and
mini-batches of size 200. The training begins with a learning
rate of 0.01, after 100 iterations it is reduced to 0.001 and
after 300 iterations we change it to 0.0001. Starting with a
larger learning rate can sometimes help to avoid local minima.
However, by continuously reducing the learning rate, the error
reaches a stable value.

B. Classifier Network

The classifier network is trained for 2000 epochs, with
mini-batches of size 200. We have used Rectified Linear
Unit (ReLU) activation functions for all the layers except the
classification layer. Detailed architecture and parameters of the
classifier network are listed in table I.

C. Forward and backward models

The architecture of forward and backward models is the
lower-left corner of the whole mode depicted in Fig. 3. After
the input, there are two fully-connected layers with a dropout
layer in between with a 0.7 probability of keeping activations,
to mitigate over-fitting. The output of these two layers first
goes through another fully connected layer, before reaching
the output layer, which has the same size as the input. Except
for the output, we have used ReLU activation functions for
all the layers. The first 60 dimensions of the output layer,
corresponding to predicting the 60 important latent random
variables of images, use linear activation functions, whereas
the remaining twelve, corresponding to the auto-encoded ac-
tion, use softmax activation functions. The mini-batch size of
this network is reduced to 110 samples per mini-batch.

As explained, in order to obtain a smaller model and to
avoid over-fitting, we adopted a joint training scheme, in which
the two above models share the weights of the aforementioned
first two hidden layers, differing only in the last hidden layer
and output layer.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

14

(a) Input image with high brightness. (b) Baseline segmentation. (c) Our segmentation.

(d) Input image with dark object. (e) Baseline segmentation. (f) Our segmentation.

Figure 20: Examples of images from our dataset that are challenging for object segmentation. First row: an image with strong
illumination variability. Second row: an image whose colours and edges are difficult to separate from the background. In both
examples, we show how our new segmentation method (see Appendix B) overcomes a baseline segmentation algorithm that
relies on background subtraction and intensity thresholding.

REFERENCES

[1] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State
representation learning for control: An overview”, Neural Networks,
vol. 108, pp. 379–392, 2018.

[2] P. R. Davidson and D. M. Wolpert, “Widespread access to predictive
models in the motor system: A short review”, Journal of Neural
Engineering, vol. 2, no. 3, S313, 2005.

[3] A. Dehban, C. Cardoso, P. Vicente, A. Bernardino, and J. Santos-
Victor, “Robotic interactive physics parameters estimator (rippe)”, in
IEEE International Conference on Development and Learning and on
Epigenetic Robotics, 2019, pp. 48–53.

[4] S. Zhu, A. Kimmel, K. E. Bekris, and A. Boularias, “Fast model
identification via physics engines for data-efficient policy search”, in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, AAAI Press, 2018, pp. 3249–3256.

[5] M. K. Kaiser, D. R. Proffitt, and M. McCloskey, “The development
of beliefs about falling objects”, Perception & Psychophysics, vol. 38,
no. 6, pp. 533–539, 1985.

[6] B. Smith and R. Casati, “Naive physics”, Philosophical Psychology,
vol. 7, no. 2, pp. 227–247, 1994.

[7] R. Baillargeon, “Infants’ physical world”, Current directions in psy-
chological science, vol. 13, no. 3, pp. 89–94, 2004.

[8] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforce-
ment learning on raw visual input data in a real world application”,
in IEEE International Joint Conference on Neural Networks, 2012,
pp. 1–8.

[9] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “Learning deep
dynamical models from image pixels”, IFAC-PapersOnLine, vol. 48,
no. 28, pp. 1059–1064, 2015, 17th IFAC Symposium on System
Identification SYSID.

[10] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
Spatial Autoencoders for Visuomotor Learning”, in IEEE International
Conference on Robotics and Automation, 2016.

[11] R. Jonschkowski and O. Brock, “State Representation Learning in
Robotics: Using Prior Knowledge about Physical Interaction”, in
Robotics: Science and Systems, 2014.

[12] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised Learning for
Physical Interaction through Video Prediction”, in Conference on
Neural Information Processing Systems, 2016, pp. 64–72.

[13] M. S. Nunes, A. Dehban, P. Moreno, and J. Santos-Victor, “Action-
conditioned benchmarking of robotic video prediction models: A
comparative study”, arXiv preprint arXiv:1910.02564, 2019.

[14] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper,
S. Singh, S. Levine, and C. Finn, “Robonet: Large-scale multi-
robot learning”, in CoRL 2019: Volume 100 Proceedings of Machine
Learning Research, 2019. arXiv: 1910.11215 [cs.RO].

[15] J. J. Gibson, The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979.

