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Abstract

This thesis addresses video-based multi-person, multi-label, spatiotemporal action detec-

tion and recognition. This is a challenging problem because each person can be performing

several actions at the same time (e.g. talking and walking), and simultaneously other ac-

tors can be performing different actions. We claim that these are problems where the use

of contextual information (e.g. semantic descriptions of the scene) may lead to signifi-

cant performance improvements. In this work, we develop several approaches to tackle

this problem and validate them in challenging datasets. We propose a framework to in-

tegrate and test multiple sources of contextual information in video-based multi-person,

multi-label, spatiotemporal action detection and recognition. We highlight six contribu-

tions, and that are collected in three publications (at different stages of publication at the

time of this writing). The first contribution is a proposed Multisource Video Classification

(MVC) framework that allows the combination of several sources of context information,

for which we consider four types: actor centric input filtering (a way to focus attention

on the actor under analysis but still gather appearance information from the neighbor-

hood), semantic neighbor context (a way to inform the model with the actions performed

by nearby agents), object detection (how objects interacting with the actor can inform about

its action) and pose data (how high level features extracted from the actor can help the clas-

sification process). The second contribution is a foveated approach to actor centric filtering

for input selection that weights the appearance information in a decreasing way, from the

center to the periphery of the actor bounding box. The third contribution is a novel encod-

ing for the semantic neighbor context and its custom classifier with spatial and temporal

dependence. The fourth is a custom Hybrid Sigmoid-Softmax loss function for the multi-

class/multi-label case, that combines the cross-entropy loss typical of multi-class problems

with the sum-of-sigmoids loss used in the multi label case. The fifth is the application of

the developed methods to a challenging dataset with a large number of videos with mul-
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tiple agents performing multiple actions, with 80 heterogeneous and highly unbalanced

classes. To allow research with reasonable computer power, we have created the mini-

AVA, a partition of AVA that maintains temporal continuity and class distribution with

only one tenth of the dataset size. The sixth contribution is a collection of ablation studies

on alternative actor centric filters and semantic neighbor context classifiers. From this re-

search we achieve a relative mAP improvement of 18.8% using our foveated actor centric

filtering, relative mAP improvement of 5% using our semantic neighbor context embed-

ding and models, and a relative mAP improvement of 12.6% using our custom Hybrid

Sigmoid-Softmax loss.
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Chapter 1

Introduction

This thesis focuses on action detection in video. We propose a new approach to this classi-

fication task by attempting to insert contextual information in the classification procedure

to increase performance at a reduced computational cost increase. In this introduction

chapter, we first describe why this task and approach are important in Section 1.1. We

then explain some essential topics for the action detection task in Section 1.2. Following

that, we explain the approach that will be discussed in this thesis in Section 1.3. We list the

contributions from this work in Section 1.4 and conclude the introduction by describing

the thesis outline in Section 1.5.

1.1 Motivation

Recently, video based action detection and recognition has been the main focus of many re-

searchers and companies. Its diverse applications in fields like robotics (e.g. identify agents

to interact with), self-driving cars (e.g. identify pedestrians) and surveillance/security (e.g.

predict actions)4 are certainly driving significant efforts. This could be also attributed to

the ever increasing computational power availability coupled with the surfacing of bigger

and more complex datasets5 3. As the complexity in the action labelling description in-
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creases, the computational cost of state-of-the-art classification model becomes prohibitive.

With each agent being allowed to perform more than one action at once, the complexity of

the output space becomes exponential in the number of actions considered. In this thesis,

we address the problem of action detection and recognition in video in scenarios where

each subject may be performing several actions at once, with an arbitrary amount of peo-

ple simultaneously, dubbed Multi-Label Multi-Person Action Detection and Recognition.

We study and test how to extract and leverage auxiliary information from video, called

context. The main goal is to determine how to leverage this information, how to identify

it, and how to rank it in accordance with its cost-benefit trade-off (i.e. its computational

cost vs its performance increase).

1.2 Topic Overview

In this section, describe fundamental topics that this thesis hinges on are described. First,

we make the distinction between the Action Recognition and Action detection Tasks. Then

the differences between Multi-Class and Multi-Label Classification are explained. We then

explain the basic concepts behind Convolutional Neural Networks, followed by an expla-

nation of how sequential classification differs from non-sequential classification.. Follow-

ing that the Multi-Label Multi-Person Spatiotemporal Action Detection and Recognition

tasks are explained. Finally, we discuss the concepts of appearance context and semantic

context.

1.2.1 Action Recognition vs Action Detection

Action recognition6 (also called action classification) pertains to the task of matching one

video to the label that best describes the action being performed. Typically, the video

has been trimmed to show the relevant action and nothing else (see Fig. 1.1 (a) ) . In

action detection, the number of actions and number of agents performing those actions

2



are not determined a priori. In fact, even a single agent might be performing more than

one action. There might also be sections of the video (in either the space domain or the

time domain) in which no action is being performed. The goal of action detection6 is not

only to ascertain which actions are being performed, but also to match them with their

spatial and/or temporal boundaries. The spatial boundaries are usually in the form of

a bounding box (see Fig. 1.1 (b)), selecting the region of the image/video in which the

target is enclosed. The temporal boundaries are usually in the form of a time window

inside which the detected action is being performed (see Fig. 1.1 (c)). In action detection

tasks, videos are usually untrimmed, either containing more than one action being shown

(in this case the classifier must identify each action and its temporal bounding boxes) or

segments of video with no action of interest (in this case, the classifier must identify in

which segments actions of interest are being depicted) or all of those at the same time (i.e.

multiple actions per videos with segments with no actions as well). This task is intrinsically

more complex, as it demands a superset of information to be provided on the output: not

only must the classifier determine which action is being depicted it must also determine

when (temporal boundary) and where (spatial boundary) it was detected.

(a) Example action recogni-
tion

(b) Example action spatial
detection

(c) Example action temporal
detection

Figure 1.1: Real examples illustrating each type of task. Adapted from https://
ghassanalregib.com/demos/, http://www.bu.edu/ids/research-projects/
action-recognition/ and https://www.researchgate.net/figure/
An-example-of-temporal-action-detection respectively.
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Figure 1.2: Examples of Multi-Class and Multi-Label classification scenarios. In the Multi-
Class scenario each sample is attributed one of C labels. The label space is of size C. In
the Multi-Label scenario each sample is attributed any combination of labels. The la-
bel space is of size 2C . (Adapted from https://gombru.github.io/2018/05/23/
cross_entropy_loss/)

1.2.2 Multi-Class vs Multi-Label tasks

The most common supervised learning scenario is the Multi-class setting. In a problem

with C classes, the Multi-Class task needs only to determine which of the C classes should

be attributed to a given input. As such, there are C possible output scenarios to be consid-

ered. However, in the Multi-Label the space of possible label outputs increases greatly. For

a problem with C classes,the label space is comprised of its power set (i.e. the label space

is comprised of the combination of all possible groups of labels) which spans 2C options.

In Fig. 1.2 an example is shown of the difference in labelling complexity.

1.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) appear as an approach to do classification on im-

ages/video. These media are extremely high-dimensional inputs, and fully connected net-

works scale very poorly on input size, becoming intractable quickly. As a quick example,

if the input were to be an image of size 150 x 150 pixels, that would equate to 22500 in-

puts. If the image has color, that amount triples (because it would have three channels:

4
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red, green and blue). If we add the time dimension (going from a single image to video)

then we have to also multiply that by the number of frames. Finally, in most Neural Net-

work based architectures several layers are employed. It is easy to see how the number of

parameters skyrockets in this application. CNNs approach these problems by employing

local connectivity, parameter sharing and pooling/subsampling to deal not only with the

high dimensionality problem, but also to exploit the underlying 2D (3D for video) topol-

ogy of pixels (i.e. a pixel’s positional relationship with its neighboring pixels) as well as

invariance properties that can be expected (e.g. translation invariance, changes in illumi-

nation). The local connectivity property relates to the fact that the weights in a CNN are

not connected to all of the input, rather being connected only to a subsection of it, called

the receptive field. Note that the same receptive field is used across all channels (for ex-

ample, if a hidden unit is connected to the top left corner of a color image, it will receive

as input the top left corner of all three color channels of that image). This property greatly

reduces the total number of parameters necessary for the model. These weights are called

the kernels of the CNN. Parameter sharing refers to the fact that each kernel is going to be

used with the same weights several times across the input. For each kernel employed, the

same weights are going to be convoluted across the image, forming a feature map. Finally

pooling/subsampling layers simply take a feature map, and reduce its dimension. The

most common pooling layer is max-pooling, in which only the maximum value within a

given window is preserved and the rest is discarded. This further reduces the number of

parameters of these models.

An example of how a CNN works is now shown. Let nC denote the number of channels

in the input, and f denote the size of our square kernel. Each kernel has then f ⇤ f ⇤ nC

parameters. Let nK be the number of kernels. Let W be the width of the input image and

H be the input height.

In Fig. 1.3 is an example where the input has only one channel, so its dimension is W =

5



Figure 1.3: Example of a simple CNN architecture. Taken from
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53

28, H = 28, and the full input dimensions are 28⇥28⇥1. The number of kernels is nK = n1

and the kernel size is 5 ⇥ 5 ⇥ 1. (Since the number of channels is one it will be ommitted

for clarity). The size of each dimension of the output is calculated as D�F+2⇥P
S + 1, where

D is the dimension of the input currently being used, F is the dimension of the kernel, P

is the amount of zero padding used ( how many zeros are added to the input. In this case,

zero, also called valid padding ) and S is the stride (in this case, one). Since in this case

both the input image and the kernel are square, the dimension of the output of one kernel

convolution in the first layer is 24x24. Stacking all n1 kernels, we get the 24 ⇥ 24 ⇥ n1

dimension found in the image.

In typical CNN architectures, convolution layers are followed by pooling layers, and

this is repeated for as many times as desired. Near the output layers the feature maps are

flattened into a vector (see Fig 1.3) to be classified by fully connected output layers. The
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early layers of this type of architecture are capturing the feature map activations (calculat-

ing where each kernel is activated in the image to extract patterns), with increasingly more

complex patterns being captured as the layers get deeper in the architecture (simple edges

and shapes in the early layers vs a face or an eye in late layers, for example).

1.2.4 Sequential Classification

Sequential classification introduces the notion of memory to classification systems. Instead

of taking pairs of inputs/outputs and processing them by themselves, sequential classi-

fication methods retain a representation of past learning instances and use it to inform

the current classification task. This is achieved in several different ways, e.g. in Hidden

Markov Model (HMM)7 the transition probabilities between two output states is learned,

and the current classification step is a function of the last output state in addition to the

current input. In Recurrent Neural Network (RNN)8 an internal representation of all the

classification steps done so far is kept and used to inform each new classification instance.

One distinction that is important to make is Sequence Classification vs Sequential Clas-

sification. This is best done using an example: a classifier that received a video volume

(i.e. a sequence of frames) as input, and classifies it (e.g. a 3D-CNN) is not performing se-

quential classification, it is merely classifying a sequence. Sequential classification requires

past classification instances to have an influence on the current classification instance, via

the concept of memory. Classifying one sequence taking into account nothing but that

sequence is not enough.

The sequential classification paradigm comes naturally when doing classification in

any task that includes a time domain, like action classification in video. It is intuitive to

expect past actions to be pertinent in determining current actions.

