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a b s t r a c t 

Deep neural networks have rapidly become an indispensable tool in many classification applications. 

However, the inclusion of deep learning methods in medical diagnostic systems has come at the cost 

of diminishing their explainability. This significantly reduces the safety of a diagnostic system, since the 

physician is unable to interpret and validate the output. Therefore, in this work we aim to address this 

major limitation and improve the explainability of a skin cancer diagnostic system. We propose to lever- 

age two sources of information: (i) medical knowledge, in particular the taxonomic organization of skin 

lesions, which will be used to develop a hierarchical neural network; and (ii) recent advances in chan- 

nel and spatial attention modules, which can identify interpretable features and regions in dermoscopy 

images. We demonstrate that the proposed approach achieves competitive results in two dermoscopy 

data sets (ISIC 2017 and 2018) and provides insightful information about its decisions, thus increasing 

the safety of the model. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Skin cancer is one of the most common types of cancer, and

ne of the few whose incidence rates have been steadily increasing

1] . Thus, it is crucial to improve the diagnostic accuracy, as well

s the rates of early diagnosis. Two lines of work are being pur-

ued to address this health problem: (i) investment in newer and

etter imaging techniques, such as confocal microscopy and spec-

ral imaging; and (ii) development of computer aided diagnostic

ystems (CADS) for the automatic analysis of dermoscopy images.

n particular, the latter has seen an impressive growth in the past

ears [2,3] , mainly due to the public release of increasingly larger

ata sets [4] . Another changing factor was the increase in com-

utational power, thanks to more powerful graphical processing

nits (GPUs) that accelerated the development of methods based

n convolutional neural networks (CNNs). These networks are able

o achieve (near) human expert diagnostic performances [5,6] , and

re trained in an end-to-end fashion, eliminating the need for

and-crafted features [7] . 

The features learned by CNN models are optimal, in the sense

hat they are optimized to give the best classification performance.

owever, they are not easy to interpret, especially by non-experts,
nd the user is left without much information to understand the 
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utput of a CNN. In safety-critical medical applications, such as

he one addressed in this paper, it is crucial for CADS to provide

xplainable outputs to physicians. Otherwise, an incorrect diagno-

is may be rendered, incurring in high costs for both the patient

nd the practitioner. Our work aims to address this issue through

he design of an explainable CADS. 

Various approaches have been proposed by the machine learn-

ng community to improve the explainability of a CNN, most of

hem focused on inspecting the features learned by the model.

wo popular strategies are class activation maps (CAMs [8] or

rad-CAMs [9] ), which highlight the image regions that contribute

he most to an output, and attention modules [10] that are trained

o guide the CNN towards the most discriminative features. It is

lso possible to inspect each filter learned by the CNN [11,12] . Most

isualization methods are applied only during the inference phase

nd after the network is fully trained. On the other hand, there

re methods try to simultaneously improve the explainability of

he CNN and its performance. In this case, the network is trained

o jointly perform a set of related tasks. These multi-task networks

earn better features that capture common and discriminative

roperties [13,14] . 

In this work we propose to combine multi-task CNNs with

isualization methods to develop an explainable CADS for skin

ancer diagnosis. Towards this goal we will take into account

 property of skin lesions that remains relatively unexplored in

he literature: their inherent hierarchical structure. Lesions are

rogressively organized by dermatologists into various classes,

https://doi.org/10.1016/j.patcog.2020.107413
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Hierarchical organization of skin lesions. 
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according to their origin (melanocytic or non-melanocytic) and

degree of malignancy (malignant or benign), until a differential

diagnosis is reached (see Fig. 1 ). In order to determine these

sequential classes, dermatologists screen the lesions for the pres-

ence of localized dermoscopic criteria [15] . Various dermoscopic

criteria, such as streaks or blood vessels, are highly correlated

with the origin of the lesion ( e.g. , melanocytic for the streaks

and non-melanocytic for blood vessels), while a more detailed

assessment of the structures makes it possible for dermatologists

to perform a differential diagnosis based on the following medical

facts: (i) irregular streaks are a sign of melanoma, but regular ones

are a hallmark of the reed and spitz nevi; (ii) arborizing vessels

are associated with basal cell carcinomas, while the hairpin ones

are more common in seborrheic/benign keratosis. 

Expert dermatologists are able to achieve better diagnosis by

understanding the aforementioned similarities and differences

between the various lesions. Thus, it is expected that CADS

would also benefit from this knowledge. In this work, we will

develop a deep learning based CADS that makes hierarchical

decisions about the lesion (multi-task) at the following levels:

origin (melanocytic/non-melanocytic), degree of malignancy (be-

nign/malignant), and differential diagnosis ( e.g. , melanoma, basal

cell carcinoma, benign keratosis), where each decision is condi-

tioned on the previous one. To mimic the localized analysis and

improve the explainability of the model, we will take advantage

of attention modules. Attention will guide the model towards the

most discriminative regions and features of the lesion, for each of

the decision levels. 

Our work demonstrates the advantages of combining a multi-

task CNN with attention modules. First, we prove that an ex-

plainable hierarchical model can be efficiently trained without the

need to add external data, even with a small training set (20 0 0

images), and generalizes well to new images. The model achieves

competitive diagnostic results on public data sets, especially when

compared with more complex methods based on ensembles of

CNNs. Second, the visualization of the attention modules allows an

easy interpretation of the correct and incorrect diagnosis, increas-

ing the safety of the model. Finally, the importance of the attention

module is further supported by our robustness experiments, where

we visualize the impact of various image transformations. We be-

lieve that our work is a relevant contribution towards the design

of more efficient, robust, and safe deep learning models. 

2. Related work 

In recent years, the field of dermoscopy image analysis has

profoundly changed by the adoption of deep learning methods.

CNNs have been shown to achieve accuracies very similar to those

of dermatologists on the diagnosis of multiple types of skin lesions

[5,6] , while in prior works the focus was mainly on the differenti-

ation between melanoma and nevi. These studies demonstrate the

ability of CNNs to learn discriminative lesion representations. 

The process by which a convolutional neural learns represen-

tations and associates them with a class label is not transparent.

Thus, visualization strategies like CAMs [8,9] have been proposed
o identify the regions in an image that contribute to the decision.

his is particularly important in medical applications, where the

bility of a system to be self-explainable is becoming more and

ore relevant. CAMs have already been adopted in dermoscopy

mage analysis [16,17] . An alternative to CAMs, is to visualize the

lters learned by DCNNs [11,12] . Such analysis was conducted

y Van Simoens and Dhoedt for a skin cancer model [18] . Their

esults showed that a CNN was able to learn filters that were

ensitive to: border, lesion and skin color, hair, and artifacts.

owever, visualization approaches only allow the inspection of

he network during the inference phase, and although they im-

rove explainability, they do not impact the performance of the

etwork. 

