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Abstract

To interact with humans in collaborative environments, machines need to be
able to predict (i.e., anticipate) future events, and execute actions in a timely
manner. However, the observation of the human limb movements may not be
sufficient to anticipate their actions unambiguously. In this work, we consider
two additional sources of information (i.e., context) over time, gaze, movement
and object information, and study how these additional contextual cues im-
prove the action anticipation performance. We address action anticipation as a
classification task, where the model takes the available information as the input
and predicts the most likely action. We propose to use the uncertainty about
each prediction as an online decision-making criterion for action anticipation.
Uncertainty is modeled as a stochastic process applied to a time-based neural
network architecture, which improves the conventional class-likelihood (i.e., de-
terministic) criterion. The main contributions of this paper are four-fold: (i)
We propose a novel and effective decision-making criterion that can be used to
anticipate actions even in situations of high ambiguity; (ii) we propose a deep
architecture that outperforms previous results in the action anticipation task
when using the Acticipate collaborative dataset; (iii) we show that contextual
information is important to disambiguate the interpretation of similar actions;
and (iv) we also provide a formal description of three existing performance
metrics that can be easily used to evaluate action anticipation models.

Our results on the Acticipate dataset showed the importance of contextual
information and the uncertainty criterion for action anticipation. We achieve
an average accuracy of 98.75% in the anticipation task using only an average of
25% of observations. Also, considering that a good anticipation model should
perform well in the action recognition task, we achieve an average accuracy of
100% in action recognition on the Acticipate dataset, when the entire observa-
tion set is used.

Keywords: Action Anticipation, Early Action Prediction, Context
Information, Bayesian Deep Learning, Uncertainty.
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1. Introduction

Humans have the natural ability to interact with each other and perform
joint tasks. Part of this ability is due to their capacity of perceiving the en-
vironment and recognizing patterns that help them anticipate the actions of
others, and thus make better decisions. Similarly, artificial machines need this5

capacity of anticipating actions, to act accordingly and achieve an effective in-
teraction with humans [1].

Action anticipation and action recognition are two different tasks. The “ac-
tion recognition” task is based on a model that uses an entire sequence of in-
formation, which represents one performed action, to associate the observed10

action to one possible action class [2]. If the decision-making depends on the
entire action, it can only be performed after the action is completely executed.
However, this approach is not suitable for systems that manage risks or perform
joint tasks with humans. For instance, in a situation where a self-driving car
approaches a pedestrian, it must perceive whether the pedestrian will cross the15

road in time, in order to safely stop or deviate the car if necessary. In this sce-
nario, the model must not only recognize actions but, more importantly, must
anticipate them [3].

Action anticipation consists of classifying an action even before it occurs, by
using the partial information provided up to a certain moment in time. Usually,20

an anticipation model is more complex than a recognition one. This comes from
its capacity to classify actions based on an incomplete sequence of data, which
makes the choice of the correct class more uncertain. Ideally, every anticipation
model should be capable of recognizing actions; on the other hand, not every
recognition model would be able to anticipate them.25

In the last few years, deep learning has achieved the state-of-the-art results in
many tasks, such as image recognition [4, 5, 6], natural language processing [7, 8]
and action/activity recognition [9, 10, 11]. Some works, like [12, 13, 14], repre-
sent an action by estimating the movement of the involved actors (i.e., users).
In the case of simple and unambiguous actions, the movement can be sufficient30

for a successful recognition/anticipation task. However, in the case of more
complex and ambiguous actions, it would not be enough to recognize/anticipate
successfully, mainly when the information about objects, persons, environment
configuration, movements performed previously, are important for recognizing
or anticipating actions. Furthermore, some details during action anticipation,35

such as objects’ position, the relation between hands and object/person and the
type of object manipulated, can offer as much or even more information than
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only movement. As such, using only movement, the model rules out the context,
a critical information that can help characterize the actions.