When dealing with long sequences, propagating internal states through long chains of

timesteps can lead to a hard to balance problem: How much influence should information
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Figure 1.4: Internal structure of an LSTM cell. Adapted from1

that was processed a long time ago have over the current classification step? Classical

RNN architectures simply let its influence decay across time. Long short-term memory

(LSTM)9 architectures possess internal gates that model the internal representation learned

to discern what to forget and what to remember.

In Figure 1.4 an example is shown of the internal structure of an LSTM cell, along with

the equations used to calculate the internal state propagation, where xt is the input re-

ceived at timestep t, ht�1 and ht are the internal states at timesteps t�1 and t, respectively.

Ct�1 and Ct are the cell states used to calculate the internal states using the equations that

will be explained shortly. ft is the result passed by the forget gate. This gate consists of a

sigmoid layer that combines the input xt and the previous internal state ht�1 using learned

weights (Uf and W
f ) to determine which information to forget (i.e. which entries to delete

from the cell state vector). This is shown in the second equation in Figure 1.4. This is the

gate responsible by learning which information found in the past no longer has predictive

power for current and future classification steps (a unique feature of LSTM architectures).

The following step is to decide which new information is saved in the next cell state Ct.

This process has two steps. First, the input gate decides which entries in the cell state

should be updated using a sigmoid function receiving the input (xt), the previous internal
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state (ht�1) and learned weights (U i and W
i). Then, the candidate values to be inserted

are calculated using a hyperbolic tangent function using the same values but with separate

weights. (equations one and four in 1.4). Then, the new cell state is calculated by forgetting

the valued defined by the forget gate and refreshing the values defined by the input gate

(equation five in 1.4). This cell state will be passed to the next LSTM unit classifying the

next timestep. Finally, the output has to be calculated. Note that the output is used both

as an output for deeper layers (the upward ht arrow in 1.4) but also as the next internal

state (the ht arrow pointing right in 1.4). The output is calculated using a gate that applies

a sigmoid function to the input (xt) and previous internal state (ht�1) along with learned

weight matrices U
o and W

o (see equation three in 1.4). The output is then calculated by

multiplying the values found by this gate with a hyperbolic tangent function applied on

the new cell state Ct.

The weights learned to model how the internal and cell states decide which informa-

tion to store and which information to delete are a property unique to LSTMs. These

weights and gates are what allow LSTMs to classify long sequences without vanishing

gradient problems regarding long term dependencies in input data sequences.

1.2.5 Multi-label Multi-Person Spatiotemporal Action Detection and Recogni-

tion

With the previous topics defined, the task that is tackled in this work can now be defined.

Action Recognition has the goal of matching one video with one label. In this task,

the goal is to identify the action being shown. Given the same video, the goal of action

detection would be to determine the actions being performed, but also when (in which

frames?) and where (in which pixels?). This task deals with untrimmed videos, where

discerning in which segments of the video the action is being performed is also part of the

task.
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If the video does not have the constraint of having only one person the task now be-

comes more complex, since more than one action must be identified, along with its cor-

responding time and space segmentations. If each person is allowed to perform multiple

actions the problem becomes multi-label.

So, for the multi-person, multi-label, spatiotemporal action detection and recognition

task in video, the goal is to receive as input a video, and to return a list of actions cou-

pled with bounding boxes in both space and time, depicting every action of every person

depicted in the video.

1.2.6 Appearance Context and Semantic Context

The term context is severely overloaded, and its use is widespread among different appli-

cations. Just in the action recognition/detection community it is used to represent vastly

different concepts, and a clear cut definition is not available. For example, while Sun et al.10

and Zhang et al.11 both use context (in action recognition) to refer to motion descriptors,

Liu et al.12 use it to refer to the hidden state of an LSTM trained on Skeleton data. Wu et al.13

use context to mean feature descriptors learned from Gaussian Mixture Model (GMM).

Han et al.14 use the word context to refer to a description of the objects present in a scene.

Although these definitions do not match, their meaning can be inferred to mean any in-

formation that can be extracted from video data that is not the actual pixel values.. This definition

agrees with the usage in all of the works mentioned above, as well as our own usage. We

define context to mean whichever information can be extracted from the raw RGB pixels

to aid in the classification procedure.

In this thesis, two types of context to use in Action Detection are studied: Appearance

Context and Semantic Context. IWedenote appearance context as the information that

can be leveraged by manipulating the RGB frames from video to establish a hierarchy

between regions. Specifically for Action Detection, a task that is largely human-centric,
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Appearance Context is used to direct the classifiers to the regions on interest in the input

space,i.e. the humans performing the actions to detect. In particular, in the multi-person

scenario, directing classifiers to the regions of interest for the current classification task

yields significant performance gains.

Semantic Context leverages the information that can be extracted from the actions that

do not belong to the classification target. In the multi-person scenario, where multiple peo-

ple are performing actions that must be detected, the actions depicted in proximity may be

related. A richer input description of the target can be obtained by informing a classifier

of the action universe surrounding the target. Due to the fact that this representation is se-

mantic (i.e. using an embedding), this classification approach has a very low-dimensional

input space, making it very light in computational requirements, while possessing signifi-

cant predictive power.

1.3 Approach

The scrutiny of the video understanding community on the action detection task shows

not only the many applications of developing an accurate human action centric classifier,

but also the complexity of the task. It is far from a solved problem, where even the most

computationally intensive models exhibit modest performance. The multi-person multi-

label constraints introduced by this type of task come aggregated with challenges like high

output dimension (see Section 1.2.2, actions that are harder to distinguish (e.g. picking up

an object vs putting down an object3), and requiring a more detailed understanding of the

video than the action recognition problem (i.e. having to determine a multitude of actions

per video, as opposed to classifying the high level thematic of the video15).

When ImageNet16 appeared, image classification performance increased dramatically.

The features learned from data greatly outperformed hand-crafted features and the meth-

ods in the state-of-the-art quickly converged to CNNs. However, such a dramatic paradigm
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shift has yet to be discovered for the video understanding problem17. 3D-CNN models18 19

are currently the approach with the best performance, but the gap between data-driven

feature extraction and hand-crafted features is surmountable. Also, the performance of

2D-CNN models applied to still video frames shows competitive performance with 3D-

CNN’s, despite not incorporating any type of temporal information modelling. Further-

more, 2D-CNN models have fewer parameters to train, making them computationally

more tractable. Architectures such as two-stream 2D-CNN’s (20), that take RGB and Op-

tical Flow as input, offer a good balance between having temporal information encoding

on optical flow along with RGB frames, but still not requiring the immense computational

power that 3D-CNN models need.

However, recent datasets like the AVA dataset3 have increased the complexity of the

video understanding task by providing multiple persons and labels per video instance,

making it a Multi-Person, Multi-label Spatiotemporal Action detection problem (See Sec-

tions 1.2.2 and 1.2.4). The increase in difficulty posed by these new datasets is exemplified

in Table 1.1.

mAP@0.5IoU UCF101-24 (2013) JHMDB (2013) AVA (2018)
Action Detection 76.3% 76.7% 15.6%
Actor Detection 84.8% 92.8% 75.3%
Gap 8.5% 16.1% 59.7%

Table 1.1: Taken from3. In the results in this table we can not only see how much more
challenging the action detection task is in the AVA dataset, the only one of these three
that imposes Multi-Label, Multi-person constraints. In addition to that, the actions to be
detected in the AVA (e.g. opening a door) dataset are much more granular than those in
UCF101-24 (e.g playing bowling)

We highlight from the information in Table 1.1 that the increase in difficulty is mainly

on the action detection task, and not on the actor detector task. We use this as motivation

to focus on the action detection task, and leave the actor detector task to other works.

As the action labels get progressively more granular (i.e. holding an object vs playing
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basketball) the use of extra sources of information (named context in this domain) is a

promising way to improve classification, as proven by our experiments.

The use of context is very promising as a way to improve classification without in-

volving the training of new network architectures for feature extraction. This allows for

a performance increase at a relatively cheap computational cost. As the action detection

task includes more than one subject simultaneously, the classification procedure now is

burdened with an extra constraint: in the input (e.g. an RGB frame or an RGB volume)

there will be regions that pertain to one target, and regions that do not. Let there be two

people in an RGB volume that are performing two different actions. Not only must the

classifier detect which actions are being performed, it must also determine which regions

of the input will be useful for the classification task (i.e. where is our target performing

the action we are interested in detecting) and which regions will lead the classifier awry

(i.e. where are the actions that are not helpful for the classification task). To have different

regions of the input space showcasing different output options is a challenge unique to

action detection, not found in action recognition. The difficulty in data region selection is

a limitation found on state-of-the-art two-stream CNN approaches.

In this thesis, the approach of using context to aid state-of-the-art classification is pro-

posed. The main advantages of this approach are threefold: 1) the performance increase

comes at almost no extra computational cost (since it implies no extra training or extra

layers in the classifiers), 2) this approach can be inserted into almost all the state-of-the-art

architectures (the use of extra information can be used in conjunction with the state-of-

the-art approaches), 3) the classification step is done by leveraging more information than

using only RGB or RGB and Optical Flow. However, it is still unclear where to source

context, and a reliable way to test context sources is not available. Without knowing if a

context source has predictive power, it is unwise to include it in a system, only to have

it yield worse performance. Also, if it does indeed have predictive power, is the perfor-

13



mance/computational cost trade-off favourable?

We address both the context source testing and data region selection problems. For the

context source testing problem we propose our Multisource Video Classification (MVC)

framework, a flexible over 20 different possible configurations), extensible (more context

sources can be added without re-structuring), modular (each context source can be com-

bined or isolated independently) framework. Two context sources are combined together

in experiments: Appearance Context, and Semantic Neighbor Context.

For data region selection we propose that our Appearance Context be used with CNN

based classifiers. Our Appearance Context is based on actor centric filtering, and ensures

that the classification models we employ use more detailed information in the location of

the target than in the surrounding background. This way, in the classification step, data

that pertains to the target action is highlighted and everything else is demoted to back-

ground. Suppose that in one single RGB frame two people are present. One person is

watching TV and the other person is reading a newspaper. If attempting to simultane-

ously classify this scenario, pixels that depict the person watching TV do not help in clas-

sifying the ”reading a newspaper” action. Likewise, pixels depicting the newspaper do

not help in classifying the ”watching TV” action. Our appearance context filters highlight

the relevant pixels for the current classification step and downplay all others. This avoids

”cross-contamination” of the classification step by other actions being depicted.This is par-

ticularly useful in cases where different actors performed different actions at the same time.

This mechanism addresses the difficulty in data region selection directly.

Our Semantic Neighbor Context approach is a semantic classification procedure. This

is a classification step that uses an embedding and network architecture we designed, and

attempts to classify the actions of the target based on the actions of other people in the

video (i.e. his neighbors). The intuition behind it is: if there is more than one person

performing (at least) one action in a video, then those actions might be related. Know-
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ing the action of the neighbor(s) of our target might inform our classification procedure

about the actions of our target. An easy example is found considering a video of two peo-

ple talking. Let those people be called John and Mary. If John is listening, it should be

easy to conclude that Mary is talking. This is an example of a simple binary relationship

between two actions. But there might be action relationships involving more than two peo-

ple. There might also be relationships with a temporal dependence (e.g. opening a door

then closing it). In our Semantic Neighbor Context approach, we develop an embedding

that takes into account the actions of an arbitrary number of neighbors across space (i.e.

neighbors are ranked according to their distance to our target) and time (i.e. the actions

of the neighbors of our target done in the past, in the present frame, and in future frames

are all encoded). This makes our Semantic Neighbor Context approach an Embedded in-

put sequential multi-label classification problem. We tackle this problem using an LSTM

architecture designed and trained from scratch.