An alternative to the previous approaches is to design multi-

ask architectures to explicitly influence the performance of the

NN and achieve more interpretable models. In this case, CNNs

re designed to perform more than one related task [13,14,19] .

his formulation makes it possible to extract more discriminative

eatures by incorporating complementary knowledge into the

NN, while at the same time improving the overall performance

n the various tasks. This approach has also been adopted in

ermatoscopy, by combining lesion diagnosis with either lesion

egmentation [16] or detection of dermoscopic criteria [20,21] .

owever, the training of such systems may be limited by: (i) the

mount of available data and its representativeness; (ii) the need

or manual or semi-automatic segmentations of the lesions and/or

ermoscopic criteria; and (iii) missing or noisy labels, in the

ase of dermoscopic criteria ( e.g. , [20,21] solely relied on criteria

ssociated with melanocytic lesions). 

In this work, we propose to develop a multi-task CNN that

erforms a hierarchical diagnosis of the skin lesions (recall the

axonomy from Fig. 1 ). This will mimic the procedure adopted by

ermatologists, where their first challenge is to identify the origin

f the lesion [22] , prior to any differential diagnosis. Hierarchical

NNs have been used in a multitude of fields, ranging from coarse-

ne image classification [23,24] to image captioning [25,26] . The

oncept of hierarchy has also been addressed in a small number

f dermoscopy works. Shimizu et al. [27] demonstrated that a

ierarchical diagnosis using hand-crafted features and an SVM

ed to a better performance on the diagnosis of four types of

kin lesions. Barata and Marques [28] showed that a two-level

ierarchical classification could improve the performance of a

NN in the diagnosis of melanomas, nevi, and benign keratoses.

owever, the system lacked explainability and only one type of

on-melanocytic lesions was used. Moreover, since the method is

ased on sequential fully connected layers, extending it to larger

axonomies would increase the model complexity significantly. 

The proposed model significantly differs from the above ones.

irst, we will use a recurrent neural network (RNN) to perform

he hierarchical diagnosis. RNNs have been shown to perform

ell on hierarchical classification tasks, and are easily extended to

ncorporate larger taxonomies [23,29] . Moreover, we address the

xplainability of the model by incorporating an attention module

hat can guide the RNN towards the most relevant regions and

earn more discriminative features. 

A preliminary version of this work was recently published in

arata et al. [30] . We improve our earlier work in several signif-

cant ways: (i) an extension of the attention module to comprise

oth spatial and channel attention, such that it is simultaneously

ble to identify the most relevant regions and features (chan-

els) for each label; (ii) an extensive evaluation of the best CNN

rchitecture for image encoding; (iii) identification of the best

abel inference strategy; (iv) incorporation of a hierarchical loss

unction based on cosine similarity; (v) inclusion of taxonomies

ith variable lengths; and (vi) insights on the robustness of the

odel w.r.t. geometrical and color transformations of the images. 
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. Proposed system 

This work proposes a new CADS for skin lesions with the

ollowing properties: (i) it mimics the hierarchical decisions made

y dermatologists (recall Fig. 1 ), thus medical knowledge is in-

orporated in the design of the network; and (ii) it is explainable,

ince it provides visual information regarding the most relevant

egions and features in each step of the diagnosis. 

Hierarchical classification may be seen as a problem of finding

 set of sequential class labels ( C = { C 1 , . . . , C T } ) that better defines

mage I, i.e. , the sequence that maximizes 

p(C| I) = 

T ∏ 

t=1 

p(C t | I, C 0 , · · · , C t−1 ). (1)

his formulation enforces that the t th class is conditioned on the

revious ones, thus ensuring a hierarchical dependence between

lasses. The probability defined in (1) is used in various problems,

uch as the one of image captioning, where the goal is to predict

he best sequence of words to describe an image. In this work, we

ake inspiration from some of the approaches to model (1) . In par-

icular, we will focus on those approaches that use deep learning

odels [31] . Most of these works use an RNN to capture the condi-

ional relationship between words, where the hidden state h t ∈ R 

P 

f the networks is responsible for propagating its “memory”. 

The architecture of the proposed CADS, shown in Fig. 2 , is sim-

lar to that of state-of-the-art image captioning methods [32] . The

rst block of the system is the image encoding one, where features

re extracted from the entire images using a CNN. The last block is

n RNN with a long-short term memory (LSTM) cell that is respon-

ible for generating the sequential labels for a given dermoscopy

mage. At consesuctive time-steps, the LSTM takes as input image

eatures and the labels generated in the previous steps, to predict

he next one. The block in the middle, called the attention module,

nteracts with the LSTM to define which features will be fed to

he latter, taking into account the previously generated labels. The

oal of the attention module is to mimick the way dermatologists

nalyze dermoscopy images: selectively focus on parts of the

mage, according to the stage of their decision process, as defined

n Fig. 1 . This dynamic feature extraction is called spatial attention

nd allows us to obtain richer descriptions for images, while at

he same time improving the explainability of the model, since

he attention maps may be visualized [33] . However, solely relying

n spatial attention does not allow us to take full advantage of the

eatures extracted by the CNN [34] . As shown by Van Simoens and

hoedt [18] , the various filters of a CNN capture different proper-

ies of skin lesions, such as its border transitions or colors, and the
Fig. 2. Block diagram of the proposed system. The colors identify the channel and spati
resence of acquisition artifacts. Some of these features may be

ore relevant than others for the hierarchical diagnosis. Therefore,

e incorporate a channel attention process in the attention mod-

le, which consists of dynamically selecting the most informative

hannels (activation maps) at each time-step of the LSTM. In the

ollowing section we explain each of these blocks in detail. 

. Hierarchical diagnosis model 

The proposed hierarchical diagnosis model is formed by three

ain blocks, as shown in Fig. 2 : (i) image encoder, which extracts

mage features; (ii) image decoder, which performs the hierarchi-

al classification; and iii) attention module that guides the model

owards the most discriminative features and regions according to

he previous output of the LSTM. The following subsections are

rganized according to these blocks. 