Regarding the action recognition task, the two-stream approaches [10, 11,40

15] are the most successful, because they use movement as the main source
of information to describe each action, and they use the context as additional
information that can help characterize each class individually. In these solutions,
the movement is the optical flow calculated between sequential images, and
the contextual information [16] is extracted implicitly by CNNs (Convolutional45

Neural Networks)[17]. However, to obtain the implicit contextual information
from images in a self-supervised manner, the training procedure of the CNN
models requires large datasets to achieve good results. As a consequence, the
two-stream approaches are not effective when solving problems provided by
small datasets, such as those commonly used for human-human or human-robot50

collaboration.
Analyzing from another perspective, even achieving satisfactory results in

their experiments, the aforementioned works are not crystal clear about how
one could use their solutions in a real-time situation, once they measure the
model performance using accuracy or observation ratio. They do not discuss55

how to handle action anticipation or what kind of function must be used as the
decision-making criterion. Due to the absence of such discussion, it is unclear
how to use this approach in a real application, where the data is continuously
generated, as in a video streaming.

Another problem of most deep learning solutions is their overconfidence in60

their predictions. A deterministic model will always provide a prediction, even
when there is a high uncertainty about the correct class, and the final decision
becomes unclear. A trustworthy model should assess its uncertainty about each
prediction and provide the system with the possibility of making more reliable
decisions.65

In this work, we focus on context-based action anticipation, but with small
datasets. Thus, instead of implicitly learning the visual context, we define the
contextual information in an action anticipation problem. With this in mind,
we used the Acticipate dataset [1], where one person hands an object over to
another one, and receives it back. For this dataset, the dyadic interaction task70

requires the future prediction (i.e., anticipation) of the arm and head motion,
gaze and object position. A previous work [18] has shown that, using the eye
gaze and the 3D pose of the main character in the Acticipate dataset, a time-
based deep learning architecture is able to anticipate his actions. As defined
in [19], context is any information that can be used to characterize an entity.75

Therefore, when considering the 3D pose/movement as the entity that represents
an action, the eye gaze in [18] can be seen as context information.

Now, to further investigate the importance of context in the task of antic-
ipating actions, we have increased the complexity in the Acticipate dataset,
extending its number of actions. To do that, we divided previous actions to cre-80

ate the new actions receive and pick, which add ambiguity into the actions give
and place, correspondingly. We also consider an additional element of context
information, the position of the handled object. Finally, instead of using 3D
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pose and gaze as in [18], we use only information taken from RGB images. Such
restriction makes our proposal more general and less dependent on intrusive85

and/or expensive sensors.
Also, to investigate the possibility of using the uncertainty to provide a more

reliable decision, we propose a context-aware model based on a recurrent neural
network with an adaptive threshold. This threshold is calculated via an uncer-
tainty metric and represents a decision-making criterion for action anticipation.90

The use of uncertainty significantly contributes to attenuate the overconfidence
problem often faced by models trained with small datasets.

In summary, the main contributions of this paper are the following:

• We propose a novel and effective decision-making criterion that can be
used to anticipate actions even in situations of high ambiguity. The pro-95

posed approach aims to minimize the model’s uncertainty instead of max-
imizing its class probabilities. Therefore, by applying a proper threshold
over the uncertainty, the decision about whether an action should be an-
ticipated or not can be done.

• We show the importance of context information to disambiguate similar100

actions.

• We propose a deep architecture that uses less information than [18], and
outperforms the results in action anticipation task using Acticipate dataset.
This result holds even in the case of its extended number of actions, which
are more ambiguous than the original ones [1].105

• We also provide a formal description of three existing performance metrics
that can be easily used to evaluate action anticipation models.

To build a better understanding about our proposal, the next sections will
cover, respectively: the related works (Sec. 2); action anticipation background
and related problems (Sec. 3); the methodology of this work, including the110

hypotheses raised and its main contributions (Sec. 4); Bayesian neural net-
works and uncertainty (Sec. 5); our proposed approach (Sec. 6); experiments
(Sec. 7 and 8, for results and discussions); and finally, conclusions and future
works (Sec. 9).

2. Related Works115

In the last few years, action anticipation has been addressed by many re-
searchers [20, 21, 22, 23, 24, 25] due to its importance to perform an effective
interaction.