The results obtained show the benefits of using actor centric filters - yielding a relative

mAP performance increase of 18.8% - as well as semantic neighbor context (see Section 3.2)

- yielding a relative mAP performance increase of 5%. In the future, using more context

sources like human pose features or object detection could be incorporated for additional

performance gains.

Although not included in the proposed MVC framework, we have also researched and

published a study on how to leverage human pose features for action classification. These

could be included in the MVC framework at a future date, along with the LSTM networks

designed for the purpose.

1.4 Contributions

There are six main contributions in this work:
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• A flexible, extensible, modular, state-of-the-art Framework for testing context sources,

allowing for the comparison of different context sources and establishing perfor-

mance/computational cost trade-off;

• Fovea actor centric filtering, a filtering method mimicking human vision. This tech-

nique can be applied with any classification approach, and resulted in significant

performance increases on our tests with a state-of-the-art two-stream CNN (18.8%

relative performance increase in video mAP on the AVA dataset)

• Semantic neighbor context encoding (relative mAP improvement of 5%) and its cus-

tom LSTM classifier with spatial and temporal dependence;

• A custom loss function - Hybrid Sigmoid-Softmax - to be used with the AVA dataset

that takes into account this dataset’s unique labelling structure (three different label

groups, one group comprised of mutually exclusive labels, the other two groups can

have between zero and three active labels);

• miniAVA, a partition of the AVA dataset that maintains temporal continuity, keeps

the same approximate distribution of the data, while being only 10% of the full

dataset;

• Ablation studies on alternative actor centric filtering approaches as well as ablation

studies on semantic neighbor context classifiers.

Three research papers have resulted from this work:

• BMVC 2018: Paper accepted at describing the research on human pose features for

action classification21;

• ECCV 2020: Paper submitted describing the fovea actor centric filtering and ablation

studies on actor centric filtering;
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• Paper describing the research on semantic neighbor context applications for action

detection, currently under preparation.

1.5 Thesis Outline

In Chapter 2 the relevant previous work approaches to similar problems are described.

Approaches for Action Recognition and Detection in Video, both based in handcrafted

features and deep learning, are explained and related to the proposed approach. Also de-

scribed are the most important works in the field of Multi-Label Sequential Classification

with Embedded inputs, and related with our Semantic Neighbor Context approach.

In Chapter 3, the context sources proposed in this thesis - Appearance Context and

Semantic Neighbor Context are explained. Also explained are alternative approaches and

their limitations, especially when used with CNN-based classifiers, along with their arti-

fact insertions.

In Chapter 4 the challenges addressed by the proposed Multisource Video Classifica-

tion (MVC) framework regarding context selection, testing and fusion in the action detec-

tion task. We then describe how our MVC framework approaches these challenges in a

novel way.

In Chapter 5, we describe the test bed used for evaluating the various branches of the

MVC framework, as well as the experiments ran, evaluation procedures, and metrics used.

In Chapter 6, we describe the results obtained by the MVC framework, along with the

baselines established, performance expectation, and its analysis.

This thesis is concluded in Chapter 7, discussing the insights to be taken from this

work. Finally, some future work considerations are provided.
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Chapter 2

Previous work

The work presented in this thesis relates to two seemingly unrelated fields of machine

learning: action detection and recognition in video and sequential multi-label classifica-

tion. This work describes how to use sequential classification techniques to enhance action

detection and recognition performance. As such, the relevant related work on both fields

will be presented here.

We separate the approaches to action detection and recognition in video in two cate-

gories: those based on handcrafted features, and data-driven approaches. After the per-

formance increase achieved by CNNs in the domain of image recognition16, it was be-

lieved that the advances in performance would also show improvement in action recog-

nition22. However, many handcrafted methods still outperformed CNN-based methods

regardless of the growing interest in the use of convolutions for action recognition over

temporal stacks23. Many network-based approaches18 2 still use an averaging with hand-

crafted feature based predictions in order to improve performance. Early network-based

approaches24 tried using single 2D CNNs and their results were worse than traditional

methods for two reasons: the learned features did not capture either motion and long tem-

poral context and existing datasets (e.g. UCF10115) were not large or varied enough for the
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networks to learn such features.

The work presented in this thesis also deals with sequential multi-label classification.

The most common approaches to this problem follow a similar workflow: first define a

vector representation for the input25 26, then use this representation to train an RNN27 28.

More recent approaches29 30 found a new way to tackle this problem by using attention

based models and circumventing the challenging training procedure imposed by RNN

architectures.

2.1 Action Recognition in Video - Handcrafted Features

Classification approaches that rely on handcrafted features typically follow the same blueprint:

design (usually interpretable) features that describe a region of the input video. Such fea-

tures are calculated/extracted from the raw video, and linked across space and time, in

order to encompass all the information in the video. Then, these features are encoded

into a fixed length feature vector that will be fed to a classifier, typically, Support Vector

Machines (SVM) or Naı̈ve Bayes.

Csurka et al.31 define a collection of relevant image patterns to use as features, and

aggregate their occurrence into a fixed length vector using a histogram to form a bag of

keypoints. These bags are then used as descriptors for the whole video, and classified

using SVM or Naı̈ve Bayes.

Wand and Schmid32 estimates camera motion from the video and uses it to correct

dense trajectories extracted from the video. These trajectories are then processed (dimen-

sionality reduction with Principal Component Analysis (PCA), orientation correction), ag-

gregated into histograms and then classified. Once again, classification is done with SVMs.

Sánchez et al.33, Perronnin et al.34, and Jégou et al.35 show approaches that aggre-

gate features using the Fisher Kernel method to create a description of the video. Scale-

invariant feature transform (SIFT) descriptors are collected to describe the image, and ag-
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Figure 2.1: Examples of typical action recognition approaches with CNNs as shown in2.
Approaches a) and b) tend to lack explicit motion features like Optical Flow while ap-
proaches d) and e) tend to be computationally intensive. The Two-Stream approach
presents an interesting trade-off of providing competitive results with the state-of-the-art
3D-CNN approaches while being much less computationally demanding. See Sec. 2 for
more details. Image taken from2 with permission.

gregated using the Fisher Kernel method to create the Fisher Vector. This vector is then

used as a proxy for the video and classified using an SVM.

2.2 Action Recognition and Detection in Video - Deep Learning

Approaches

After data-driven approaches became more powerful, the use of CNN architectures in

action recognition quickly became the state of the art18. More recent action recognition

approaches differ in how they employ temporal information2. We describe five main cate-

gories of approaches in this sense: LSTM models36 37, 3D-ConvNet models18, Two-Stream

architectures20, 3D-Fused Two-Stream architectures38 and Two-Stream 3D-ConvNet Ar-

chitectures2.

We explain the idea of the approaches in Fig. 2.1: LSTM networks ( approach group a)

in Fig. 2.1), (e.g Beyond Short Snippets36, LRCN37) model sequences39 of trained feature-
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maps extracted with CNNs to capture long term temporal information. These approaches

have the largest temporal receptive fields.

Second,3D-CNNs ( approach group b) in Fig. 2.1), (e.g C3D18 19) built on earlier single-

stream 2D approaches24, but instead used 3D convolutions on video volumes.

Two-Stream CNN( approach group c)( in Fig. 2.1), (e.g Two-Stream20, Two-Stream Fu-

sion40, TSN41) introduce the use of an additional 2D-CNN stream trained on explicit mo-

tion features like optical flow to encode short temporal context. Many aspects of this orig-

inal approach have been further augmented (e.g ActionVLAD42, HiddenTwoStream43).

This approach presents an interesting trade-off: it is capable of achieving competitive re-

sults with methods requiring far more computational resources like 3D-CNNs.

Finally, Fused Two-Streams, and Two-Stream 3D-ConvNet,( approach group d) and e)

respectively in Fig. 2.1) (e.g I3D2, S3D38, R(2+1)D44) are currently the best performing

approaches. They extend two-stream approaches in the time dimension as well, either

through 3-D convolutions or by alternating between spatial 2-D convolutions with 1-D

temporal convolutions. As such, these approaches tend to be more computationally in-

tense than all others.

Two fundamental insights to be extracted when looking at these approaches is that

allowing the network to learn temporal features is fundamental for good performance

in video classification; and that incorporating explicit motion features like optical flow is

beneficial even in 3-D CNNs.

The best methods45 46 47 48 49 50 submitted to the AVA3 challenge (currently the most

challenging multi-label multi-person spatiotemporal action detection dataset) are show-

ing that the best performing approaches all use prohibitively costly models and training

procedures. All of these methods pretrain their models not only on AVA3, but also on Ki-

netics2, an extremely large dataset, made up of over 300,000 video clips. The pre-training

procedures can last over 200,000 epochs, before even starting the fine tuning for the actual
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task. Also, the complexity of the models keeps increasing (p.e.45 combines seven models

of ⇡ 33M parameters). Dealing with this task without requiring such prohibitive compu-

tational power is a necessity.

2.3 Embedded Input Multi-label Sequential Classification

In this work, action classification/detection approaches are enhanced by using embedded

input sequential classification techniques. This is a fairly niche problem, and, outside of

Natural language processing (NLP) not often studied. In NLP, it has several applications

like question answering, language translation, and language understanding30.

Classical approaches to this task can be summarized in the following steps:

1. Design a vector representation for words/characters, called an embedding. This can

be done in several different ways like, word frequency counting51, or neural network

based approaches52 25 26. Although there are variations, typically these word repre-

sentations will have the nice property that words that are similar in meaning should

be close (in Cartesian distance) in the vector space representation25.

2. Use this word embedding to train a bi-directional RNN for the target task27 28 53 54.

Vaswani et al.29 in his 2017 paper revolutionized the way the sequence translation task

was tackled by proposing the Transformer model, that departs from the recurrent net-

works school of thought, to using simple feed-forward networks with self-attention mod-

ules. This architecture allows the network to identify which parts of the input sequence

should correspond to each module of the output sequence via its multi-head attention lay-

ers. These layers allow the correspondence between output tokens and input tokens to be

established more directly than their RNN counterparts, since the n-th output token does

not have to backpropagate its information query through a chain of hidden state variables.
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Instead, the n-th output token provides the attention layers with queries regarding the

input, making the lookup much simpler.

Devlin et al.30 then presented the world with BERT, a novel architecture that beat the

state-of-the-art in almost every NLP task. Their innovations mostly come from a new train-

ing paradigm, where instead of training the model to intake the sequence left-to-right (e.g.

an LSTM), right-to-left (e.g. an LSTM), or left-to-right combined with right-to-left (e.g. a

bi-directional LSTM), the training is done on the whole sentence at once, essentially mak-

ing it non-directional. By inputting the whole sentence at once, and randomly masking

words in the sentence to either be a word missing token, a random word, or the correct

word, and then demanding that their classifier predicts the correct word. This is done in a

self-supervised fashion, where the training corpus is comprised of complete sentences that

are then altered. This novel architecture was based on the Transformer29 model, and uses

its self-attention modules.
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Chapter 3

Appearance and Semantic Context

This thesis focuses on leveraging extra sources of information (named context sources) for

multi-person, multi-label, spatiotemporal action detection and recognition in video.