.1. Image encoder 

The goal of this block is to extract discriminative features from

aw images. In particular, we will compare three popular CNN

rchitectures (VGG-16 [35] , DenseNet-161 [36] , and ResNet-50

37] ) and select the activation maps from their last convolutional

ayers. These maps are then vectorized and concatenated. Thus, for

ach image we obtain a set of L image descriptors x = { x 1 , . . . , x L } ,
 l ∈ R 

D , where 
√ 

L ×
√ 

L is the shape of the activation maps and D

s the depth, i.e. , the total number of channels. The values of these

arameters depend on the architecture of the image encoder:

i) for VGG-16, L = 324 and D = 512 ; (ii) for ResNet-50, L = 196 ,

 = 1536 ; and (iii) for DenseNet-161, L = 81 and D = 2208 . 

.2. Image decoder - hierarchical classification 

This block is responsible for sequentially diagnosing the

ermoscopy images, following the medical taxonomy. At each

ierarchical split t , the LSTM produces a finer class for the skin

esion, receiving as input the previously generated class C t−1 , the

ontext (image features) z t , and the previous hidden state h t−1 . The

nference process inside the LSTM cell is formulated as follows 

i t = σ (W is E C t−1 + W ih h t−1 + W iz z t + b i ) , 

f t = σ (W f s E C t−1 + W f h h t−1 + W f z z t + b f ) , 

c t = f t c t−1 + i t tanh (W cs E C t−1 + W ch h t−1 + + W cz z t + b c ) , 

o t = σ (W os E C t−1 + W oh h t−1 + W oz z t + b o ) , 

 t = o t tanh (c t ), (2) 
al attention weights ( β t and αt ) associated with each of the sequential diagnosis. 
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where i t , f t , c t , o t , and h t are the input, forget, memory, output, and

hidden state of the LSTM, respectively. The network parameters

(the weights W • and biases b •) are learned during the training

phase, as well as the class-embedding matrix E ∈ R 

M×K , where

M is the class-embedding dimension and K is the number of

words/classes. Finally, the context vector z t is computed using the

attention module, which will be discussed in the following section.

At each time step t , the hidden state h t is used to obtain

p(C t | I, C t−1 ) and predict the next level in the taxonomy. Various

strategies can be used to obtain this probability. In this work, we

compare the following two: 

Class Inference - Method 1 (CI1): 

p(C t | I, C t−1 ) = softmax (W o1 h t ), (3)

Class Inference - Method 2 (CI2): 

p(C t | I, C t−1 ) = softmax (W o2 (W z z t + W h h t )), (4)

where W o1 ∈ R 

K×P , W z ∈ R 

M×D , W h ∈ R 

M×P , and W o2 ∈ R 

K×M are

trainable weight matrices. The predicted class ˆ C t is then selected

as the one that maximizes p(C t | I, C t−1 ) . 

To be able to use the LSTM to predict the first level of the

taxonomy, i.e. , at time-step t = 1 , it is necessary to initialize its

state and memory ( h 0 and c 0 ). Following Xu et al. [33] , we will

use two perceptrons to infer these parameters from the average

values of the activation maps obtained from the CNN: 1 
L 

∑ L 
l=1 x l . 

4.3. Attention module 

The goal of the attention module is to provide the LSTM

network with the most relevant image features (called the context

vector z t ), that can be used to predict the t − th level of the

taxonomy. This approach aims to mimic the analysis performed by

dermatologists, while diagnosing skin lesions: inspect the lesion

for localized criteria that give clues about its origin, followed

by the detailed analysis of some of the identified criteria to

perform the differential diagnosis. We reproduce this analysis by

incorporating a spatial attention mechanism in our model. Spatial

attention will enforce the LSTM network to selectively focus on

different parts of the skin lesion, taking into account the previ-

ously predicted hierarchical labels. Additionally, recent works, such

as that of Van Simoens and Dhoedt [18] , have shown that CNN

filters respond to different properties of the skin lesions. Since

some of these filters may convey more discriminative information

than others, we also incorporate a channel attention mechanism

in our model. Similarly to the spatial attention block, the channel

one is also influenced by the previously generated hierarchical

labels and dynamically provides the LSTM with the most relevant

image features (activation maps) to predict the following labels.

Below we provide details about these two attention mechanisms. 

Channel and spatial attention have been combined in various

frameworks, such as those proposed in Chen et al. [34] , Woo

et al. [38] . Both of these works have demonstrated that the best

performances are achieved when spatial attention is applied to

the output of a channel attention block. Therefore, we also adopt

this organization. Channel attention has been addressed in the lit-

erature as a technique to perform feature selection and to improve

the representation power of the model [38] . The non-negative

channel attention weights β t are computed as follows 

βt = σ (W ca ( tanh (W cax ̄x + W cax ̃  x + W cah h t−1 ))), 

x 

′ 
t = βt � x (5)

where σ is the sigmoid function, � denotes the element-wise

multiplication, x̄ and ˜ x are respectively the average and max-

pooled feature maps, and the matrices W ca , W cax ∈ R 

D × D 
r , and

W cah ∈ are all trainable. The new features x ′ t can be used to

compute the spatial attention weights as described next. 
Pure spatial attention methods can be divided into hard and

oft attention [33] . Soft attention, as proposed by Chorowski et al.

39] is used in this work. Based on this method, we estimated the

ontext vector z t as follows 

 t = 

L ∑ 

i =1 

αti x 
′ 
ti , (6)

here αt = { αt1 , . . . , αtL } is a set of non-negative weights that rep-

esent the relative importance of each position in the feature map.

In this work, we apply the method proposed by Xu et al. [33] to

stimate the weights αt as follows 

t = softmax (W sa ( tanh (W sax x 

′ + W sah h t−1 ))) , (7)

here W a , W ax , and W ah are all trained in parallel with the other

arameters of the model. 

The outputs of both attention mechanisms may be visually in-

pected, i.e. , we can identify which were the activation maps with

he highest values in β t and visualize the spatial map αt , for each

f the predicted labels. This greatly improves the explainability of

he model, since we are able to provide visual cues that justify

ach of the hierarchical decisions. 

. Experimental setup 

.1. Data set and experiments 

We developed our model using the ISIC 2017 and 2018 der-

oscopy data sets [4,40] . The first set comprises 2750 images

ivided into training (20 0 0), validation (150), and test (600)

ets. These images contain examples of the following classes of

esions: melanocytic (melanoma and nevi) and non-melanocytic

seborrheic keratosis). The second set is larger and more complex,

ontaining 11,527 examples of the following lesions: melanocytic

melanoma and nevi) and non-melanocytic (basal cell carcinoma,

ctinic keratosis, benign keratosis, dermatofibroma, and vascular

esions). Similarly to ISIC 2017, the 2018 data set is also divided

nto training (10,015) and test sets (1512). Neither data set was

ugmented with external data and, in order to deal with image

olor variability induced by different acquisition setups, all of the

mages were normalized using the color normalization scheme

roposed in Barata et al. [41] . Fig. 3 shows some examples of

ormalized images. 