In [23], the authors proposed to decrease the dimensionality on RNNs by
allowing the sharing of weights, and improve the temporal representation of an120

action by using an RBF kernel (Radial Base Function) over the hidden-state of
an LSTM network. They proposed to feed an LSTM with features extracted by
a CNN. Next, they applied an RBF over the LSTM hidden states, and lastly,
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the RBF outcome is given as input to a Multilayer Perceptron (MLP). The
authors use between 20% and 50% of a video to predict the next features and125

then perform the anticipation.
In [13], the authors use a convolutional auto-encoder network to predict

the next movement of a video. Such movement is generated by a ranking loss
function, applied over the difference between consecutive images in a sequence,
and is stored in a still RGB image called Dynamic Image [26]. With a Markov130

assumption, after generating a sequence of dynamic images using S frames for
each one, the model generates the next k dynamic images, where k ≥ 1. Further,
those images feed a model that outputs the probability distribution over action
classes. A drawback of the two previous works is to use movement as the only
source of information to represent an action, which can harm the prediction of135

actions that are related not only to movement but also to context information.
In [27] is proposed a model to anticipate actions based only on RGB images.

The authors use as feature extractor the pre-trained CNN VGG16 and, as the
classifier, two LSTMs that predict the classes corresponding to each input frame
of a video. A similar approach is also presented in [28].140

LSTM is also used to anticipate actions of car drivers by using only RGB
images [29] or in combination with GPS information [30]. Other approaches, as
[31], use Generative Adversarial Networks (GAN) to predict future images and
then anticipate the action, or more sophisticated architectures, as in [3], that
uses Convolutional Graphical Models (CGM) to predict when a pedestrian will145

cross the road.
Despite these works present good results in terms of accuracy at each obser-

vation time, none of them explains how action anticipation should be performed
in a real scenario, when it is not possible to know the size of the input sequence.
They did not discuss what kind of decision-making criteria could be used in150

such a situation.
Even in works as [32], which aim to anticipate action in online videos, the

authors only reported the accuracy at each observation, but nothing about how
to make decisions. Only a couple of works address this question. For instance, in
[33, 34], the authors use a threshold over the probability distribution provided by155

an HMM (Hidden Markov Model) to anticipate maneuvers of drivers. However,
as discussed in [33], this approach faces problems in ambiguous situations, where
it is not possible to be sure about the action to be anticipated, even when the
probability exceeds the specified threshold.

Many of the approaches mentioned above are not suitable for small datasets,160

since the high capacity of their models can lead to overfitting. Therefore, [18]
proposes a different method to anticipate action in the Acticipate dataset - a
small collaborative dataset used to understand the role of gaze on action antic-
ipation [1], as discussed in Sec. 4. Their approach consists of feeding an LSTM
cell with a 3D pose (Motion Capture-MoCap information) and gaze (fixation165

points), and then pass the LSTM output through a softmax classifier. They
trained two models with different observations: one with only 3D pose and an-
other with 3D pose plus eye gaze. When the model uses the pose and gaze
information, the authors concluded that the actions in the dataset could be
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anticipated 92ms before. This result showed the importance of using not only170

movement information (here, the evolution of the pose in time) to anticipate
actions. However, the authors did not notice that their model did not recognize
all the actions (100% of action recognition accuracy) even after seeing the whole
sequence. Their results for action anticipation were shown based only on one
action sample. More conclusive results should present statistics for all classes175

in the entire dataset. In complement, they also did not provide an answer to
when a model must anticipate an action. From their comments, we presume
that it may be done using a threshold on the probability value, as mentioned in
[33, 34].

After these explanations, our main objectives in this work are:180

• propose a model that improves results in [18] even when using only RGB
images;

• present how context can be used in a neural network architecture to im-
prove action anticipation;

• present in detail how to anticipate an action using a threshold value as a185

decision-making criterion; and

• propose the use of uncertainty as an effective threshold value that improves
action anticipation.

3. Action Anticipation Background

In this section, we describe the definition adopted here for action anticipa-190

tion, its main properties, and how we address the problem. We can divide the
works that try to solve the anticipation task into two main groups: (i) early
action prediction, where an action must be predicted before it is fully executed
[35, 24, 36, 37, 38]; and (ii) event anticipation, where an event must be predicted
before it starts [39, 40, 40]. In this work, “action anticipation” is understood as195

in the first set of works: early action prediction by using sequential features.