Action Recognition is a task with the goal of matching a video depicting a person per-

forming an action with one label, describing that action. Given the same video, the goal of

action detection would be to determine where (which pixels in the video?) and when (in

which frames is the action being performed) the action happens, without the requirement

of actually knowing which action is being performed. Action detection and recognition ties

both tasks by aiming to know when, where and what is being shown in the video. With

more than one person (multi-person) per video the task becomes more complex, since now

it is required to also know more than one action, and the segmentations in both space and

time associated with those actions. If each person can be depicting multiple actions in a

video (simultaneously or not), the problem becomes multi-label.

So, for the multi-person, multi-label, spatiotemporal action detection and recognition

task in video, the goal is to receive as input a video, and to return a list of actions cou-

pled with bounding boxes in both space and time, depicting every action of every person

depicted in the video.
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This is a very challenging problem, where even the most complex and sophisticated

models (e.g.:3 2) are showing modest performance (state-of-the-art currently achieves 34.25

mAP in the AVA3 dataset). As described in 2, the best performing approaches all use pro-

hibitively costly models and training procedures with pre-training procedures lasting over

200,000 epochs and very complex models (p.e.45 combines seven models of ⇡ 33M param-

eters). Dealing with this task without requiring such prohibitive computational power is

a necessity. In this thesis, I advocate leveraging context to boost performance without the

computational overhead required by the state-of-the-art.

However, caution must be employed when using context sources. If a context source’s

predictive power is low, the overall performance of the system using it might decrease.

Also, even if the source has some predictive power, the performance increase/computational

cost trade-off must also be taken into consideration.

To address this problem, in this work we describe an architecture we denote Multi-

source Video Classification Framework, enabling the testing of context sources, indepen-

dently and in combination, in a flexible, modular and extensible fashion.

3.1 Actor Centric Filtering

Actor Centric filtering contributes to improve classification performance by using more

detailed information in the location of the target than in the surrounding background.

As such, the features correlated to the action performed by the target person will have a

stronger role in the classification than the ”distracting features” of the other actors. This is

particularly useful in cases where different actors performed different actions at the same

time (i.e. in the same frame), as is the case of the AVA dataset. Two alternative approaches

are possible (see Fig. 3.1=: the first, named Crop filter, would be to crop the area outside

that region and the second, named GBB (Gaussian Background Blur) would be to simply

apply a Gaussian blur with a Gaussian kernel to everything outside that region. The Crop
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filter approach is in effect what is happening when a network following the architecture

defined by Faster R-CNN55 is used, since the feature maps passed to the classifier layers

of the network are cropped around the RoI chosen by the region proposal network.

Despite the goal of the actor centric filters, the Crop filter, having no background con-

text at all, might hinder the classifier (i.e an abundance of blue might help a classifier guess

the swim action). Additionally, for both the GBB and the Crop filter, regions with large con-

trasts exist (i.e in the crop filter there is a sharp transition from the actor centric region to

black and in the GBB there is a sharp transition from the relevant region to a blurred re-

gion).

To overcome these artifact insertion limitations we propose an artificial foveal vision

filter from56 inspired by human foveal vision57 58. This provides a smooth blur transition

between the bounding box and the background (See Fig. 3.1). Firstly, a Gaussian pyramid

is built with increasing levels of blur. The image gk+1 can be obtained from gk via con-

volution with 2D isotopic Gaussian filter kernels with progressively higher �k = 2k�1
�1

standard deviations for each kth level. Next, a Laplacian pyramid58 is computed from

the difference between adjacent Gaussian levels. Finally, exponential weighted kernels are

multiplied by each level of the Laplacian pyramid to emulate a smooth fovea:

k(u, v, fkx, fky) = e

�
 

(u�u0)
2

2f2
kx

+
(v�v0)

2

2f2
ky

!

, 0  k  K (3.1)

where f0x = 1
2w, f0y = 1

2h, and fkx = 2kf0x, fky = 2kf0y is used to define the fovea

intensity at the k-th level and the fovea is centered at uo = x + w/2, vo = y + h/2, given

(x, y, h, w) where x, y are top-left corner coordinates and h,w are the height and width of

the bounding box.

In Figure 3.1 an example of the actor centric filters used in this work is shown, high-

lighting the difference in the abrupt transition boundaries introduced by the approaches
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of GBB and Crop filtering versus the smooth transition in the Fovea filter.

Figure 3.1: Comparison of the different actor centric filters. We highlight how the Fovea
filter induces less artifacts in the image when compared with GBB and Crop filtering.

3.2 Semantic Neighbor Context

The multi-label characteristic of the action detection task greatly increased the difficulty

faced by classifiers. However, it also allows for new classification approaches to surface.

Using human interactions as inspiration, We propose the following classification method-

ology: create an encoding describing the actions of neighbors of the target across space and

time to predict the actions of the target. Using an example: imagine two people talking.

At any point in time one person will be talking while the other person will be listening.

Suppose the target is currently talking. Solely from the information that the target’s neigh-

bor is listening it should be reasonable to predict that the target is currently talking. This

is a simple example of a binary example, fairly contained in time. It is also an intuitive

relationship between actions. But what about actions that negatively affect one another?

For example, if the target’s neighbor is swimming, it is unlikely that the target is sleep-

ing or sitting down. So there also exist ”negative” relationships between actions. Other

possibilities would be groups of more than two actions, or actions that precede or succeed

one another. The ideal scenario would be to simply aggregate as many action groups as
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possible, correctly ranking them according to space and time in relation to the target per-

son/frame combo, and create a classifier that infers all these relationships automatically.

With this in mind, we propose the following encoding: let T be the number of timesteps

considered by the encoder (for the target timestep t0 we encode the neighbor actions from

t�T to tT ). This creates a time window of length 2T+1. Let N be the number of neighbors to

be considered. For each timestep, the closest N neighbors will have their actions encoded.

The distance between the target and a neighbor is calculated by the euclidean distance

between the centers of their corresponding bounding boxes. Finally, let C be the number

of classes considered by the encoding. In that case, given a target person and a timestep,

our encoding creates a vector of size (2T + 1)⇥N ⇥ C.

We process the data resulting from this encoding with an LSTM network designed

and trained specifically for this problem. The two best performing LSTM architectures

are shown in Fig. 3.2. Model A has two LSTM layers at the input, one receives a se-

quence of the past timesteps and the present timestep, and the other receives the present

timestep and the future timesteps. These two LSTM layers are fused into another LSTM

that encodes the full sequence that is then finally used as an encoding for classification.

The LSTM model B has the same pair of LSTM layers at the input but fuses them imme-

diately into a fully connected layer, without resorting to an intermediate LSTM to process

the whole sequence.

This type of problem is called an Embedded Input Multi-label Sequential Classification.

This is a fairly niche problem, and only found focus in the NLP community. In Section 2.3,

I describe the various approach methodologies followed in recent years. Although the

current approach to beat is BERT30, it is not possible to apply it to this specific task. The

reason for this limitation is that BERT’s architecture is based on the self attention modules

of Transformer29. These modules leverage the unique properties of Language Model En-

codings in which words that are close semantically are also close in the vector space in
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Figure 3.2: Our two best LSTM models for semantic neighbor context classification.
While model A encodes the input sequence fully into a 2-layer LSTM, model B fuses the
past+present and present+future sequences by concatenation into a fully connected layer.

which they are encoded. Defining the ”semantic closeness” of actions to classify is part of

the task. Since our encoding ranked the actions based on neigbhor-target distance (both

spatial and temporal) and not semantic distance, we are unable to use the same attention

modules.

This is why the bidirectional LSTM approach was used instead.

3.3 Skeletal Context Source

Action classification resorting to skeletal data is a common approach. However, using

skeletal data as a sequence to perform action detection and recognition is more challeng-

ing, mainly because of the pre-processing involved in dealing with incomplete skeletons,

joint tracking over time and space, and the ability to deal with a more complex label space

(1 label per frame vs 1 label per video).

In the work published at BMVC 201821, we present ablation tests determining optimal

network architectures and testing choices for action detection and action recognition on the
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AHA21 dataset. The AHA dataset is a curated dataset of 21 subjects performing exercises

designed to promote active ageing, including both RGB and skeletal data. This dataset is

published in that paper and is available online. In the experiments described, incomplete

skeletons are dealt with by approximating its position from skeletons on other frames.

Tests are also run showing classification done with both joint positions as well as velocities

and accelerations. For recognition, we trained models on the positions of the joints achiev-

ing 88.2% ± 0.077 accuracy, and on joint positions and velocities, achieving 91% ± 0.082

accuracy. The segmentation baseline achieved an accuracy of 88.29% in detecting actions

at frame level. Although this approach has not yet been applied to the datasets contem-

plated in the MVC framework this is one of the main approaches we intend to research in

future work.

3.4 Extension to Object Detection Context Source

Using the information pertaining to objects in the scene to aid in the action classification

context has been studied before, although infrequently. Han et al.14 present one such ap-

proach. The intuition behind this is that certain classes of actions can be classified by the

existence of objects and their spatial relationship with the target. For example, classifying

that the target is holding an object can be achieved by determining that an object is present

very close or inside the target’s own bounding box (even in cases where the label is object

agnostic, as is the case in the AVA dataset).

We have not done research in this topic in the past. The approach to take for the initial

research on this is to use an off-the-shelf object detector, encode the object type and position

into a vector (similar to the approach taken in the semantic neighbor context, see Sec. 3.2)

and design a network to classify the action the target is performing taken as input the

position and type of the N nearest objects to him, in space and time.
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Chapter 4

MVC Framework

In this chapter, the proposed context source testing and fusion frame work is described,

the Multisource Video Classification Framework. The datasets used for testing are also

described, as well as the reasons for choosing those datasets. Finally, the proposed Hybrid

Sigmoid-Softmax loss is explained to deal with multi-label scenarios where a subset of the

labels is mutually exclusive.

4.1 Multisource Video Classification (MVC) Framework

In this Section, the Multisource Video Classification (MVC) framework that enables con-

text source fusion and testing is described. Leveraging information from extra sources to

improve the performance of action detection and recognition in multi-person, multi-label,

spatiotemporal action detection and recognition is a promising approach, as shown in this

thesis. However, it is of crucial importance to be able to gauge the performance of a context

source. If the source has no predictive power, the overall performance of the classification

system might decrease. To be able to discern the quality of a context source, our MVC

framework needs to fulfill the following requirements:
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• Flexible - It should allow contributions of any context source to the overall perfor-

mance of the system to be tested, either independently or in any combination, with

as little re-training as possible.

• Extensible - It should be possible to add new context sources without re-structuring.

The new sources should also take advantage of the flexibility properties that the pre-

existing context sources have.

• Modular - Each context source should be able to be added or removed independently

from the others.

Figure 4.1: The format followed by the proposed MVC framework. Each context source
is pre-processed and classified individually. Each set of labels obtained from each each
source can be included or excluded from the final fusion step in order to assess its contri-
bution to the overall classification score. The color code on the boxes is blue for input data,
black for classifiers, red for original contributions, and yellow for labels.