We report the results of several ablation studies conducted on

he ISIC 2017 data set, namely: 

i) Image encoder: The representation power of the three CNN

architectures (DenseNet-161, VGG-16, and ResNet-50) was

evaluated by using each network separately as an image en-

coder. 

ii) Hierarchical loss function: A commonly used loss func-

tion in captioning problems is the categorical cross-entropy.

However, by using this loss function alone there is no guar-

antee that the model will be able to learn the taxonomic

structure of the various classes i.e , the sequential path be-

tween the coarse and finer classes. Thus, we propose to ex-

plicitly model the taxonomic constraints on the loss function

and compare this approach against solely using the cross-

entropy loss. Details about the hierarchical loss function will

be given in the following subsection. 

iii) Channel attention: The combined use of the channel and

spatial attention mechanisms (recall Section 4.3 ) was evalu-

ated for several values of the channel-reduction factor r ∈ {1,

2, 4, 8, 16}, where 1 
r denotes the proportion of channels that

the model should select. Setting r = 1 is equivalent to using

only spatial attention. 
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Fig. 3. Examples of dermoscopy images (1st column) and their color normalized versions using: [41] (2nd column): ISIC 2017 (1st row) and ISIC 2018 (2nd row). 
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iv) Class inference: The two class inference approaches pre-

sented in Section 4.2 are compared to determine if the pre-

dicted state h t conveys sufficient information for the diagno-

sis or if it is beneficial to add context z t to the classification

model. 

v) Model hyperparemeters: The impact of various model hy-

perparameters in the performace of the hiearchical diagnos-

tic system are assessed. In particular, we compare the per-

formance for different values of M (size of the lesion class-

embedding) and P (size of the hidden state h of LSTM). 

We train a hierarchical model for each of the aforementioned

onfigurations, using the ISIC 2017 training set. The validation set

s used for early stopping and selection of the best hyperparame-

ers, while the test set is used to quantify the performance of the

odel. We would like to emphasize that we do not use any exter-

al data set to augment the ISIC 2017 training set. 

The ISIC 2018 data set was used to assess the performance of

he model in a more complex scenario, where there are more types

f non-melanocytic lesions (this data set contains examples of five

ypes of non-melanocytic lesions, while ISIC 2017 contained only

ne). Additionally, we conduct the following experiments: 

a) Varying taxonomy length: The ISIC 2018 data set contains

even classes of skin lesions, five of which are non-melanocytic.

mong the non-melanocytic lesions, one can further split them

nto benign (keratosis, dermatofibroma, and vascular) and malig-

ant (BCC and actinic) lesions, prior to their differential diagno-

is. In order to infer if this additional hierarchical class helps the

odel to learn more discriminative representations of the skin le-

ions, we will compare the following approaches: (i) two level tax-

nomy ( T = 2 ), where two hierarchical decisions are performed

melanocytic/non melanocytic and the differential diagnosis); and

ii) varying length, where the model has first to classify the lesion

s melanocytic/non melanocytic and then, if the lesion is classified

s melanocytic, perform a differential diagnosis (melanoma/nevu),

therwise it should first classify the lesion as malignant/benign

nd only then the differential diagnosis. 

b) Changing the taxonomic order: The taxonomy defined in

ig. 1 has been defined by dermatologists to take into account the

rigin of the lesions as the first splitting criterion. However, of-

en the decision to excise the lesion is based on whether or not

t shows signs of malignancy. Only at the pathologist level will the

esion be diagnosed according to its origin and differential class. To

imic this process and determine its influence on the performance

f the model, we change the order of the hierarchical decisions, i.e. ,

rst classify the lesion and malignant/benign, then diagnose it as

elanocytic or non-melanocytic, and finally perform the differen-

ial diagnosis. 

c) Robustness experiments: Recently, various authors have re-

orted improved performances by augmenting the test set with ge-
metric transformations, such as central crops of different ratios

nd horizontal/vertical flips ( e.g , [42] ), followed by an ensemble

ike classification of the augmented images. Although the results

re promising, it also suggests that the learned models may not be

obust to changes in viewpoint. This is undesirable, since it means

hat the same lesion may be assigned a different label depending

n its acquisition. Thus, we evaluate the robustness of our method

.r.t to: i) performing a horizontal flip on the images; ii) perform-

ng a central crop to get only 80% of the original image; and iii)

emoving the color normalization exemplified in Fig. 3 , i.e. , apply-

ng the model directly to the original image. 

Unfortunately, the ground truth information (i.e., diagnostic la-

els) for the test set of ISIC 2018 is not publicly available. The per-

ormance on this set can only be assessed through an online plat-

orm. To be able to conduct the same training procedure as in the

ase of ISIC 2017, we used 5-fold cross validation on the training

et. Then, each of the five models was used to classify the images

n the test set and the final diagnosis was determined by averag-

ng the scores of the models. 

.2. Model training 

Each of the model’s configurations discussed in the previous

ection was trained end-to-end using a data set I = { I 1 , . . . , I N } ,
or which we have the corresponding ground truth sequences of

ierarchical labels C = { C 1 , . . . , C N } . In order to train the model, we

pply the balanced categorical cross-entropy loss to each training

xample [43] 

 CE (I, C) = − 1 

T 

T ∑ 

i =1 

w C t log p(C t | I, C t−1 ), (8)

here T is the length of the taxonomy of the example, w C t is the

abel-weight, and p(C t | I, C t−1 ) is given by either (3) or (4) . In our

odels, we set T = 2 or 3, i.e. , we either consider two levels in the

axonomy (melanocytic/non-melanocytic and the differential diag- 

osis) or two levels for the melanocytic lesions and three for the

on-melanocytic ones. The label-weights w C t are used to deal with

he severe imbalance of classes in the training set, and are given

y 

 C t = 

# N 

# N c 
, (9) 

here #N is the size of the training set and # N c is the number of

xamples in each class. To ensure that these weights do not influ-

nce the learning rate of the stochastic gradient descent, we nor-

alize the weights in each batch such that they have unit mean. 

Despite being used in classification and captioning problems,

olely relying on the cross-entropy loss may be sub-optimal in our

ierarchical problem, since this loss only penalizes incorrect labels

nd not deviations from the taxonomic structure ( e.g , reaching the
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Table 1 

Comparision of loss functions - best scores on the ISIC 2017 test set using CI1 as inference 

approach. HL stands for hierarchical loss. 

