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Abstract—Fire detection and prevention had become a high
priority task, in the last decade, due to the higher number of
forest fires. Automatic detection systems facilitate the interven-
tion and reduce the cost of firefighters travel in case of false
occurrences. Deep learning based systems has drawn promising
high results in the field, in particular, Deeplabv3+ which is
an architecture based on the so called Atrous Spatial Pyramid
Pooling that enhances the segmentation results.

This paper present the results of Deeplabv3+ applied over
the french Corsican dataset with an Xception backbone. The
model had been trained over the RGB collection of pictures
of the dataset and over the whole dataset that englobes RGB
and infrared (IR) pictures. Several experiments using Dice and
Tversky loss functions are conducted in order to further reduce
the problems induced by unbalanced datasets. The performance
is measured with some extended metrics namely: mean Intersec-
tion over Union (IoU), mean Boundary F1 (BF) Score, and mean
Dice similarity measure in addition to the standard accuracy
metric. The achieved results demonstrate that the Deeplabv3+
with Xception gives very encouraging results for fire detection
over RGB and IR images.

Index Terms—Fire detection, deep learning, semantic segmen-
tation, Deeplabv3+, Xception

I. INTRODUCTION

In the last decades, due to the huge number of forest and
urban fires recorded, more resources have been allocated to
accurate detection of fires and faster intervention. In fact, the
statistics in Portugal show that 7.5 million hectares of forests
had been burnt between 2003 and 2005 [1], which is more than
25% of the country area. It is well known that to minimize
the occurrence of large wildfire, it is necessary to have a fully
prevention strategy, and to assure fast response of firefighters.
Nevertheless, to assure a fast response it is fundamental to
have an accurate detection system, which will allows to reduce
the cost of firefighters travel. In this context, authors had
proposed several intelligent models for fire detection based on
digital content (images and videos) captured during inspection
flights. The work had been concentrated on two aspects: early
fire detection (smoke) [2], [3], and flame detection [4], [5].
Deriving, the critical situation of fast propagation of fire, more
emphasis is given to fire detection. The implemented works
are subclassified into two main groups: decision-based systems

and segmentation methods. The first category aims to localize
the region of fire or smoke with a lower accuracy (windowing
techniques) [6], while the second apply a pixel by pixel logic
(semantic segmentation). Most of segmentation techniques
are based on deep learning and on extended architectures
of convolutional neural networks (CNN). A joint detection
framework based on faster RCNN and 3D CNN was proposed
for smoke detection in [3]. An interesting decision-based
approach [7], which introduces a fire detection system in an
urban area deploying a static ELASTIC-YOLOv3 model. In
[9], authors had implemented a Deeplabv3 [10] model for
fire segmentation using three types of backbones: ResNet-
50, ResNet-101, and ResNet-105, which had reached a mean
Intersection over Union (IoU) of 70.51% and an accuracy
of 98.78% on the evaluation set. Deeplabv3+ [11], extends
Deeplabv3 [9] by placing an effective decoding module to
refine the segmentation along objects boundaries. This paper
assess the performance of the Deeplabv3+ [11] within the
Xception [11], [12] backbone. The experiments are conducted
on two custom sets of the Corsican dataset, highly unbalanced.
On these experiments two different loss functions are used,
namely the Dice and Tversky and the Cross entropy loss
functions. The results are very encouraging, the best model
trained over an RGB dataset, draws an overall accuracy of
98.48%, mean IoU of 93.27%, mean BF score of 92.91%
and mean Dice similarity measure of 91.64%. Another model
able to manage infrared pictures as well, draws an overall
accuracy of 96.11%, mean IoU of 80.29%, mean BF score
of 89.07% and mean Dice similarity measure of 87.86%.
The rest of this paper is organized as follows: Section 2
presents the Deeplav3+ model and the Xception architecture.
In Section 3, the Corsican dataset, the problem formulation,
and the loss function deployed are presented. In Section 4,
the experimental prototypes and their results are presented
and compared. Finally, section 5 concludes this paper and
highlights some lines for future work deployment.

II. DEEPLABV3+ ARCHITECTURE

The encoder-decoder networks, widely used, implement an
encoder block which gradually reduces the feature allowing to
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gather a rich information. Moreover, the decoder block which
gradually recovers the information permits to attend higher
accuracy for semantic segmentation application.

A. Type of Convolutions

In deep learning field, it exists several types of Convolu-
tions. In the following, we will give an overview of different
types of convolutions used within the Deeplabv3+ model to
deploy.