In Fig. 4.1 the format followed by the MVC framework is shown. For each context

source, independent pre-processing techniques are applied, and the processed data is fed

to a classifier that takes only that context source into account. The labels obtained from

that context source are then fused with any number of context sources to achieve the final

labels. The fusion is achieved via weighted averaging of prediction scores of each context

source.
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Figure 4.2: The context sources considered in the MVC framework: actor centric filtered
RGB and OF frames extracted from the input video, semantic neighbor context informa-
tion, in which a classifier attempts to predict the actions of the target based on the actions
of his neighbors (in space and time), skeletal information, and objects. The color code on
the boxes is blue for input data, black for classifiers, red for original contributions, and
yellow for labels.

In Fig. 4.2 the specific context sources considered in the proposed MVC framework are

exemplified. The four context sources are: actor centric filtered videos, semantic neighbor

context data, human pose features and object detection. The actor centric context source

is handled by filtering the RGB and Optical Flow (OF) images extracted from the video

using one of four possible filters: no filter, cropping the images around the target actor,

GBB - blurring the background with a gaussian kernel, and fovea filtering, a smooth filter-

ing function that does not introduce edges/artifacts into the image (more info in Section

3.1). This context source enhances the classification by establishing a hierarchy in the video

pixels used for input. In a video with two people performing two different sets of actions

the classification task becomes impossible if no hierarchy is established. For example, in a
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video where two people are visible, one person is standing, while the other one is sitting.

The pixels depicting the person standing are not helpful in the classification step tasked

with determining the actions of the person sitting. The appearance filters direct the classifi-

cation to the right person without discarding the informantion that may be leveraged from

the background. Classification is done using a deep two-stream CNN (see Fig. 2.1 and Sec-

tion 4.3.4) with weights available and pre-trained on UCF101. This approach provides a

good balance between classification performance and computational cost, by leveraging

explicit temporal information in the OF stream, but not requiring 3-D convolutions like

3D-CNN based models.

For the semantic neighbor context source, the input is generated from the predicted

labels for the neighbors of the target actor and classified with an LSTM developed for this

purpose (more information on this on Section 3.2). The third context source is the skeletal

information extracted from the target actor performing the action. This information can

be obtained either during the data collection task, for example if a Kinect was used, or

extracted from the 2D video using a tool like OpenPose59 60 61 62. The classifier for this

is also trained and created specifically for this task21. The fourth context source are the

objects detected in the image. This part is not yet developed, but the approach to be used

is to employ an off-the-shelf object detector to create a vector depicting the objects detected

and their positions/sizes and then create a classifier that attempts to predict the target’s

actions. Finally, the context sources can be fused or used individually as shown by the ”+”

signal on the right side of the diagram in conjunction with the switches found at the end

of each context source line.

4.2 Combining the Context Sources

One important limitation of this context source is that it requires knowing the actions of

the neighbors. It is important to be able to improve classification even when ground truth
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Figure 4.3: Example of how the two-pass scheme works. From the actor centric filtering
method, we get LabelsAct. From these labels we generate the semantic neighbor context
and feed that encoding to the classifier trained for that encoding, getting LabelsN . Fus-
ing LabelsAct with LabelsN we get the labels from a two pass scheme. If we take those
Labels2pass and generate a new semantic neighbor context encoding (as suggested by the
dotted line) we get a three pass scheme. We later show that this iterative method improves
performance.

information of the neighbor actions is not available. As will be shown in the results section

(see Sec. 6), using a different classifier, p.e.: our actor centric filtering approach, to generate

neighbor semantic context data, and then using that data as input, improves performance.

We show this idea in Fig. 4.3. We call this the two pass approach (one pass through the ac-

tor centric filtering network, and one pass through the semantic context network approach

and fusion of both context sources). We also experiment taking the labels generated from

the two-pass approach and using those as input to the semantic neighbor context, and then

fuse them again. We call this the three-pass approach, and show it provides (minimal) im-

provement over the two-pass approach. We also show what results would be obtained if

the ground truth labels were used to generate the semantic neighbor context input.

4.3 The AVA dataset and the UCF101-24 dataset

The AVA dataset is currently the most challenging dataset in the Action Detection task. It

is the dataset used year after year in the CVPR action detection challenge3 and the per-
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formance obtained by the state-of-the-art methods reveals that the video understanding

problem is not yet solved when dealing with more complex data (see Section 2). The com-

plexity that is achieved by this dataset will be explained shortly. However, this dataset

is prohibitively large, and doing testing of the models proposed in this work on the full

dataset was not possible due to computational restraints, therefore, we used miniAVA (See

Section 5.1), a subset of the AVA dataset. miniAVA retains important properties of the

AVA dataset (class imbalance, sequential actions) while being smaller in size, allowing us

to run tests on it. The dataset that used to be the state-of-the-art before AVA was released,

the UCF101-24 is also used for testing, since this dataset is more manageable in size. This

allows for a fair comparison of the proposed models and the state-of-the-art.

4.3.1 AVA - Atomic Visual Actions

Figure 4.4: Examples of AVA3 labeling. HO

stands for human-object actions and HH

stands for human-human actions.

The AVA dataset is composed of densely

annotated 15-minute videos, sources from

movie scenes. The annotations are person-

centric with a sampling frequency of 1Hz,

and each annotation corresponds to a 3-

second video snippet, with the label corre-

sponding to the frame in the center, called

the keyframe, of that snippet.

The dataset has a unique multi-label

structure as shown in Fig. 4.4. For each

person, in each frame, a bounding box is

provided with one to seven labels. Each

bounding box in a frame must have exactly

one pose label like stand or walk (from mu-
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tually exclusive CP of them), zero-to-three human-human labels (from non-mutually ex-

clusive CH of them) like talk to or hit and zero-to-three human-object labels (from non-

mutually exclusive CO of them) like hold object or watch (e.g TV). The total number of classes

is C = CP + CH + CO.

In AVA, the action class distribution is heavily imbalanced, roughly following Zipf’s

Law (see3 for more details.) This imbalance itself is a challenge given that some classes

will be severely under-represented (the most prevalent classes have over 105 instances

while the least common have less than 20).

Finally, to give the reader an approximate notion of how challenging this dataset is,

we highlight the performance that the baseline model provided in3 achieved, with this

dataset. The baseline model is a very deep, 3D-CNN that is a fusion of I3D2 and Faster

RCNN55. The performance this model obtained in JHMDB63 and UCF101-2415 beats other

state-of-the-art methods3, achieving 78.6% and 59.9% video mAP at 0.5 IoU, respectively.

In the AVA dataset, this model scored 12.3% video mAP at 0.5 IoU.

4.3.2 UCF101-24

The UCF101-24 dataset is a sports based video dataset for action recognition and detection.

For each input video there is exactly one label identifying the action that is represented in

it. When there are multiple people in the video, several bounding boxes are provided, but

the label is the same for all the bounding boxes. As such, to use the architecture shown in

Fig. 4.5 on this dataset we change the output layers to a Softmax layer (since every class

will be mutually exclusive with all other classes). Note that since the label is the same for

every person in the same video the semantic neighbor context source can’t be applied here

since the problem would be trivial: the classifier learns to always predict as output the

labels it receives as input.

39



4.3.3 Hybrid Sigmoid-Softmax Loss

The baseline method for AVA3 has an output layer of C (number of classes) independent

sigmoid activation functions. Note, however, that this does not truly reflect the label struc-

ture of the AVA3 dataset which is not entirely mutually exclusive but also not entirely

multi-label. In the AVA dataset there are three distinct types of classes, each describing a

type of action: pose classes (e.g. standing), human-human interaction classes (e.g. hug),

and human-object interaction classes (e.g. hold (an object)). While the pose classes are mu-

tually exclusive (i.e. each data sample has exactly one pose class in its label), the human-

object and human-human interaction classes are not mutually exclusive, and any number

of zero to three of each type can be found in the label of each data sample.

As such, in the MVC architecture, we use a custom loss function: Hybrid Sigmoid-

Softmax Loss, to address this heterogeneity by having three separate output layers. The

layer corresponding to the pose classes has size CP with a Softmax activation function.

The remaining two layers have a sum-of-sigmoids activation function, where the number

of sigmoids is CH for the human-human interaction classes and CO for the human-object

interaction classes.

This implies that the loss function cannot simply be categorical cross-entropy or binary

cross-entropy64. Therefore the architecture must minimize a global loss which is the sum

of the losses of each output layer and which can be expressed as follows:
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where the s vectors are the predictions of each layer in equation 4.1 (different for each

component of the sum), sp is the output corresponding to the only positive label in the

softmax layer, and � is the sigmoid function, j is iterating over the classes, i is iterating
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over the possible labels for each class (1 or 0) and t is the ground truth class. Note that this

backpropagation is possible as the encoding of the target labels is done as a binary vector

which can then be partitioned into smaller vectors for each output layer. A representation

of how this loss is incorporated in the used CNN architecture is shown in Fig. 4.5.

4.3.4 Two-Stream CNN

We propose a baseline two-stream CNN architecture motivated by promising results achieved

with these networks40 65, as shown in Fig. 4.5. We use a ResNet50 architecture for each

stream because this architecture demonstrated to be successful66 for these tasks, as well

as having available pre-trained weights from40 trained on UCF10115. The input is a sin-

gle frame for the RGB stream and an optical flow stack for the OF stream. The output

layers take into account the unique labelling structure of the AVA3 dataset where for the

pose classes (CP ) a Softmax is used, enforcing mutual exclusion between labels. For the

human-human interaction (CH ) and human-object (CO) interaction classes, a sum of sig-

moids loss function is used, which is then thresholded. The top 3 values that are above

the threshold are chosen as classes. Each network stream (RGB and OF) is individually

fine-tuned for its task. We fuse these networks using a concatenation fusion of their last

Fully Connected (FC) layers and then train a FC layer so that spatiotemporal features can

be learned. Since retraining both networks together would be too computationally heavy

we load their individually fine-tuned weights, and freeze them (i.e do not update them in

backpropagation) so we only train the desired FC spatiotemporal filters.
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Figure 4.5: The proposed two-stream architecture for the AVA dataset. After training each
stream (RGB and OF) we fuse them with concatenation and apply our Hybrid Sigmoid-
Softmax Loss on the output.
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Chapter 5

Experiments

We test our models on two datasets, the UCF101-24 and the AVA dataset. Although we

could process the whole UCF101-24 in the computer we had available, due to computa-

tional limitations, we were unable to run the tests on the full AVA dataset, so we were

forced to create a subset of this dataset. For simplicity, we refer to it as miniAVA.

5.1 miniAVA

The AVA dataset was too large to process with the computational resources we had avail-

able. In Table 5.1 we show the two datasets used in this work. Note that the AVA dataset

is around 17 times larger than the UCF101-24. Furthermore, the multi-label characteristic

of AVA makes it more computationally intensive during training.

Dataset AVA UCF101-24
#Videos 430 3194

Avg. Video Duration 15 min 7 sec
#Classes 80 24

Labels per Video Variable 1
Total Video Duration 6450 min 373 min

Table 5.1: Comparison of AVA and UCF101-24

43



When partitioning AVA we had three goals: make it computationally tractable with our

available resources, maintain temporal continuity in the samples, and maintain the class

distribution of the original dataset (see3 for details). We ensured temporal continuity by

sampling from the first segments from each split of the AVA dataset. We were also able

to maintain a distribution that roughly follows Zipf’s law, albeit with a smaller number of

classes, as shown in Table 5.3. This ensured we would not simplify the dataset by reducing

class imbalance inadvertently. Similarly to the testing scheme in the ActivityNet Task B

challenge67 involving AVA, we took particular care to make sure that all classes had at

least 20 samples in the test set. we did this by removing the class labels that had less than

20 examples on the test set. The number of samples chosen for each set was 15000. We

chose this number so that We could process the dataset in a reasonable time frame. The

miniAVA dataset then has 30 classes remaining. A table with all the classes is presented in

Table 5.1. The experiments ran on the appearance context alone took around three months

of non-stop processing. The computer used to run these tests was equipped with two

NVIDIA 1080 TI GPU and 64 GB of RAM.