Encoder Lesion class HL SE SP BACC AUC 

VGG-16 MEL/NON-MEL ( #510 / #90 ) 87.2% 76.7% 82.0% 92.4% 

Keratosis ( #90 ) 75.5% 86.9% 70.7% 91.6% 

Melanoma ( #117 ) 63.2% 85.5% 78.8% 

Nevus ( #393 ) 73.3% 82.6% 83.7% 

MEL/NON-MEL ( #510 / #90 ) � 86.9% 74.4% 80.6% 91.6% 

Keratosis ( #90 ) � 74.4% 86.9% 68.8% 90.6% 

Melanoma ( #117 ) � 53.8% 89.2% 78.0% 

Nevus ( #393 ) � 82.6% 78.1% 84.0% 

ResNet-50 MEL/NON-MEL ( #510 / #90 ) 82.1% 80.0% 81.1% 90.2% 

Keratosis ( #90 ) 80.0% 82.3% 67.1% 90.3% 

Melanoma ( #117 ) 48.7% 87.8% 75.8% 

Nevus ( #393 ) 72.5% 82.1% 84.3% 

MEL/NON-MEL ( #510 / #90 ) � 83.1% 80.0% 81.6% 90.3% 

Keratosis ( #90 ) � 80.0% 83.1% 67.8% 90.8% 

Melanoma ( #117 ) � 50.4% 89.0% 77.2% 

Nevus ( #393 ) � 73.0% 79.2% 83.6% 

DenseNet-161 MEL/NON-MEL ( #510 / #90 ) 90.8% 70.0% 80.4% 90.4% 

Keratosis ( #90 ) 68.9% 90.8% 68.5% 90.9% 

Melanoma ( #117 ) 54.7% 88.6% 82.4% 

Nevus ( #393 ) 81.9% 75.8% 87.0% 

MEL/NON-MEL ( #510 / #90 ) � 88.6% 84.4% 86.5% 93.6% 

Keratosis ( #90 ) � 84.4% 88.6% 73.0% 93.3% 

Melanoma ( #117 ) � 55.6% 89.6% 81.7% 

Nevus ( #393 ) � 79.1% 80.2% 86.3% 
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correct differential diagnosis through an incorrect path). To address

this issue, we also propose to use a hierarchical loss function, de-

fined as follows 

L (I, C) = L CE (I, C) + L H (I, C) , (10)

where L H (I, C) is given by the cosine distance 

L H (I, C) = 1 − H · ˆ H 

‖ H‖‖ ̂

 H ‖ 

. (11)

Here H ∈ R 

A is a binary path-vector, A is the set of labels in the

taxonomy tree, and H a = 1 if the a − th label belongs to the taxo-

nomic classification of the lesion. Finally, ˆ H ∈ R 

A is the estimated

path. 

The model is optimized end-to-end using the Adam variation

of the stochastic gradient descent [44] with mini-batches of size

20, using an initial learning rate of 10 −6 , which decays at every

200 epochs. In total, the model is trained for 600 epochs with an

early-stop criterion on a NVIDIA Titan Xp 

1 . The model parameters

are set as follows: M ∈ {50, 100, 300}, and P tuned in the interval

{ 2 8 , . . . , 2 10 } . To improve the generalization of the model, we have

adopted the following strategies: (i) careful initialization of sev-

eral model weights W •; (ii) online data augmentation (a sequence

of random crop, random flip, and random color transformation at

each epoch); and iii) incorporation of dropout with 50% probability

in several of the layers. The carefully initialized weights are those

of the image encoder (CNNs), where we used the weights of the

models pre-trained on ImageNet, and those of the word encoding

E that were initialized from the GloVe embeddings [45] . 

5.3. Model evaluation 

All of the trained model configurations were evaluated using

an independent test set, and the performance was quantified us-

ing the following metrics: sensitivity ( SE ), specificity ( SP ), balanced

accuracy ( BACC ), and area under the curve (AUC). The metrics SE,
1 The source code will be available on https://github.com/catarina-barata/ 

skin-hierarchy/ 

a  

m  

e  

t

P , and AUC are class specific, while BACC is computed over the

ntire data set. 

For the ISIC 2017 data set, we also compare our results with

thers recently reported in the literature. In particular, we estab-

ish comparisons with the results of: (i) Harangi [46] , who com-

ared multiple CNN architectures using the ISIC 2017 data set but

oes not use a hierarchy; (ii) Barata and Marques [28] , who in-

estigated the inclusion of a class-hierarchy in a CNN framework

sing two levels of fully connected layers; and (iii) the top ranked

articipants of the ISIC 2017 challenge. 

. Experimental results 

.1. Ablation studies on ISIC 2017 

In this section, we report the results for the several ablation

tudies described in Section 5.1 . We will report the results of the

tudies as follows. First, we show the results for the analysis of the

oss function for all image encoders, but using only CI1 (3) as the

lass inference method, since the performance for CI2 (4) was sim-

lar. We then evaluate the performance after the incorporation of

he channel attention module, using all of the image encoders. We

lso use this scenario to compare the inference strategies CI1 and

I2. Finally, we select the two best models to perform a detailed

nalysis of the influence of the model parameters: P (the size of

he LSTM hidden layer) and M (the size of the lesion class embed-

ing). 

Hierarchical loss function: Table 1 shows the scores for models

rained using either the cross-entropy loss (8) or the hierarchical

oss (10) . 

By inspecting Table 1 we can observe that enforcing the hier-

rchical structure in the loss function improves the performance

f the models, particularly when ResNet-50 and DenseNet-161 are

sed as image encoders ( e.g. , note the improvement in the BACC

cores). Moreover, if we compare the SE and SP values of the ker-

tosis class (the only non-melanocytic lesion) with those of the

elanocytic/non-melanocytic task, we conclude that only the hi-

rarchical loss (10) guarantees that the model does not violate the

axonomy. 

https://github.com/catarina-barata/skin-hierarchy/
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Table 2 

Comparison of channel attention and inference strategies (termed configuration) - best scores on the 

ISIC 2017 test set. 