1) Dilated Convolutions: Dilated convolutions allow to
introduce a kind of space between the values of the kernel.
This space is defined following the dilation rate parameter.
Its allows augmentation of the receptive field to have a wider
field of view at the same feature map size. The mathematical
formulation is given in expression (3), where Y (m,n) is
the output of a 2D Atrous convolution from input X(m,n)
through a convolution filter W (i, j), adopting a rate factor r
[12]:

Y (m,n) =
a∑

i=1

b∑
j=1

X(m+ ri, n+ rj)W (i, j) (1)

2) Transposed Convolutions: A transposed convolution is
like a deconvolutional layer, with the difference in the math-
ematical operation carried out. The layer performs a regular
convolution with a reverted spatial transformation. A trans-
posed convolution permits to combine the upscaling of the
input with a convolution, instead of doing the two things
separately.

3) Separable Convolutions and Depthwise Separable Con-
volutions: A separable convolution is designated to split
the kernel operation into several arithmetic. First it is the
convolution expressed as:

Y = conv(X, k) (2)

X , and Y are the input and output images respectively, and
k is the kernel. Next, its the computation k can be calculated
by the following equation:

k = k1.dot(k2) (3)

The dot product consists of multiplying and summing
aligning entries. In fact, it is named separable convolution
because it is computed in the form of two 1D convolutions
with kernels k1 and k2. Neverthless, depthwise separable
convolutions opts for kernels that could not be factored into
two smaller values. The layer deals with both spatial and depth
(number of channels) dimensions. This layer type, drastically
diminishes the computation complexity of the model. The
depthwise convolution compute the spatial convolution for
each channel in an independent manner, and the output is
combined through the pointwise convolution.

4) Atrous Spatial Pyramid Pooling (ASPP): ASPP architec-
ture resample features at four different atrous rate, to capture
a diversified feature map. Four parallel atrous convolutions are
used with graduating rates and their outputs are concatenated.

Fig. 1. The modified Xception encoder implemented within Deeplabv3+

B. Modified Xception

Deeplabv3+ is used with a modified Xception model as
backbone, presented in Fig. 1. Some minor changes [11] had
been proposed to the original Xception model [12]:

• The entry flow past is slightly modified to allow a fast
computation and a high memory efficiency.

• All the max pooling layers are replaced by depthwise
separable convolutions with striding to be able to connect
to an atrous separable convolution for feature extraction
at random resolution.

• Batch normalization and ReLU layers are introduced after
each 3× 3 depthwise convolution operation.

C. Atrous Separable Convolution (ASPP)

The Deeplabv3+ implemented deploys atrous rates of 6,
12 and 18 with depthwise separable convolution instead of
the original convolution layers. The complete architecture is
illustrated in Fig. 2,

D. Deeplabv3+ Decoder

The used decoder module, illustrated in Fig. 3, is charac-
terized with a very simple architecture. A bilinear upsampling
arithmetic with a factor of 4 is computed and then the result
is concatenated with the features, from the encoder, with an
identical spatial resolution. The 1×1 convolution is introduced
with the aim to reduce the number of channels. In fact, the
incoming features have many channels which may outweigh
the importance of the features and could induce overfitting of
the model. Afterwards, a few 3× 3 convolutions followed by
another bilinear upsampling (factor of 4) operation are applied
to additionally refine the feature map.

III. MODEL OBJECTIVES

This section presents an overview of the different loss
functions used in simulation. It is also presented the two
different set of data of the Corsican french dataset [13].
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Fig. 2. The ASPP module implemented within the Deeplabv3+

Fig. 3. The decoder implemented within Deeplabv3+. ’Trans Conv’ refers to
a transposed convolution layer

A. Loss Functions

Besides the Cross Entropy loss function, two other loss
functions, Generalized Dice and Tversky loss, are considered
in the performed experiments with the aim to correct the
impact problems induced by unbalanced datasets.

Let p0i be the probability of the i-th voxel to be a fire and
p1i to be the probability of the i-th voxel to be a non-fire. The
ground truth is denoted as g, g0i is 1 for a fire voxel and 0
for a non-fire voxel and vice versa for the g1i. The number of
classes is denoted by N .

1) Cross Entropy Loss: The Cross Entropy loss function is
defined as follows [14]:

Tce = −

(
N∑
i=1

y0i log p0i +
N∑
i=1

y1i log p1i

)
. (4)

This loss function does not take into account correcting the
issues induced by unbalance data.