5.2 Subsampling and Voting Scheme for AVA

As discussed in Sec. 4.3, the AVA dataset annotations are person-centric and made at a

1Hz frequency. Each annotation corresponds to a three second video segment. A straight-

forward implementation, at a rate of 30 FPS for each three second segment, would need a

receptive field of 90 frames and a 3D architecture to process a single segment. This would

imply a much more computationally intense architecture and, as such, we propose a sub-

sampling scheme as shown in Fig. 5.1.

Since WE have five frames and OF volumes representative of a segment, I use a major-

ity voting scheme to arrive at a consensus for the label to assign to a segment. A similar

strategy was employed in68.
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Label ID Label Label Set
1 Bend/Bow (at the waist) Pose
2 Crouch/Kneel Pose
3 Dance Pose
4 Get up Pose
5 Lie/Sleep Pose
6 Martial art Pose
7 Run/jog Pose
8 Sit Pose
9 Stand Pose
10 Walk Pose
11 Answer Phone Human-Object
12 Carry/Hold (an object) Human-Object
13 Drink Human-Object
14 Eat Human-Object
15 Push (an object) Human-Object
16 Read Human-Object
17 Ride (e.g., a bike, a car, a horse) Human-Object
18 Sail boat Human-Object
19 Smoke Human-Object
20 Text on/Look at a cellphone Human-Object
21 Touch (an object) Human-Object
22 Watch (e.g., TV) Human-Object
23 Fight/Hit (a person) Human-Human
24 Give/Serve (an object) to (a person) Human-Human
25 Grab (a person) Human-Human
26 Hug (a person) Human-Human
27 Listen to (a person) Human-Human
28 Sing to (e.g., self, a person, a group) Human-Human
29 Talk to (e.g., self, a person, a group) Human-Human
30 Watch (a person) Human-Human

Table 5.2: Description of the Labels present in miniAVA.
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Figure 5.1: Our subsampling scheme. We extract 5 representative RGB frames and 5 OF
stacks around a keyframe.

As such, to obtain the predictions for a single segment we pass each frame of the five

subsampled representative frames and its corresponding OF through the network and

store the predictions. For the mutually exclusive (pose classes) predictions we count the

maximum valued prediction as a vote and for all non-mutually exclusive (human-human

and human-object classes) predictions I count any prediction values above a certain thresh-

old v as a valid vote. This threshold was initialized at 0.4, following3. Then, for the mutu-

ally exclusive classes We take the most voted class as the predicted class for the segment,

and for each of the non mutually exclusive classes We take their top 3 most voted classes as

the predicted classes for the segment. For the non-mutually exclusive classes the number

of predicted classes will be between 0 (if no prediction is above the threshold) and 3.

Class Category miniAVA AVA Mutually Exclusive
Pose 10 14 Yes
Human-Object 12 49 No
Human-Human 8 17 No

Table 5.3: Class categories in the AVA3 dataset vs miniAVA.
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5.3 Bounding Boxes

Our approach is focused on the action classification (as discussed in Section 3), leaving

actor localization in time and space to other works. As such, we use the ground truth

bounding boxes provided with the datasets. We argue that using ground truth information

for actor localization doesn’t reduce the difficulty of the AVA, referring to an ablation study

done in3. In Table 5 of3 (Also shown as Table 1.1 in this thesis), the authors report that

comparing UCF101-24 and AVA, the performance decrease in actor detection (i.e.: locating

the person) is quite small (84.8% to 75.3% frame-mAP) when compared to the performance

dip in action detection (76.3% to 15.6% frame-mAP).

5.4 Metrics

Three metrics are used in the tests that were ran for this thesis: Accuracy, Mean Average

Precision (mAP), and F1-score. Accuracy does not merit an explanation, but the mAP and

F1-score require some more care when interpreting results.

5.4.1 mAP - Mean Average Precision

While there are several definitions of mean Average Precision (mAP), the most prevalent

one used in Action Detection tasks is the one defined for the PASCAL challenge69. This

metric hinges on the concepts of precision, recall and Intersection over Union (IoU). These

concepts are defined as:

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

IoU =
A(overlap)

A(union)
(5.3)
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where TP are true positives, TN are true negatives, FP are false positives and FN are

false negatives and a true positive only exists if its class matches the ground truth and

IoU � 0.5. IoU measures how much overlap exists between two regions, normally a

prediction and the groundtruth (in the Action Detection scenario this relates to both the

overlap in the spatial domain - bounding boxes - and over the temporal domain - time

segments).

Average Precision can then be defined as the area under the curse of the Precision(Recall)

function. If we were to plot Precision(Recall), the idea of AP can be conceptually viewed

as finding the area under the curve of the Precision(Recall) curve. While that would im-

ply computing the integral of the curve,69 introduce the approximation of computing the

average of precision at 11 recall levels (from 0.0 to 1.0):

AP =
1

11

X

Recalli

Precision(Recalli) (5.4)

where the value of the precision at 11 recall levels is averaged (from 0.0 to 1.0 in 0.1 incre-

ments). Note that the average precision at recall i is taken to be the maximum precision

measure at a recall greater or equal than recall i. This becomes a single value summarizing

the shape of the precision-recall curve.

Averaging the per class AP over all classes, mAP is defined as:

mAP =
1

C

CX

i

APi (5.5)

where APi is the average precision of class i as computed in 5.4.

5.4.2 F1-Score

The F1-score is defined as:

F1 = 2
Precision⇥Recall

Precision+Recall
(5.6)
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where Precision and Recall are as defined in Section 5.4.1.

In the case where the problem is multi-class or multi-label, the most balanced approach

is to calculate a per-class F1-score and then calculating a weighted average of the per-class

F1-scores to generate a global metric.

5.5 Implementation Details

Following the recommendations of70 the training was done for 200 epochs. Batch size is 32

with a learning rate of 0.001 decaying to 0.0001 after 80% of the epochs. All streams were

ResNet5071 networks which were initialized with weights from66 for the respective RGB

and OF networks trained on the UCF101-24 dataset. The input to the networks are 224x224

RGB images and stacks of 10 OF volumes. For the results we use the same benchmarking

tools as those provided for the AVA challenge with minor alterations only to obtain useful

plots.

We report the results of several experiments on miniAVA and on UCF101-24. This task

involves localizing the atomic actions in space and time, achieving the highest video mAP

(at 0.5 IoU) possible. As described in Section 5.3, the ground truth bounding boxes were

used for spatial localization (see Section 5.3 for the justification why this simplification

does not trivialize the problem). For all experiments we round mAP to 2 decimal places.

5.6 Tests

5.6.1 Appearance Context Source Tests

We ran the following tests on our methods, on both the miniAVA dataset and the UCF101-

24 datastet, regarding the appearance context source:

• Baseline RGB, OF, and 2-stream Fusion with no Actor Centric Filtering Filtering
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• Hybrid Sigmoid-Softmax Loss vs Sum-of-Sigmoids.

• GBB, Crop and Fovea Actor Centric filtering on RGB streams.

• 2-stream Fusion With all combinations of Actor Centric filtering (including no filter-

ing)

5.6.2 Semantic Neighbor Context Source Tests

Regarding the semantic neighbor context source, we ran tests exclusively on the miniAVA

dataset. It would not make sense to use semantic neighbor context information on the

UCF101-24 dataset because on that dataset, in each video, every person depicted is per-

forming the same action, so the actions of the target and the its neighbors are always the

same.

The tests ran were:

• Hyperparameter tuning for the LSTM architectures (tuning number of neighbors,

time window, and number of units), deciding with LSTM architecture to use

• LSTM fusion with two passes vs three passes (see Sec. 4.2)

• Noise resilience tests

• Baseline testing: LSTM vs Feed-Forward Neural Network (FFNN) vs Naı̈ve-Bayes

For the noise resilience tests we feed noisy data to the LSTM networks to check how the

performance changes with noise. To generate this noisy input we take a clean input sam-

ple using ground truth data and switch input labels from the semantic neighbor context

encoding randomly, at a fixed rate, varying from 0% noise to 100% noise.

The baseline testing is done to evaluate the impact of two different classifier charac-

teristics: sequencing capability and output structuring (See Table 5.4. When using LSTM

architectures to train on our semantic neighbor context encoding we are leveraging not
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only the sequencing abilities of the architectures to inform each classification step with the

internal representation of past classification steps, but also taking advantage of the struc-

tured output cost function described in Section 4.3.3.

The Naı̈ve-Bayes model is designed to tackle binary classification problems. The trans-

formation from binary classification problems to multiclass problems is straight-forward

- just develop K (where K is the number of classes) binary models, and then compare the

results of all models at the classification step. To enhance it further to deal with multi-label

problems some work is required. In our application, the problem follows a unique struc-

ture of having some sets of labels being mutually exclusive (i.e. multiclass) and some being

truly multi label (See Section 4.3.1). To deal with this, we train 30 independent Naı̈ve-Bayes

models for the 30 classes present in the miniAVA dataset, and then use post-processing

during the labelling step. For the pose labels (the mutually exclusive set of labels) we sim-

ply compare the predictions of the Naı̈ve-Bayes models trained on the pose labels and pick

the highest probability occurrence. For the non-mutually exclusive sets (human-human in-

teractions and human-object interactions) we manually enforce the label structure by first

selecting the top three most likely labels on each classification instance and selecting from

those the ones that are higher than a given threshold (ending up with 0-3 human-human

interaction labels and 0-3 human-object labels, as enforced by the miniAVA/AVA dataset).

Comparing this procedure with the LSTM approach, we point out that the Naı̈ve-Bayes

does not enjoy the properties of having sequencing in the classification procedure (in fact,

the Naı̈ve-Bayes model considers every instance to be independent of each other by defi-

nition) nor does it take advantage of the dataset’s labelling structure during training. For

example, in the pose labels, models trained with a softmax-like approach (i.e. multiclass

models) will enjoy the property that the probabilities of the pose predictions sum to one.

This implies that if the likelihood of a single label increases, all others must decrease, en-

forcing better performance and more accurate training. The Naı̈ve-Bayes does not take
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Model\Properties Output Structure Sequencing
Naı̈ve-Bayes No No
FFNN Yes No
LSTM Yes Yes

Table 5.4: Model properties comparison for baseline testing.

advantage of this kind of structure.

In the FFNN models, the labelling structure is taken into account during the training

procedure, in exactly the same way that the LSTM models do. However, FFNN models do

not have any internal state modelling past classification instances, and, as such, are unable

to do sequential classification.

The baseline testing is accurately explained in Table 5.4. This test will expose the con-

tribution of each property to the overall model performance.

we did not run any tests on these datasets using the skeletal data context source. How-

ever, we have published preliminary results using skeletal data for action detection and

recognition in BMVC 201821.