Encoder Lesion class Config. SE SP BACC AUC 

VGG-16 MEL/NON-MEL ( #510 / #90 ) 87.1% 86.7% 86.9% 92.4% 

Keratosis ( #90 ) CI1, r = 4 86.7% 87.1% 74.3% 91.6% 

Melanoma ( #117 ) 60.7% 89.7% 80.0% 

Nevus ( #393 ) 75.6% 83.1% 84.7% 

MEL/NON-MEL ( #510 / #90 ) 86.7% 77.8% 82.2% 91.2% 

Keratosis ( #90 ) CI2, r = 2 76.7% 86.8% 70.7% 91.0% 

Melanoma ( #117 ) 58.1% 90.3% 83.3% 

Nevus ( #393 ) 77.3% 78.3% 85.9% 

ResNet-50 MEL/NON-MEL ( #510 / #90 ) 85.3% 80.0% 82.6% 91.5% 

Keratosis ( #90 ) CI1, r = 2 80.0% 85.3% 69.1% 91.3% 

Melanoma ( #117 ) 52.1% 88.0% 77.5% 

Nevus ( #393 ) 75.3% 81.6% 85.9% 

MEL/NON-MEL ( #510 / #90 ) 88.8% 78.9% 83.9% 91.3% 

Keratosis ( #90 ) CI2, r = 2 80.0% 88.8% 70.8% 90.9% 

Melanoma ( #117 ) 53.0% 90.5% 80.2% 

Nevus ( #393 ) 79.4% 75.4% 85.0% 

DenseNet-161 MEL/NON-MEL ( #510 / #90 ) 89.4% 82.2% 85.8% 94.1% 

Keratosis ( #90 ) CI1, r = 2 82.2% 89.6% 73.4% 93.5% 

Melanoma ( #117 ) 59.0% 88.6% 80.0% 

Nevus ( #393 ) 79.1% 81.6% 86.1% 

MEL/NON-MEL ( #510 / #90 ) 93.3% 70.0% 81.8% 92.1% 

Keratosis ( #90 ) CI2, r = 4 68.9% 92.9% 72.2% 91.7% 

Melanoma ( #117 ) 70.9% 85.1% 85.0% 

Nevus ( #393 ) 76.8% 78.3% 85.9% 
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Table 3 

Influence of model hyperparameters: size of 

the hidden state P and class-embedding M . 

Encoder M P BACC 

VGG-16 50 256 72.6% 

50 512 73.0% 

50 1024 73.3% 

100 512 74.3% 

300 512 72.2% 

DenseNet-161 50 256 70.3% 

50 512 73.4% 

50 1024 73.3% 

100 512 71.5% 

300 512 70.9% 

Bold highlights the best results. 
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According to these results, it seems that ResNet-50 performs

orse than the remaining image encoders and that DenseNet-161

eems to be the encoder that better captures the properties of the

arious classes. 

Channel attention and inference approaches: Table 2 shows

he best performances across all models trained with various de-

rees of channel reduction r and inference strategies. 

First, let us compare the results of Table 2 w.r.t to CI1, against

hose reported in Table 1 for the hierarchical loss. Incorporating

hannel attention in the model seems to improve the performance

f all configurations (see BACC scores and the SE for the various

lasses). In particular, channel attention significantly improves the

erformance of the VGG-16 model. This suggests that some of the

hannels contain redundant information and can be discarded. In-

erestingly, the best ratio r seems to be either 2 or 4 and larger val-

es led to a significant performance degradation. This may be due

o the variability across dermoscopy images or to the size of the

raining set, which does not allow the training of larger channel-

ttention modules. 

Between the two inference strategies, CI2 seems to improve the

lassification scores for the melanoma class. However, the perfor-

ance for the remaining classes degrades and some of the de-

isions violate the taxonomy ( e.g. , compare the SP of the non-

elanocytic lesions with the SE of the keratosis class). Thus, we

onclude that it is preferable to use only the state of the LSTM to

nfer the class, i.e. , inference method CI1 (3) . The remaining results

ill be reported for this formulation. 

Model hyperparameters: Table 3 shows a comparison of the

ACC scores for different values of P and W . For simplicity, we limit

ur analysis to the two best performing image encoders: VGG-16

nd DenseNet-161. Both networks seem to achieve better perfor-

ances when the size of the hidden state of the LSTM is P ≥ 512,

hus we opt to use P = 512 to reduce the number of parame-

ers. Regarding the size of the class-embedding M , the two mod-

ls show distinct behaviors. The performance of the model that

ses DenseNet-161 degrades, possibly due to the smaller size of

he activation maps that are obtained with this network (9 × 9

s. 18 × 18 for VGG-16) and significantly higher number of filters

 D = 2208 vs. D = 512 for VGG-16). 
l  
.2. Qualitative assessment of attention modules 

In this section, we visualize the channel and spatial attention

aps obtained using the VGG-16 and the DenseNet-161 based

odels. For the sake of simplicity, we will not discuss the model

ased on ResNet-50, since this was the encoder that achieved the

orst overall performance. The discussed examples are all from the

SIC 2017 data set. 

Figs. 4 and 5 show the spatial attention maps obtained with

GG-16 and DenseNet-161 as image encoders. Two observations

an be made regarding the attention maps: i) VGG-16 (top maps)

eads to more detailed maps, although it achieves slightly worse

iagnostic performances; and ii) both models “attend” to regions

hat are relevant for the medical diagnosis and are able to show

egions of interest, even when the lesion is difficult to distinguish

rom the surrounding skin (see the keratosis example on Fig. 4 ). To

nderstand the importance of the regions identified by the mod-

ls, we can take a closer look at the melanocytic images. In both

xamples, the models “attend” to areas that contain a dermoscopic

tructure called pigment network, which is considered to be one

f the hallmarks of melanocytic lesions [15] . As its name sug-

ests, pigment network consists of a mesh of dark lines over a

ighter background. In Fig. 4 , the pigment network areas are lo-
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Fig. 4. Correctly diagnosed skin lesions from ISIC 2017 test set and the correspond- 

ing spatial attention maps for the following image encoders: VGG-16 (top maps) 

and DenseNet-161 (bottom maps). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Highest probability activation maps (channels) for a correctly diagnosed ne- 

vus. The maps for VGG-16 and DenseNet-161 and their corresponding probabilities 

are shown on the left and right columns, respectively. 
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cated near the border of the two melanocytic lesions. Pigment net-

work may also be used to diagnose skin lesions, as a network with

an atypical shape (enlarged and irregular lines) is taken as a sign

of melanoma. This may justify why a benign lesion was diagnosed

as melanoma in Fig. 5 (left), since both networks select one of the

regions with atypical network, to perform the differential diagno-

sis. 

Spatial attention may also be very useful to help us identify

bias in the data set, as is exemplified in Fig. 5 (right). Several ker-

atosis images from the ISIC 2017 data set contain illumination ar-

tifacts that were detected by the attention modules, allowing the

model to learn incorrect features from the data. 