[16] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory–motor coordination to imitation”,
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2008.

[17] E. Jaramillo-Cabrera, E. F. Morales, and J. Martinez-Carranza, “En-
hancing object, action, and effect recognition using probabilistic affor-
dances”, Adaptive Behavior, pp. 1–12, 2019.

[18] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,
and J. Santos-Victor, “Affordances in psychology, neuroscience and
robotics: A survey”, IEEE Transactions on Cognitive and Develop-
mental Systems, 2016.

[19] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor, “Denoising
auto-encoders for learning of objects and tools affordances in con-
tinuous space”, in IEEE International Conference on Robotics and
Automation, 2016, pp. 4866–4871.

[20] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor, “A deep
probabilistic framework for heterogeneous self-supervised learning of
affordances”, in 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), 2017, pp. 476–483.

[21] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi, ““What Happens
If...” Learning to Predict the Effect of Forces in Images”, in European
Conference on Computer Vision, 2016.

[22] A. Ahmetoglu, M. Y. Seker, A. Sayin, S. Bugur, J. Piater, E. Oztop,
and E. Ugur, “Deepsym: Deep symbol generation and rule learning
from unsupervised continuous robot interaction for planning”, arXiv
preprint arXiv:2012.02532, 2020.

[23] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to
Poke by Poking: Experiential Learning of Intuitive Physics”, in Confer-
ence on Neural Information Processing Systems, 2016, pp. 5074–5082.

[24] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution”, in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., Curran Associates, Inc., 2018, pp. 2450–2462.

[25] A. Antunes, G. Saponaro, A. Morse, L. Jamone, J. Santos-Victor,
and A. Cangelosi, “Learn, plan, remember: A developmental robot
architecture for task solving”, in IEEE International Conference on
Development and Learning and on Epigenetic Robotics, 2017, pp. 283–
289.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1910.11215

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

15

[26] J. He, D. Spokoyny, G. Neubig, and T. Berg-Kirkpatrick, “Lagging
inference networks and posterior collapse in variational autoencoders”,
in International Conference on Learning Representations, 2019.

[27] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor, “A
Moderately Large Size Dataset to Learn Visual Affordances of Objects
and Tools Using iCub Humanoid Robot”, in European Conference on
Computer Vision, ser. Workshop on Action and Anticipation for Visual
Learning, 2016.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[29] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: The YCB object
and model set and benchmarking protocols”, IEEE Robotics and
Automation Magazine, 2015.

[30] M. Zambelli, A. Cully, and Y. Demiris, “Multimodal representation
models for prediction and control from partial information”, Robotics
and Autonomous Systems, 2020.

[31] D. Ramachandram and G. W. Taylor, “Deep multimodal learning:
A survey on recent advances and trends”, IEEE signal processing
magazine, pp. 96–108, 2017.

[32] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic Backprop-
agation and Approximate Inference in Deep Generative Models”, in
International Conference on Machine Learning, 2014.

[33] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes”, in
International Conference on Learning Representations, 2014.

[34] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance Weighted Au-
toencoders”, in International Conference on Learning Representations,
2016.

[35] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell,
S. Mohamed, and A. Lerchner, “Early Visual Concept Learning with
Unsupervised Deep Learning”, arXiv preprint arXiv:1606.05579, 2016.

[36] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J.
Schulman, I. Sutskever, and P. Abbeel, Variational lossy autoencoder,
2017.

[37] S. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and
S. Bengio, “Generating sentences from a continuous space.”, in
Proceedings of the Twentieth Conference on Computational Natural
Language Learning (CoNLL)., 2016.

[38] P. Dollár and C. L. Zitnick, “Fast Edge Detection Using Structured
Forests”, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 37, no. 8, pp. 1558–1570, 2015.

[39] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object Proposals
from Edges”, in European Conference on Computer Vision, 2014.

[40] P. Wayalun, P. Chomphuwiset, N. Laopracha, and P. Wanchanthuek,
“Images Enhancement of G-band Chromosome Using histogram equal-
ization, Otsu thresholding, morphological dilation and flood fill tech-
niques”, in IEEE International Conference on Computing and Net-
working Technology, 2012, pp. 163–168.

[41] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks”, in Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, vol. 9, PMLR, 2010,
pp. 249–256.

[42] G. Andrew, R. Arora, J. A. Bilmes, and K. Livescu, “Deep Canon-
ical Correlation Analysis”, in International Conference on Machine
Learning, 2013, pp. 1247–1255.

[43] L. Pinto and A. Gupta, “Learning to push by grasping: Using multiple
tasks for effective learning”, in IEEE International Conference on
Robotics and Automation, 2017, pp. 2161–2168.