5.7 Remarks on Naı̈ve-Bayes

The Naı̈ve-Bayes classifier is a simplistic probabilistic classifier based on applying Bayes

Theorem while assuming independence between features. Bayes’ theorem yields Equation

5.7:

P (C|x) = P (C)p(x|C)

P (x)
(5.7)

where C is the class having value 1 (in the binary scenario), x = (x1, x2, ..., xN ) is the input

data vector with N independent features, P (C|x) is the posterior probability, P (C) is the

prior, P (x|C) is the likelihood and P (x) is the probability of the data or evidence. Since

the denominator has no dependency on C, we can estimate the posterior by estimating the
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numerator. Since the numerator is composed of the prior multiplied by the likelihood, it is

equivalent to the joint distribution P (C, x).

From the assumption of independence between features, the joint distribution can be

estimated as show in Equation 5.8.

P (C, x) = p(C, x1, x2, ..., xN )

= p(C)
NY

i=1

P (xi|C)
(5.8)

In the semantic neighbor context scenario, x = (x1, x2, ..., xN ) is the vector encoding

the actions of the neighbors accross time (as described in Section 3.2). The independence

assumption means that every action of every neighbor is independent, even actions per-

formed by the same person, which, of course, is an undesirable constraint.

In the Multinomial Naı̈ve-Bayes formulation, the one used for the Semantic Neighbor

Context scenario, the feature vectors x are modelled as outputs from K different multino-

mial distributions, where K is the number of classes (i.e. K multinomial distributions must

be learned from the data, and K different binary classifiers must be learned for the task.).

A feature vector x = (x1, x2, ..., xN ) can be interpreted as a histogram where xi is the num-

ber of times feature i was seen in a particular instance. Since this scenario involves K=30

classes, each histogram will have a different binary label Ck (with k = 1, ..., 30) with which

the joint distribution will be estimated.

Another limitation of Naı̈ve-Bayes libraries is that there is no formal way to deal with

the fact that there might be instances in which the exact same input is paired with different

outputs. In the semantic neighbor context scenario, this refers to a situation in which all

of the neighbors of the target are performing the same actions across time, but the target is

performing a different action. Note, that since the Naı̈ve-Bayes classifier has to be trained
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as 30 independent classifiers (see Section 5.6) this can happen easily, as it only implies a

change in a single label (going from performing one specific action to not performing it,

or vice versa). In fact, such as the case, and during training, the input had to be pruned

to remove these scenarios. This greatly simplifies the task. In comparison, neural net-

work based approaches tackle this problem by assigning different non-zero probabilities

to all possible outputs given the same input. Finally, due to the way that miniAVA was

constructed (see Section 5.1) it is possible to have a label with no instances in the training

set. Again, neural network based scenarios can learn from this and just attribute a small

probability to this label, but the Naı̈ve-Bayes libraries cannot. So in those instances, the

model was hard coded to be unable to ever predict that label to occur. Given the highly

unbalanced nature of this dataset, this too is an advantage for the Naı̈ve-Bayes model.
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Chapter 6

Results and Analysis

6.1 Appearance Context

In this section, the results obtained on the tests run on the Appearance Context source are

shown and explained.

6.1.1 Baseline

For the baseline experiment, we need to establish what the mAP of an unaltered, state-of-

the-art, Two-Stream CNN is on this task (See Section 4.3.4, as well as the performance of

each individual stream. With this baseline we have a result against which we can establish

a fair comparison of the performance of our method.

Model\Dataset miniAVA UCF101-24
RGB 5.06% 53.4%
OF 5.85% 66.8%

RGB + OF 5.00% 73.3%

Table 6.1: Baseline individual streams and their fusion. Results are the video mAP at 0.5
IoU.

In Table 6.1 we show the results of this experiment. For the miniAVA dataset we note

55



how using only Optical Flow performs better than RGB. This has been also found to be

the case for some implementations of these types of networks2 and is often due to the fact

that certain actions have very clear motion patterns. Furthermore, we highlight that the

baseline of the RGB + OF fusion is lower than both of the fused streams in the miniAVA

dataset, which suggests that, in this dataset, the spatiotemporal features being learned

are not properly using complementary information from both streams, a result which we

improve upon in further experiences.

On UCF101-24 the performance is a lot better for every model. This is another evidence

of the high difficulty of the miniAVA dataset classification task. The results obtained in

UCF101-24 are as not surprising, with a single OF stream outperforming a single RGB

stream. The Two-Stream fusion approach outperforms either single stream. These results

are to be expected, considering that the Two-Stream Architecture used had weights pre-

trained on UCF101-24.

6.1.2 Single Stream RGB Actor Centric Filtering

In this experiment, the goal is to compare the actor centric filtering approaches tested: no-

filtering, crop, GBB and fovea actor centric filtering. This experiment is run exclusively on

the RGB stream.

Model\Dataset miniAVA Relative
Improvement UCF101-24 Relative

Improvement
RGB 5.06% – 53.4% –

RGB + GBB 5.63% +11.2% 45.3% -15.1%
RGB + Crop 5.19% +2.5% 24.5% -54.1%
RGB + Fovea 5.12% +1.1% 49.2% -7.8%

Table 6.2: Actor centric filtering results on individual RGB streams vs baseline
(RGB).Results are the video mAP at 0.5 IoU.

In Table 6.2 we show the results of this experiment. For the miniAVA dataset, two main

conclusions can be drawn from these results. One is that the use of all pre-filtering actor
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centric mechanisms improve results. The second is that the filtering techniques that create

artificial edges (i.e all except fovea filter, see Section 3.1) perform best. We think this is due

to the fact that these artificial edges seem to be contributing to more accurate prediction of

certain over represented classes, particularly stand, which is the most common class. An

important observation to make is that the fact that actor centric filters provide improve-

ment on the miniAVA dataset is not surprising. In this dataset, seldom do the labels of all

targets in a video coincide, leading to incorrect classifications when no filtering is applied.

If the network doesn’t know who it should classify, how can it be expected to correctly pre-

dict the label of two different targets in the same video when their labels are not the same?

We believe this to be why our actor centric approach provides the biggest improvement in

the miniAVA dataset. We build on this notion in subsequent tests.

On the UCF101-24 dataset the RGB stream with no actor centric filtering achieves the

best results. This is not surprising taking into account the characteristics of the UCF101-

24 dataset. Although the dataset is multi-person, in a single video, every person will be

performing the same activity. As such, allowing the network to look at what a person that

is not the target is doing is actually reinforcing the networks performance. Regarding the

actor centric filters, we have Fovea as the top performer, GBB in second place and Crop in

last.

6.1.3 2-Stream Fusion Actor Centric Filtering

In this experiment we compare the results of the actor centric filters when fused in a two-

stream CNN architecture.

In Table 6.3 we show the results of this experiment. For the miniAVA dataset, the first

result is that cropped flow seems to worsen results when fused with all other streams

except the cropped RGB stream, which is an interesting result that suggests some synergy

in the learned features. We also note how the fovea filter performs better than all others
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Dataset miniAVA UCF101-24

Model OF Relative
Improvement OF + Crop OF

RGB 5.00% – – 73.3%
RGB + GBB 3.59% -28.2% 4.16% 70.9%
RGB + Crop 5.01% +0.2% 5.06% 68.7%
RGB + Fovea 5.94% +18.8% 4.95% 74.5%

Table 6.3: Testing of several combinations of streams and their respective actor centric
filters. Results are the video mAP at 0.5 IoU.

when fused with unfiltered flow and that it is the only two-stream approach that improves

on all previous experiments.

For the UCF dataset we again notice that the Crop filtering approach severely under-

performing. This is to be expected, considering the poor performance this approach had on

this dataset even in single-stream RGB attempts (See Section 6.1.2). However, a surprising

result is found: the Two-Stream fusion with Fovea actor centric filtering is outperforming

the no-filter approach. Like we stated in Section6.1.2, we expected no-filter to be the best

performer in the UCF101-24 dataset.

The fovea actor centric filter outperforms all other approaches when fused with OF

despite not being the best single stream approach (on UCF101-24 the best single stream

approach was no-filter, and on miniAVA GBB filtering. See Table 6.2). This seems to indi-

cate that the features learned using actor centric filtering on RGB better complement the

features learned by the OF stream.

6.2 Semantic Neighbor Context

In this section, the results obtained on the tests run on the Semantic Context source are

shown and explained.

We run four tests on semantic neighbor context: 1) hyperparameter tuning, 2) two

passes vs three passes (see Sec. 3.2)., 3) Noise Resilience Testing, 4) Baseline Testing.
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6.2.1 Hyperparameter Tuning

A 64 128 256 512 1024 2048
T=3 4.99% 5.04% 4.96% 4.80% – –
T=5 5.01% 4.97% 4.98% 5.05% 5.09% 5.11%
T=10 4.85% 5.00% 4.68% 5.04% – –
B 64 128 256 512 1024 2048
T=3 5.01% 5.00% 4.92% 5.12% 5.08% 5.09%
T=5 4.93% 4.94% 4.95% 5.04% – –
T=10 4.81% 4.90% 4.92% 4.97% – –

Table 6.4: Evaluation of the best context generation for model A and model B LSTM archi-
tecture (see Figure 3.2, with the columns corresponding to the number of hidden units. All
results use N = 3 (i.e three closest neighbours)

In Table 6.4 we show the results obtained for the hyperparameter search. We use the

ground truth labels to generate the input, as explained in Sec. 3.2. We set the number of

neighbors to three by noticing that the average number of people in the miniAVA dataset

to be less than two. When we generate the input, if there are less people present in the

frame than neighbors being considered by the model, we simply set those to actionless

neighbors with no position (i.e.: the model actually contemplates up to 3 neighbors). While

model B is marginally better, model A seems to operate better with a slightly larger time

window, regardless of the fact that there is not a significant difference between the best

model A architecture or the best model B architecture. Model A seems to need larger

layers to model more complex sequences successfully. This is desirable for the purposes

of the MVC framework since we plan on having the possibility of fusing the results of this

model to the other classification models applied to the other context sources. Having this

model have a number of hidden units closer to 1024 (the number of units used by our actor

centric filtering approach), the fusion is not unbalanced by the number of units. As such,

we use model A in the next experiments.
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Model mAP@0.5IoU
RGB + Fovea + OF 5.94%
Groundtruth Input 9.11%
Two Pass Input 6.24%
Three Pass Input 6.28%

Table 6.5: Testing context fusion architectures in a groundtruth scenario, i.e. using test
labels to generate context and our Two Pass scheme, both with class score fusion. A final
additional pass is also tested.

6.2.2 Two pass vs Three pass

In Table 6.5 the results of fusing our best performing LSTM network for semantic neighbor

context with the actor centric filtered CNN are shown. If ground truth data is used to

generate the input to the LSTM the result improves greatly to 9.11%. However, this is not a

realistic scenario, and not very interesting to discuss. When using the labels obtained from

our RGB + Fovea + OF actor centric model to generate the input to the semantic neighbor

context LSTM the results are very interesting. First of all, to get an improvement in the

performance when fusing, taking into account that the input data is wrong 94% of the

cases is, impressive. Furthermore, the relative performance increase is in the order of 5%.

When we then take the labels generated from the two-pass scheme as input for a three-pass

approach, we observe further improvement, albeit marginal. These results are promising,

and convey the potential of our MVC framework for fusing additional context sources.