Fig. 6 shows a comparison between the three channels with

the highest weights β t (computed using (5) ), for VGG-16 and

DenseNet-161. To improve the visualization, we expanded the

channel activation maps to the size of the original dermoscopy im-

age, The maps from VGG-16 seem to capture more localized in-

formation than those from DenseNet-161. This may be due to the

properties of the two networks, since in DenseNet, the maps from

top layers are propagated to the deeper ones. Nonetheless, in both

cases it is possible to see that the networks extract information

related with the surrounding skin, the border of the lesion and its

center, and the presence of hair. These findings confirm those re-

ported by Van Simoens and Dhoedt [18] , who observed that the

convolutional layers were sensitive to several visual cues, includ-

ing the aforementioned ones. 

6.3. Comparison with other works 

Table 4 compares our best performing ISIC 2017 models to var-
ious state-of-the-art methods. ISIC 2017 data set was released as e  

Fig. 5. Incorrectly diagnosed skin lesion (left) and data set bias (rights), and their correspo

and DenseNet-161 (bottom maps). 
art of a challenge, thus most of the works in the literature only

eport performance scores for the melanoma and keratosis classes,

hich were the metrics used to rank the participants. For compar-

son purposes, we also adopt those metrics. Additionally, we report

wo criteria that may influence the performance of the models: (i)

nsembles of networks; and (ii) augmenting the training set with

xternal data. 

By comparing the scores of our hierarchical models with flat

odels that use the same CNN architecture and do not use ex-

ernal data [28,46] , we are able to see that imposing a hierarchi-

al diagnosis leads to impressive improvements in the performance

f the model, since SE and SP scores for both classes are signifi-

antly higher for all of our models. When external data is used for

raining (see [17] ), the flat model performs better than our hierar-

hical approach (see the results with ResNet-50). Nonetheless, our

pproach is still able to achieve a competitive performance, using

ess training data. Once again, this suggests that imposing a hier-

rchical decision process allows the training of more generalizable

odels. 

The methods that ranked in the first four positions of the ISIC

017 challenge used external data to train the models. Moreover,

hree of these works also adopted an ensemble strategy to predict

he final diagnosis. When we compare our score with theirs, it is

ossible to see that only the top ranked method achieved better

E scores. Ensembles may be used to improve the representation

ower of a model by combining the capabilities of different CNN

rchitectures. Our results suggest that imposing a hierarchical di-

gnosis allows a single architecture to learn better representations

f the various lesion classes. 

A final comparison can be made between the proposed mod-

ls and the hierarchical approach of [28] , which sequentially adds
nding spatial attention maps for the following image encoders: VGG-16 (top maps) 
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Table 4 

Comparison with other works on the ISIC 2017 test set. The table is organized by CNN architecture and the 

methods identified with numbers correspond to the methods that ranked in the first four positions in the 

ISIC 2017 challenge. 

Melanoma Keratosis 

CNN/Work Ens. Ext. Data SE SP AUC SE SP AUC 

VGG-16 [46] N N 25.6% 58.5% 76.6% 61.1% 68.6% 82.5% 

VGG-16 Ours N N 60.7% 89.7% 80.0% 86.7% 87.1% 92.4% 

ResNet-50 [46] N N 38.5% 43.7% 75.7% 65.6% 75.9% 86.1% 

ResNet-50 [17] N Y 65.8% 89.6% 87.5% 87.8% 86.7% 95.8% 

ResNet-50 Ours N N 52.1% 88.0% 77.5% 80.0% 85.3% 91.3% 

DenseNet-161 [28] N N 46.1% 92.5% 81.8% 77.8% 90.5% 92.1% 

Hier. DenseNet-161 [28] N N 35.9% 94.2% 80.0% 71.1% 90.9% 90.8% 

DenseNet-161 Ours N N 59.0% 88.6% 80.0% 82.2% 89.6% 93.5% 

#1 [40] Y Y 73.5% 85.1% 86.8% 97.8% 77.3% 95.3% 

#2 [40] N Y 10.3% 99.8% 85.6% 17.8% 99.8% 96.5% 

#3 [40] Y Y 54.7% 95.0% 87.4% 35.6% 99.0% 94.3% 

#4 [40] Y Y 42.7% 96.3% 87.0% 58.9% 97.6% 92.1% 

Table 5 

Classification scores on the ISIC 2018 test set using different taxonomies: a) T = 2 two-level taxonomy (melanocytic/non- 

melanocytic and differential diagnosis); b) T = 3 three-level taxonomy (melanocytic/non-melanocytic and benign/malignant 

for non-melanocytic lesions, prior to the differential diagnosis); c) Inv. inverted taxonomy (malignant/benign followed by 

melanocytic/non-melanocytic and differential diagnosis). 

T = 2 T = 3 Inv 

Lesion class SE SP BACC AUC SE SP BACC AUC SE SP BACC AUC 

Melanoma 57.3% 93.1% 72.3% 87.7% 67.8% 90.1% 72.6% 86.1% 59.1% 94.6% 71.7% 88.9% 

Nevus 83.9% 93.0% 96.2% 82.0% 93.7% 96.1% 89.4% 89.7% 96.0% 

BCC 75.3% 98.0% 97.7% 74.2% 98.4% 98.5% 76.3% 98.4% 98.3% 

Actinic 55.8% 99.2% 96.3% 60.5% 99.5% 95.5% 62.8% 99.0% 95.6% 

Keratosis 76.0% 95.8% 95.0% 72.8% 96.6% 94.4% 76.0% 95.8% 94.6% 

Derm. 63.6% 99.7% 98.1% 68.2% 99.8% 97.2% 68.2% 99.8% 96.7% 

Vascular 60.0% 99.7% 97.7% 57.1% 99.7% 98.5% 62.9% 99.8% 97.8% 

Average 67.4% 96.9% 97.7% 69.0% 96.8% 95.2% 70.7% 96.7% 95.4% 
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2 Source: https://challenge2018.isic-archive.com/ 
ully-connected layers to make hierarchical decisions. The proposed

pproach outperforms the one presented in Barata and Marques

28] , suggesting that an LSTM is more suitable for hierarchical clas-

ification. 

.4. ISIC 2018 - more classes and robustness 

Table 5 shows the best performances on the ISIC 2018 test

et, using different taxonomic lengths and orders. These results

ere obtained with the following configuration (selected by cross-

alidation): DenseNet-161 as the image encoder, channel ( r = 2 )

nd spatial attention, and CI1 for class inference. Since the ground

ruth diagnosis is not publicly available, it is not possible to evalu-

te the model on the other hierarchical decisions for the test set. 