2) Generalized Dice Loss: The Dice loss function [15], is
defined as follows:

Tgd = 1− 2

∑N
i=1 p0ig0i∑N

i=1 p0i +
∑N

i=1 g0i
. (5)

This formula aims to maximize the overlap between calculated
maps and reference segmentation maps. Usually, a small value
is added to the denominator and the numerator to avoid invalid
division by zero.

3) Tversky Loss: The Tversky loss function is defined as
follows [16]:

Ttv(α, β) =

∑N
i=1 p0ig0i∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i
.

(6)
The parameters α and β allows weights adjustment of false

positives (FPs) and false negatives (FNs). For larger β weighs
boosts the recall factor more than the precision since the FPs
are more emphasized in this case. When the value of β is
higher than α, the training performance of imbalanced problem
are basically improved, the FN rate over test set is reduced and
the recall factor is boosted.

B. Corsican dataset

The Corsican dataset [13] is composed of multiple fire
scenes collected in RGB and infrared (IR) pictures. Basi-
cally there are scenes composed by RGB pictures with the
corresponding infrared (IR) images, scenes represented only
by RGB pictures, and scenes represented with images on the
infrared band.

Two personalized datasets are builded within IR and RGB
pictures of original Corsican dataset, to assess the quality
of information of the features depending on image types.
CCorsican-RGB, the first dataset, encloses all the 1135 RGB
images within the dataset. CCorsican-RGB R+IR, the second
dataset, incorporates all the images of the original Corsican
dataset (RGB and IR images), resulting in 1775 pictures.

The fire pixels are less than 20% of the entire set of data
for the two custom datasets.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

The Deeplabv3+ architecture is tested in nine different
configurations: within three different loss function (Cross
Entropy, Dice and Tversky), and for each, three different
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initial learning rate value (10−1, 10−2, and 10−3). Different
scenarios are considered for CCorsican-RGB and CCorsican-
RGB R+IR datasets, using two different input image sizes:
300 × 300 and 600 × 600. The CCorsican-RGB R+IR set
contains duplicate profiles, i.e. IR and RGB images of the
same view. However, this is not applicable to all the views,
some views are represented with a single profile. The datasets
are randomly divided as follow: 60% for training, 20% for val-
idation and 20% for test. The dataset partition, for CCorsican-
RGB and CCorsican-RGB R+IR, is given in Table I. The
grayscale pictures are converted to RGB format by duplicating
the same information over the two missing channels, since the
architecture is built for 3D entries.

TABLE I
THE DATASETS PARTITION IN TERM OF NUMBER OF PICTURES

XXXXXXXXSet
Dataset CCorsican-RGB CCorsican-RGB R+IR

Training 681 1065
Validation 227 355

Test 227 355

Since the network training is time consuming, for each
run it can take between 180 to 450 minutes, any cross-
validation strategy was adopted. The models are parameterized
and trained on MATLAB environment over GPU, on a server
equipped with a Nvidia tesla K40c card in the facilities of
the Instituto de Telecomunicações of Coimbra. The models
are trained with a stochastic gradient descent algorithm with
momentum term equal to 0.9 and learning rate schedule with
a piecewise approach [17]. For the learning rate schedule, the
drop period and factor are set to 10 and 0.3, respectively.
The chosen setting helps to increase the accuracy and reduce
the loss during training. The number of training epochs is
set to 100, and the earlier stopping option is activated to
avoid overfitting of the models. In the models architecture,
every convolution layer is succeed by a Batch Normalization
to further reinforces the training stability, augments the per-
formance, and have a faster converge.

B. Results and Discussion

In this subsection the results of the experiments conducted
over the two datasets separately, for the two image sizes 300×
300 and 600× 600 are presented.

1) Experiments with CCorsican-RGB set: The model is first
trained over CCorsican-RGB set, with an input size 300×300
and a batch size equal to 22. The performance in terms of
overall accuracy (Acc), IoU, BF Score and Dice score (Dsc)
are presented in Table II, where the M-IoU, M-BF and M-Dsc
refer to the mean values of IoU, BF score and Dice score over
all classes over all images of the corresponding dataset.