6.2.3 Semantic Neighbor Context Noise Resilience

In Table 6.6 the results of feeding increasingly more corrupted data to our LSTM models is

shown. Since this test is just to compare the performance of models trained in exactly the

same conditions, the results are presented in accuracy, for ease of interpretation. Unsur-

prisingly, the trend is to have worse performance with increasing input corruption. There

is a surprising result with 50% noise on the input achieving the highest performance of all

instances tested. This can be explained by the intrinsic random nature of this test: the input
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NHU\Noise 0% 5% 25% 50% 75% 95% 100%
32 33.06% 33.04% 32.47% 31.73% 30.06% 25.71% 26.74%
64 32.93% 32.87% 33.16% 31.59% 29.29% 26.06% 26.93%
128 33.19% 33.25% 32.82% 32.06% 29.60% 26.39% 26.77%
256 33.53% 32.80% 34.21% 34.68% 29.62% 26.47% 26.77%
512 33.01% 34.06% 29.90% 31.68% 29.32% 30.10% 26.49%

Table 6.6: Testing noise resilience properties of our semantic neighbor context embedding
and LSTM model. Results shown in accuracy.

is being randomized with each experiment by being subjected to random label flipping on

the input. However, the trend of having worse performance with higher noise is still easily

observable. All models seem to hover around 26% accuracy with 100% noise on the input.

This is to be expected, considering the highly unbalanced dataset. Although noise is being

applied to the input, noise is not being applied on the output (i.e. the labels used on the

training process for these models are the correct labels). In that scenario the models are

basically learning the most common classes for each task and learning to predict those to

minimize their cost functions in a scenario where no learning is possible from the input

data.

6.2.4 Baseline Testing: LSTM vs FFNN vs NB

In Tables 6.7, 6.8 and 6.9 we show the results of comparing the performance of Naı̈ve-

Bayes, feed-forward neural networks and LSTM networks on increasingly noisier input

data. Since the training and preprocessing procedure for the Naı̈ve-Bayes model was dif-

ferent, we show the results in F-1 score. This metric has the advantage of averaging per-

formance across labels taking dataset imbalance into account.

Noise 0% 5% 25% 50% 75% 95% 100%
F1-Score 42.31% 43.17% 42.39% 39.47% 35.71% 31.78% 31.80%

Table 6.7: F-1 Scores for different noise values for the Naı̈ve-Bayes models.
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NHU/Noise 0% 5% 25% 50% 75% 95% 100%
32 41.05% 39.88% 39.70% 35.25% 35.61% 25.67% 31.06%
64 45.01% 40.55% 47.19% 40.67% 38.79% 27.57% 28.76%
128 43.85% 35.18% 41.77% 38.31% 38.12% 30.01% 36.49%
256 42.68% 47.01% 38.21% 37.15% 34.36% 24.28% 35.87%
512 39.27% 47.47% 40.00% 38.33% 27.70% 32.02% 28.45%

Table 6.8: F-1 Scores for different noise values for the FFNN architecture

NHU/Noise 0% 5% 25% 50% 75% 95% 100%
32 36.06% 36.91% 37.44% 31.46% 32.59% 19.55% 23.62%
64 38.24% 38.91% 31.78% 37.30% 31.65% 28.21% 25.93%
128 43.41% 33.91% 42.55% 43.16% 32.86% 27.87% 24.35%
256 40.83% 39.41% 32.25% 31.28% 32.60% 21.99% 34.42%
512 39.45% 43.36% 41.42% 27.77% 44.38% 29.62% 23.40%

Table 6.9: F-1 Scores for different noise values for the LSTM architecture

Looking first at the comparison between the results obtained by the LSTM and FFNN

models, an interesting result appears. There isn’t much to be gained by incorporating

sequential classification into this problem, as shown by the fact that the FFNN models

seem to outperform the LSTM architectures. The only difference in those two types of

models is exclusively the usage of LSTM layers or fully connected layers in the first layers

of the model. Both the training parameters (i.e. number of epochs, learning rate, cost

functions...) and the output layers are exactly the same, which points to the conclusion

that the sequential processing of this data is not beneficial to the system’s performance.

Comparing the LSTM and FFNN results with the ones obtained in Naı̈ve-Bayes mod-

els, shown in Table 6.7, is a more delicate subject. At first glance, the performance of the

Naı̈ve-Bayes models seems slightly worse, but there are many factors at play here. Not

only is the training procedure different (necessarily so, as Naı̈ve-Bayes is not a neural net-

work based approach) but there are also pre-processing steps that had to be applied to this

model that were not required to the FFNN and LSTM models. As described in Section 5.7,

the input vectors had to be pruned not to have duplicates with different output labels, and

actions that never have a positive sample in the training set are effectively excluded from
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the output space. Both of these changes make the problem a bit simpler for Naı̈ve-Bayes.

However, there are also handicaps in this model: this approach can only be trained as 30

independent binary classifiers that are then joined a posteriori. The advantages that this

model has are hard to measure independently. But the effect of its handicap can be easily

verified with confusion matrices.

In Tables 6.10, 6.11 and 6.12 we show the confusion matrices of the pose labels (the

set of mutually exclusive labels) obtained from the predictions on the test set of the best

performing models in a zero-noise scenario. The models that obtained these results were

the FFNN with 64/32 hidden units and the LSTM with 128/64 hidden units. We show

the results on the 0% noise scenario because that is the scenario is which we are sure that

random input switching is not affecting the results.

The most common labels in the dataset are labels 8, 9 and 10, respectively sit, stand

and walk. In the case of the FFNN and LSTM models, during training, these labels were

learned using a softmax classifier. This implies that whenever a label’s score goes up (i.e.

when it approaches 1) the scores of all other labels must go down. The effect this had

on training is that very rarely will the models predict a class of low occurrence as long

as the model has evidence to believe it can me mistaken for a different class. This can

be seen on Tables 6.11 and 6.12, noting that labels 7 and below are very rarely (if ever)

predicted, although they do have some presence in the training data. Comparing this with

the results found in Table 6.10, for Naı̈ve-Bayes, the impact of independent binary training

is apparent. The confusion matrix is much more spread out, with values spread out on

every label. In particular, this has a strong impact on the correct classification of label 9,

with every label being mistakenly assigned to it. The takeaway from these tests is that,

although on the surface, the performance of the Naı̈ve-Bayes may not seem very far away

from the performance of the other two models, the impact of this methods handicaps are

easily apparent, and the limitations it imposes on the training procedure are not justified
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by performance. Furthermore, this model cannot be generalized,to situations in which the

input cannot be pruned.

True Class\Predicted Class 1 2 3 4 5 6 7 8 9 10
1 14 2 0 0 4 6 0 20 76 15
2 5 0 0 0 0 3 0 1 8 6
3 4 5 7 9 5 4 1 0 6 5
4 0 0 0 0 3 0 0 5 14 0
5 0 0 0 0 9 2 0 8 51 10
6 0 0 0 0 0 89 0 2 43 0
7 5 1 0 4 1 4 1 11 29 23
8 61 4 1 0 16 5 0 893 208 56
9 241 11 3 6 22 110 2 235 3,230 249
10 17 3 3 1 5 6 0 37 291 452

Table 6.10: Confusion matrix for the pose labels of the Naı̈ve-Bayes model with 0% noise
on the input.

True Class\Predicted Class 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 17 110 10
2 0 0 0 0 0 0 0 2 17 4
3 0 0 0 0 0 0 0 5 41 0
4 0 0 0 0 0 0 0 5 17 0
5 0 0 0 0 0 0 0 0 76 4
6 0 0 0 0 0 0 0 0 134 0
7 0 0 0 0 0 0 0 8 68 3
8 0 0 0 0 0 0 0 791 421 32
9 0 0 0 0 0 0 0 145 3,874 90
10 0 0 0 0 0 0 0 41 468 306

Table 6.11: Confusion matrix for the pose labels of the FFNN model with 64/32 hidden
units and 0% noise on the input.

6.3 Hybrid Sigmoid-Softmax Loss

In this experiment, we validate the choice of using the custom loss by showing the results

of the best individual RGB stream when trained with a single output layer consisting only

of sigmoid activation functions. This sum-of-sigmoids loss function is employed in the
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True Class\Predicted Class 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 19 104 14
2 0 0 0 0 0 0 0 1 18 4
3 0 0 0 0 0 0 0 5 35 6
4 0 0 0 0 0 0 0 5 17 0
5 0 0 0 0 0 0 0 8 67 5
6 4 0 0 0 11 0 0 1 116 2
7 0 0 0 0 0 0 0 10 62 7
8 0 0 0 0 0 0 0 815 385 44
9 2 0 0 0 1 0 0 162 3,791 153
10 0 0 0 0 0 0 0 45 404 366

Table 6.12: Confusion matrix for the pose labels of the LSTM model with 128/64 hidden
units and 0% noise on the input.

miniAVA baseline3.

Model\Dataset miniAVA
RGB + GBB - Hybrid Sigmoid-Softmax Loss 5.63%
RGB + GBB - Sum-of-Sigmoids 5.01%

Table 6.13: Results that validate the choice of a custom loss against a standard binary cross
entropy loss.

In Table 6.13 we show the results of this experiment. Our loss achieves an video mAP

of 5.63%, representing a relative mAP improvement of 12.6% over using a standard sum-

of-sigmoids loss. We believe this is due to the fact that our Hybrid Sigmoid-Softmax Loss

takes into account the mutual exclusion of the pose classes, while the Sum-of-Sigmoids

approach does not.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, a flexible, extensible and modular framework for context source testing and

fusion - the Multisource Video Classification (MVC) framework is proposed. This frame-

work enriches the CNN-based approaches by allowing extra sources of information to be

leverage into performance gains. The context sources tested, actor centric filtering and se-

mantic neighbor context both improve the performance of the tested models when used.

Further tests reveal the noise resilience properties of the semantic neighbor context mod-

els. A custom loss function the Hybrid Sigmoid-Softmax loss, that leverages the structure

present when the label sets of the dataset being classified are only partly mutually exclu-

sive is also tested, also showing performance improvements when compared with the sum

of sigmoids standard. Finally, ablation tests determining the importance of sequential clas-

sification and structured output functions in the semantic neighbor context approach are

also presented. These tests show that although sequential classification does not warrant

significant performance gains, the structure output has verifiable impact in reducing class

confusion, particularly for the mutually exclusive classes.
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From this work, we have one paper accepted at BMVC 201821, describing preliminary

results on action detection and recognition, one paper submitted to ECCV 2020 describing

the proposed actor centric filtering approaches, and a paper on the results obtained with

our LSTM architectures for semantic neighbor context is currently under preparation.

7.2 Future Work

In the future, we wish to expand the testing on the MVC framework to include all four

types of context sources discussed. This will improve the innovation achieved with the

framework, while still improving its flexibility, without restricting its modularity and ex-

tensibility.

Furthermore, it would be relevant to test the Actor Centric Filtering approach using

state-of-the-art models like I3D2 or the Slow-Fast Networks45 and filtering the feature

maps that come from the region proposal network part of those architectures. This test-

ing is motivated by the fact that performance gains were obtained by using the foveation

filters instead of cropping (cropping is currently the approach used by the state-of-the-art

models.

Finally, for the semantic neighbor context approach, devising a way to insert attention

based modules in the FFNN models seems a promising way to boost its performance,

following the trend shown by the NLP community.
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