Similarly to what was observed for the ISIC 2017 data set,

elanoma remains one of the most challenging classes. This was

xpected, as this type of skin cancer often mimics other types

f lesions [15] . The other difficult classes are actinic, dermatofi-

roma, and vascular, while the model is able to achieve good per-

ormances for nevus, keratosis, and BCC. Actinic, dermatofibroma,

nd vascular lesions correspond respectively to 3.3%, 1.2%, and 1.4%

f the training set, which is an extremely imbalanced scenario.

evertheless, although we do not conduct any form of data aug-

entation, our approach is still able to achieve sensitivities above

0% for each of the minority classes. 

It is possible to appreciate the influence of a hierarchical struc-

ure in the performance of the system by comparing several taxo-

omic configurations. Just by increasing the taxonomic level from

 = 2 to T = 3 we are able to significantly improve the diagnos-

ic performance for two of the malignant classes (melanoma and

ctinic), while the performance for BCC remains almost the same.

here was also a slight improvement on the BACC score, as well as
n the average SE for all the classes. If we modify the taxonomic

rder, it is possible to improve the performance for almost all le-

ion types, when compared with T = 2 . However, this configuration

eads to poorest melanoma scores than T = 3 , which is undesirable

s melanoma is a very aggressive form of cancer, as well as worse

ACC . Analyzing the channel and spatial attention maps of the le-

ions that were incorrectly classified could allow us to further un-

erstand the performance differences among for the various taxo-

omic configurations, but unfortunately we do not have access to

he ground truth labels for the images on the ISIC 2018 test set. 

Similarly to ISIC 2017, in this case it is also possible to compare

ur results with those reported in the literature. The BACC scores

or the ISIC 2018 test set fall in the range [13.2%, 88.5%], 2 which

learly shows how challenging this problem is. As in the case of

he ISIC 2017 challenge, several of the best performing methods are

arge ensemble models that were trained with augmented versions

f the original training set, which is not the case for the proposed

pproach. 

In order to evaluate the robustness of the method to viewpoint

nd acquisition changes, we applied the model with T = 3 to trans-

ormed versions of the test set, as described in Section 5.1 . The

esults are shown in Table 6 . The sets with geometric transfor-

ations lead to slight improvements over the BACC score for the

riginal set, but the performances remain fairly similar for all le-

ion types. On the other hand, removing the color normalization

as a significant effect on the performance of the model: the SE

or keratosis and vascular lesions drop drastically, while the SE for

elanoma increases. Although we have conducted a form of data

ugmentation that used random color transformations to improve

he robustness of the network, this result suggests that the fea-

https://challenge2018.isic-archive.com/
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Table 6 

Classification scores on the modified ISIC 2018 test sets. 

Flip 80% Central crop Non-normalized images 

Lesion class SE SP BACC SE SP BACC SE SP BACC 

Melanoma 67.8% 88.7% 73.2% 60.2% 93.0% 73.1% 83.0% 76.9% 66.6% 

Nevus 80.2% 95.4% 84.5% 91.7% 74.1% 93.9% 

BCC 75.3% 98.4% 77.4% 98.0% 76.4% 98.2% 

Actinic 58.1% 99.6% 69.8% 98.6% 62.8% 99.1% 

Keratosis 74.2% 95.3% 67.7% 97.3% 33.6% 99.5% 

Derm. 70.5% 99.7% 65.9% 99.8% 56.8% 99.9% 

Vascular 65.7% 99.8% 60.0% 99.7% 48.6% 99.7% 
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tures extracted by CNN are color sensitive. These results confirm

the findings of other works in the literature, such as [47] , who

found out that color normalization has a positive impact on the

performance of CNN. Two relevant points come out of this experi-

ment. First, it is important to standardize the color of dermoscopy

images through normalization. Second, future work should address

the perception of color by CNNs, in order to make them more ro-

bust to color changes. A few works investigated the sensitiveness

of CNNs to color using real images. However, to the best of our

knowledge such a study is still missing in the dermoscopy field.

Based on our experimental findings, we believe that this is a nec-

essary direction, in order to improve the safety of the method. 

The explainability of our model can be used to understand the

aforementioned performance differences. Thus, we selected two

examples from one of the cross-validation data sets: one that is
Fig. 7. Examples from the ISIC 2018 data set (top row) and corresponding ge- 

ometric transformations: horizontal flip (2nd row), 80% central crop (3rd row), 

and without color normalization (4th row). The first lesion is consistently diag- 

nosed as “Melanocytic Melanoma”, while the second is always diagnosed as “Non- 

Melanocytic”, but as “BCC” for the first two cases and as “Vascular” in the last two 

transformations. We also show the spatial attention maps and the most probable 

activation map for each of the decisions. 
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onsistently diagnosed as melanoma and another that is diagnosed

s BCC for the original and flipped images, and as vascular for

he remaining transformations. For each of the examples, we in-

pected their spatial attention maps as well as the most proba-

le activation map given by channel attention. Fig. 7 shows the

esults, for simplicity we only show the maps for two of the de-

isions: melanocytic/non-melanocytic and the differential diagno-

is. In all of the scenarios, the decision between melanocytic/non-

elanocytic is made taking into account the skin that surrounds

he lesions, as shown in the corresponding spatial attention maps.

he spatial maps for the differential diagnosis are consistent across

ransformations, i.e. , on the left example the model consistently

attends” to the darkest regions, while on the right example it fo-

uses on the blue-oval area. The main difference lies in the se-

ected channels. These maps show activations significantly differ-

nt from those obtained for the original image (1st row), demon-

trating the lack of robustness of the CNN architecture to these

ransformations. 

. Conclusions 

This paper proposes a diagnostic model for dermoscopy images

hat: (i) uses a multi-task network to perform a hierarchical di-

gnosis of skin lesions; and (ii) provides visual information to ex-

lain the diagnosis. By leveraging these two factors, we achieved

ompetitive results on two state-of-the-art dermoscopy data sets

ISIC 2017 and 2018), without the need to augment the training

ata with external or artificially generated data and without us-

ng CNN ensembles. The experimental results show that the model

an identify clinically relevant regions in the images and use them

o provide a diagnosis. Additionally, the model explainability helps

nderstand how changes in the viewpoint influence classification

erformance. Both factors also reveal new directions of research

hat can make CNNs safer to be applied in clinical practice. 

In future work, we would like to extend our model to interpret,

rom a medical perspective, the regions highlighted by spatial at-

ention. Additionally, we would like to improve the robustness of

he features extracted by the CNNs, to make the CADS fully invari-

nt to acquisition conditions. 
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