The best results are achieved for a training with an initial
learning rate of 10−2. Moreover, one could remark that the
Generalized Dice and the Tversky losses, highly correct the BF
Score and the Dice metric. The results, for the 600×600 image
size and a batch size equal to 8, are presented in Table III. In

TABLE II
DEEPLABV3+ MODEL RESULTS FOR DIFFERENT LOSS FUNCTIONS AT

DIFFERENT LEARNING RATE VALUE OVER CCORSICAN-RGB SET, THE
INPUT SIZE IS 300X300 AND THE BATCH SIZE IS SET TO 22.

Learning
rate Metrics Cross

Entropy
Generalized

Dice Tversky

10−3

Acc 97.54 96.94 96.87
M-IoU 89.48 86.68 86.72
M-BF 80.58 87.46 85.31
M-Dsc 84.59 88.76 87.94

10−2

Acc 98.48 97.72 97.57
M-IoU 93.27 89.83 89.36
M-BF 92.91 94 92.44
M-Dsc 91.64 92.60 91.72

10−1

Acc 96.55 96.78 95.59
M-IoU 85.36 86.21 82.39
M-BF 82.95 87.72 77.74
M-Dsc 85.69 88.28 83.98

general, the results are better with an input size of 300× 300
and a batch size of 22. For comparison propose, for every case

TABLE III
DEEPLABV3+ MODEL RESULTS FOR DIFFERENT LOSS FUNCTIONS AT

DIFFERENT LEARNING RATE VALUE OVER CCORSICAN-RGB SET, THE
INPUT SIZE IS 600× 600 AND THE BATCH SIZE IS SET TO 8.

Learning
rate Metrics Cross

Entropy
Generalized

Dice Tversky

10−3

Acc 97.83 97.19 97.32
M-IoU 90.70 87.64 88.40
M-BF 86.84 89.79 90.06
M-Dsc 88.69 90.50 91.03

10−2

Acc 97.15 97.36 97.46
M-IoU 87.69 88.40 88.88
M-BF 86.01 91.03 91.13
M-Dsc 87.12 91.38 91.29

10−1

Acc 93.89 95.43 95.63
M-IoU 76.89 81.93 82.29
M-BF 61.40 78.74 78.58
M-Dsc 61.36 84.59 83.78

(depending on input size and dataset), a best model is selected.
The model is highlighted in grey in every table. In Table II,
the chosen model is the one trained with Cross Entropy loss
at an initial learning rate of 10−2 (please refer to Model 1 in
Table VI). However, in Table III, the best model (please refer
to Model 2 in Table VI) is the one trained with Tversky loss
at an initial learning rate of 10−2.

2) Experiments with CCorsican-RGB+IR set: This time,
the model is trained over CCorsican-RGB+IR set, with an
input size 300 × 300 and a batch size equal to 22. The
performance are given in Table IV.

While, for the case of an input size of 600 × 600 and a
batch size equal to 8, the results are grouped in Table V for
different cases of simulation.

In Table IV, the chosen model is the one trained with
Generalized Dice loss at an initial learning rate of 10−2 (please
refer to Model 3 in Table VI). However, in Table V, the best
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TABLE IV
DEEPLABV3+ MODEL RESULTS FOR DIFFERENT LOSS FUNCTIONS AT

DIFFERENT LEARNING RATE VALUE OVER CCORSICAN-RGB+IR SET, THE
INPUT SIZE IS 300X300 AND THE BATCH SIZE IS SET TO 22.

Learning rate Metrics Cross
Entropy

Generalize
Dice Tversky

10−3

Acc 96.49 95.11 95.09
M-IoU 82.48 76.29 76.52
M-BF 77.54 85.43 85.15
M-Dsc 80.98 83.50 83.41

10−2

Acc 93.82 96.11 95.27
M-IoU 75.21 80.29 76.15
M-BF 80.80 89.07 86.58
M-Dsc 83.83 87.86 83.63

10−1

Acc 93.44 91.18 92.47
M-IoU 68.72 66.85 69.89
M-BF 67.59 68.55 71.52
M-Dsc 56.82 69.83 74.44

TABLE V
DEEPLABV3+ MODEL RESULTS FOR DIFFERENT LOSS FUNCTIONS AT

DIFFERENT LEARNING RATE VALUE OVER CCORSICAN-RGB+IR SET, THE
INPUT SIZE IS 600X600 AND THE BATCH SIZE IS SET TO 8.