3.1. Problem Definition

First of all, it is essential to formally define the action anticipation task.
Let X = {x1,x2, · · · ,xN | xt ∈ Rd×1} be a sequence with N observations that
represents the execution of a specific action y ∈ Y, where Y is a set with d action200

classes. Here, xt represents an observation taken at time t. Now, considering
that Xt1:t2 represents an indexed sequence composed by the observations taken
between time t1 and t2, we define a model M for action classification problem as
a mapping function parametrized by θ that receives as input X1:t(t observations
from X ) and return as output the vector of probability scores s ∈ [0, 1]d×1,205

representing the probability that sequence X belongs to each action class.

s = M(X1:t,θ). (1)
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In action recognition tasks, the model M has all the observations of the
sequence X (t = N) available to generate the probability score ŝ. On the other
hand, for an action anticipation task, the action is not completely executed,
thus only an initial part of X is available (t < N) so that M can infer ŝ.210

In Eq. (1) the parameter θ can be found by solving the following optimization
problem:

θ̂ = argmin
θ
{L(θ,D)} (2)

where D = {(X (1), y(1)), (X (2), y(2)), · · · , (X (k), y(K))} is the training set, with
each pair (X (i), y(i)) representing an action sequence and its respective label, K
is the number of sequences in the training set, and L is a loss function.

During the prediction time, we do not know the value of N , and thus we do
not know when the action will end. Therefore, at each time t, M only uses the215

observed current sequence, X1:t, and a function g is in charge of predicting the
action class at instant t.

ŝ = M(X1:t, θ̂)

ŷ = g(ŝ). (3)

For action recognition tasks, the discriminant function g can be defined as:

g(ŝ) = argmax(ŝ), (4)

because the model M is more confident about the probability score assigned to
ŝ. On the other hand, for action anticipation tasks, since M uses only part of
the observations, when the distribution ŝ is close to a uniform distribution, one220

can not be certain about the correct class. Hence, Eq. (4) is not an adequate
discriminant function to anticipate actions.

In this way, a better option is to use a discriminant function with a threshold
parameter p, as presented in Eq. (5).

g(ŝ, p) =

{
argmax(ŝ), h(ŝ) > p

−1, otherwise
. (5)

Once p is specified as a probability value, h can be defined as:

h(ŝ) = max(ŝ) (6)

In Eq. (5), a value of p ≥ 0.9 means that the model is highly certain about
its prediction, and the action can be anticipated, which favors the use of such
a model in real-time. On the other hand, when it returns −1 means that it is225

not certain about the correct class and needs more observation to improve its
certainty.
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3.2. Evaluation metrics

After determining how to anticipate an action, it is essential to decide how
to ascertain the quality of the model M . Therefore, we formally describe three230

existing metrics that can be used in anticipation benchmark experiments: (i)
accuracy at each observation ratio, (ii) anticipation accuracy and (iii) expected
observation ratio.
Accuracy at each observation ratio. Considering that each sequence X
can have a different length N , this metric helps evaluate all sequences in a
normalized time scale. Thereby, the success ratio when anticipating an action
after a observation ratio r, with an anticipation threshold p, can be calculated
as follows:

ACC(r) =
1

K

K∑
i=1

pred(X (i)
1:dr×Ne, y

(i), p), (7)

where,

pred(X1:t, y, p) =

{
1, g(M(X1:t), p) = y

0, otherwise
. (8)

In Eq. (7), in terms of r, t = dr × Ne ∀ r ∈ (0, 1], where N is the number
of observations in a sequence X (i). However, in terms of t, r = t/N ∀ t ∈235

{1, 2, ..., N}.
Anticipation accuracy. In a real-time situation, the model can not access the
label of each observation. So, the evaluation of the anticipation model during
training must be performed when the model makes its first prediction for each
sequence. In this sense, this classification metric measures the success ratio of240

the model M when anticipating actions by the first time. It is calculated as the
average accuracy of each classification. Therefore, when using this metric, we
do not regard in which observation the action was predicted but whether it was
predicted correctly. Eq. 9 presents how it is calculated,

ACCact =
1

K

K∑
i=1

N−1∑
t=1

I(t)pred(X (i)
1:t , y

(i), p), (9)

where,245

I(t) =

{
0, ((t = 1) ∧ (g(M(X1:t), p) = −1)) ∨ (I(t− 1) = 1)

1, otherwise
(10)

where I is an indicator function that disable predictions based on whether the
anticipation has already occurred or not.