[44] A. Bozkurt, B. Esmaeili, D. H. Brooks, J. G. Dy, and J.-W. van de
Meent, Evaluating combinatorial generalization in variational autoen-
coders, 2019. arXiv: 1911.04594 [cs.LG].

[45] D. L. Massart, L. Kaufman, P. J. Rousseeuw, and A. Leroy, “Least
median of squares: A robust method for outlier and model error
detection in regression and calibration”, Analytica Chimica Acta,
vol. 187, pp. 171–179, 1986.

[46] D. Pierce and B. J. Kuipers, “Map learning with uninterpreted sensors
and effectors”, Artificial Intelligence, vol. 92, no. 1, pp. 169–227, 1997.

[47] D. C. Dennett, “Current issues in the philosophy of mind”, American
Philosophical Quarterly, vol. 15, no. 4, pp. 249–261, 1978.

[48] P. Zech, E. Renaudo, S. Haller, X. Zhang, and J. Piater, “Action
representations in robotics: A taxonomy and systematic classification”,
The International Journal of Robotics Research, pp. 518–562, 2019.

[49] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep
Convolutional Inverse Graphics Network”, in Conference on Neural
Information Processing Systems, 2015, pp. 2539–2547.

[50] Z. Li and D. Hoiem, “Learning Without Forgetting”, in European
Conference on Computer Vision, Springer, 2016, pp. 614–629.

[51] L. Jamone, A. Bernardino, and J. Santos-Victor, “Benchmarking the
Grasping Capabilities of the iCub Hand with the YCB Object and
Model Set”, IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 288–294, 2016.

[52] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs)”, in
International Conference on Learning Representations, 2016.

[53] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion”, in International Conference on Learning Representations, 2015.

Atabak Dehban received the B.Sc. degree and
the M.Sc. degree in computer engineering–control
systems from the Amirkabir University of Tech-
nology (AUoT), Tehran, Iran, in 2012 and 2014,
respectively. He finished his Ph.D. degree (Cum
Laude) in 2021 at the Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal through
Robotics, Brain, and Cognition (RB-Cog) doctoral
programme.

Currently, he is a postdoctoral researcher in the
Computer and Robot Vision Laboratory, Institute for

Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa. His
current research interests include affordances and visual scene understanding,
self-supervised robotic machine-learning algorithms, and computer vision.

Shanghang Zhang is a Tenure Track Assistant
Professor at the Computer Science Department of
Peking University. She has been the postdoc re-
search fellow at Berkeley AI Research Lab (BAIR),
EECS, UC Berkeley. Dr Zhang received her Ph.D.
from Carnegie Mellon University in 2018, and her
Master’s from Peking University. Her recent work
“Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting” has received the
AAAI 2021 Best Paper Award. She is especially
interested in machine learning with limited training

data, including domain adaptation, meta-learning, and low-shot learning

Nino Cauli is a researcher at the Department
of Mathematics and Computer Science of the
University of Catania. He received his M.Sc. in
Computer Science from the University of Pisa
in 2010 (110/110), and his Ph.D. in Biorobotics
from the BioRobotics Institute of Scuola Superiore
Sant’Anna, Pisa, in 2014 (Cum Laude).

He has collaborated in several EU Projects such
as RoboSom and Human Brain Project and his
current research interests are in the areas of deep
neural networks, machine learning, computer vision,

internal models, predictive controllers and bioinspired robotics.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1911.04594

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3152383, IEEE
Transactions on Cognitive and Developmental Systems

16

Lorenzo Jamone received the M.Sc. degree (with
honours) in computer engineering from the Uni-
versity of Genoa, Genoa, Italy, in 2006, and the
Ph.D. degree in humanoid technologies from the
University of Genoa and Istituto Italiano di Tecnolo-
gia in 2010. He is a Lecturer in robotics with the
Queen Mary University of London, London, U.K.
He was an Associate Researcher with the Takanishi
Laboratory, Waseda University, Tokyo, Japan, from
2010 to 2012, and with VisLab, Instituto Superior
Técnico, Lisbon, Portugal, from 2012 to 2016. His

current research interests include cognitive humanoid robots, motor learning
and control, and force and tactile sensing.

José Santos-Victor is a Full Professor of computer
vision and robotics, Instituto Superior Técnico, Lis-
bon, Portugal. He is the President of the Institute
for Systems and Robotics, Lisbon, and the Head of
the Computer and Robot Vision Laboratory, Lisbon.
He is the Scientist responsible for IST in many
European and national research projects in cognitive
and bio-inspired computer vision and robotics. He
has published over 300 articles and has an H-index
of 48 in international journals and conferences.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 20,2022 at 20:32:27 UTC from IEEE Xplore. Restrictions apply.