Learning rate Metrics Cross
Entropy

Generalize
Dice Tversky

10−3

Acc 93.94 94.11 94.07
M-IoU 69.77 70.94 71.29
M-BF 78.39 82.51 82.21
M-Dsc 49.60 52.47 52.52

10−2

Acc 94.44 94.22 93.96
M-IoU 72.86 71.56 71.17
M-BF 80.81 83.38 82.23
M-Dsc 51.66 53.11 52.43

10−1

Acc 92.63 92.44 91.36
M-IoU 65.49 67.65 67.71
M-BF 66.71 75.39 65.53
M-Dsc 36.76 47.78 70.93

model (please refer to Model 4 in Table VI) is the Generalized
Dice loss as well with a loss at an initial learning rate of 10−2.

C. Comparison

Table VI presents a comparison of the four selected models.
Furthermore, Fig. 4.(a) shows an example of an image of
the dataset and Fig. 4.(b) its ground truth. The segmentation
mask results are highlighted for the four models: model 1
(Fig. 4.(c)) model 2 (Fig. 4.(d)) , model 3 (Fig. 4.(e)) and
model 4 (Fig. 4.(f)). The corresponding BF score and Dice
metric values, for this example, are presented in Table VII.

It is visually clear that the model 2 and model 4, trained
with an input size of 600x600 and a batch size equal to
8, generate a lot of false detections (the green colour) in
comparison with the two other models. The results of tab VII
demonstrate that the model 1 and model 3 gives the best
results in terms of BF score and Dice coefficient value.

An example that illustrates the performance of the model 3
over IR pictures is presented in Fig. 5.

Our results are compared to the models trained over Cor-
sican dataset, in the literature. An Affine comparison is not

TABLE VI
THE FOUR BEST MODELS CHOSEN FROM THE PREVIOUS SIMULATIONS

Model
name Metrics Values Loss+Rate Further

details

Model 1

Acc 98.48
Cross Entropy

+10−2

CCorsican
-RGB,

300x300

M-IoU 93.27
M-BF 92.91
M-Dsc 91.64

Model 2

Acc 97.46
Tversky
+10−2

CCorsican
-RGB,

600x600

M-IoU 88.88
M-BF 91.13
M-Dsc 91.29

Model 3

Acc 96.11
Generalized Dice

+10−2

CCorsican
-RGB+IR,
300x300

M-IoU 80.29
M-BF 89.07
M-Dsc 87.86

Model 4

Acc 94.22
Generalized Dice

+10−2

CCorsican
-RGB+IR,
600x600

M-IoU 71.56
M-BF 83.38
M-Dsc 53.11

Fig. 4. Example of segmentation of an RGB picture: (a) The picture, (b) the
ground truth; results using (c) model 1, (d) model 2, (e) model 3, and (f)
model 4. Green color represents the pixels that must be recognized as non-
fire, but the selected model had designed them as fire pixels (FP). Pink pixels
should be classified as fire, but the selected model had recognized them as
non-fire pixels (FN).
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TABLE VII
THE EXAMPLE OF FIG 4 PERFORMANCE

Metrics Model 1 Model 2 Model 3 Model 4
BF 90.71 76.21 91.31 84.77
Dsc 92.38 89.60 93.92 92.13

Fig. 5. Example of segmentation of IR pictures using model 3 (a) The picture,
(b) the ground truth, and (c) the obtained segmentation mask. The BF score is
equal to 98.17%and 94.61% for the first and the second example respectively.

possible since the metrics used are different. The model
described in work [18] draws an accuracy higher than our
selected models, but the authors didn’t analyse the IoU or
the BF score performance. The accuracy is not enough to
judge, because it is a global metric that do not reflects the
real situation in case of unbalance class problem. Analysing
the above metrics is essentiel in the case of pixel segmentation,
since the global accuracy gives the performances related to
all the pixels over all images and do not gives a wider idea
about the matching related of every picture. Nevertheless, our
selected models draws a higher Jaccard and Dice index values
than the model computed in [19].

V. CONCLUSION

Fire detection using deep learning model is a very chal-
lenging task. Unbalanced datasets generate a lot of issues
that could be avoided by using advanced loss formulas that
correct the problem and gives better results. In this paper,
the performance of a Deeplabv3+ architecture with Xception
backbone is assessed for different loss function over two
different sets of data, that contains RGB and IR pictures. The
given results are very promising for further deployment of
enhanced similar architectures.

To conclude, in the future we will focus on the amelioration
of the model architecture, and we will use the selected models
to label a new dataset recently captured for wildfire detection.
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