A detailed example of how to apply this metric is given in Fig. 1.
Expected observation ratio. This measurement focuses on the expected
amount of observations necessary to anticipate an action correctly. It can be
implemented according to Eq. (11). Note that when the model is correct, it
receives the value t, which corresponds to the observation where the prediction is
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Figure 1: Graphical example of how to calculate the anticipation accuracy using Eq. (9).

executed. However, when it misses the anticipation, it is penalized by receiving
the sequence size N .

Eobs =
1

K

K∑
i=1

obs(X (i), y(i), p), (11)

where,

obs(X , y, v) =
1

N
min({fpred(X1:t, y, p, t,N)}Nt=1)

fpred(X1:t, y, p, t,N) =

{
t, pred(X1:t, y, p) = 1

N, otherwise
.

4. Methodology250

This work aims to show the influence of context in the anticipation task and
to use uncertainty as a decision-making criterion in a collaborative environment.
To do this, we use a controlled dataset that contains, by each frame, the action
performed and the corresponding context information. Therefore, to understand
how our intuitions have arisen and resulted in our proposal, it is necessary to255

analyze the used dataset and thus realize how the questions came up.

4.1. Acticipate dataset

The chosen dataset is the Acticipate1, which was acquired to study the
influence of gaze in action and/or intention anticipation [1, 18] in a collaborative

1Download: http://vislab.isr.ist.utl.pt/datasets/
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environment. It comprises 120 trials, distributed into 6 classes. During the260

acquisition, the actor was wearing an eye gaze tracker binocular glasses (Pupil
Labs eye-tracker [41]) and a suit with 25 markers. He should perform 6 different
actions: give an object (left, middle, or right) and place an object (right, middle,
or left). In the give actions, he should give an object (in this case, a small red
ball) to one of the three volunteers located on: his right side, left side, or in front265

of him (middle). In the place actions, he should place the same object in one of
the three points on the table located at his right, middle (in front of him), or
his left. Each action starts with the object placed in a point near to the actor
and finishes when the object returns to the same point. As showed by [1] the
gaze is an essential source of information when one wants to anticipate actions.270

Besides, as we will see in the next section, the object plays a fundamental role
when the action becomes more ambiguous. So it is possible to know what kind
of context information must be taken into account for each action class during
the anticipation process. Fig. 2 presents a sample of each action and the object
starting point.275

(a) place right (b) place middle (c) place left

(d) give right (e) give middle (f) give left

(g) object starting point

Figure 2: Sample of each action in Acticipate Dataset and the object starting point

Each trial consists of 3-dimensional data corresponding to the positions of
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the markers on the actor’s suit, captured by an OptiTrack2 MoCap system, at
120Hz; 2D gaze fixation point captured by the eye tracker glasses at 60Hz; and
an RGB video captured by a camera facing the actor, at 30Hz. The dataset is
unbalanced, because every class has a different number of samples: 17 (place280

right), 23 (place middle), 20 (place left), 24 (give right), 19 (give middle) and
17 (give left).

In this work, when referring to the Acticipate dataset, we call movement the
change of position of both arms.

4.2. Dataset analyzis285

By analyzing the dataset, it is possible to notice that, in many cases, the
movement does not have enough information about action to provide good an-
ticipation. For instance, each action of place and give has similar movements
depending on its direction (left, middle or right). However, after taking into
account gaze information, one can notice that the action can be anticipated290

long before. Gaze indicates whether the user will place the object on the ta-
ble or give it to a volunteer. As discussed before, if we take the movement as
the principal entity of each action, we can consider gaze as a context informa-
tion (additional information that helps characterize the entity). Now, gaze and
movement provide enough data to anticipate actions in this dataset. However, if295

the dataset was divided into more actions, would the gaze be a sufficient source
of information to anticipate them?

An interesting but not considered characteristic of this dataset is that, once
the interaction involves only one object, the actor must place it at its starting
point after performing each action. Thus, when he places the object somewhere300

on the table, he must pick it up, and when he gives the object to someone, he
must receive it back. A simple example of this behavior can be seen in Fig. 3.
In that way, we can extend the dataset from 6 actions to 12 actions: give, place,
pick and receive (each one with the directions left, right and middle).

Considering now the extended dataset, if we constrain the analyzes to the305

movement and gaze (Fig. 4 (a-d)), we notice that, even with gaze, it is not
possible to perform right anticipation between actions give/receive or place/pick
when they are toward the same direction. In this case, it is necessary to wait
for more observations.

On the other hand, when applying no constraint on what we can analyze in310

each image (Fig. 4 (e-h)), we can anticipate actions of the extended dataset as
fast as in its original configuration. In some cases, as in Fig. 4 (f), the action
can be anticipated after observing the first frame. This is possible because we
take object information into account as another essential context information.
For instance, the starting position of the object makes it possible to anticipate315

a pick action after observing only one image.
Something similar occurs with receive actions, where the object is usually

out of the scene, being held by a volunteer. For such actions, after seeing the

2https://optitrack.com/
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(a) Place middle

(b) Give right

Figure 3: Sample of two actions (place middle and give right) from Acticipate Dataset

first frame, it is not possible to assure which is the action, once it depends on the
direction. However, we can tell that it will be a receive action. Therefore, the320

correct anticipation comes after perceiving the gaze or the movement direction.
This helps us to eliminate less likely actions and allows us to focus on information
that helps to find the right action. Fig. 4 illustrates four situations where there
are significant ambiguities between actions, and the object information is critical
to reduce it.325

4.3. Anticipation

Although we are able to anticipate actions in the extended dataset, in some
cases, there are issues about the anticipation that must be taken into account.
Even people can have their prediction capacity compromised by overconfidence.
In a particular case, as presented in Fig. 5, the volunteer wrongly anticipated330

an action after observing a movement similar to another one. Her confidence
in her prediction deceived her. Thus, even people, in some situations, need to
be more sure about the action before making a decision. If a person can be
fooled by his/her overconfidence, this problem is possibly more significant in a
computational model.335

The overconfidence about a prediction could lead the model to make a wrong
decision in a real-time situation. This problem can be mitigated by providing
the model with the ability to estimate the uncertainty about its prediction.
A deterministic model, even with a high value of probability threshold (e.g.,

12



(a) any action is pos-
sible

(b) any action is pos-
sible

(c) place or pick left (d) place or pick left

(e) give or place (any
direction)

(f) pick middle (g) place left (h) pick left

Figure 4: Situations in the extended dataset with great ambiguities when it is analyzed only
gaze and movement. Any action is possible in (a) and (b). It is necessary to wait for the
movement to infer the direction but, even after knowing the direction, it is necessary to observe
almost the complete action to distinguish between the actions give/receive and place/pick. In
(c) and (d), the movement starts toward the left side, simultaneously, the gaze is directed to
the table. Therefore, the possible action is a place or pick toward the left direction. For the
actions shown in (e)-(h), because the object position is taken into account, the ambiguities
can be reduced or even eliminated. In (e) and (f), the number of possible actions is reduced
after knowing the object position. In (e), pick and receive actions are not possible. On the
other hand, in (f), only the action pick middle is possible. The same occurs in (g) and (h). In
(g), the most likely action is place left. Finally, in (h), the only possibility is pick left. Notice
that in (f) and (h), the action is anticipated after observing only one image.

p > 0.9), could wrongly anticipate an action when it is overconfident about its340

prediction. This overconfidence in prediction can be provoked by a lack of data
to prevent the model from ambiguous classes.

Thus, as mentioned in [33], a possible solution to increase the model certainty
is to lead it to make more z predictions before deciding on the correct action
class. In this way, if the predicted class remains for the next z observations,345

the model can be more confident about the correct class and can anticipate the
action. However, even though it looks like a good solution, what is the best size
for z? An inaccurate choice of this new parameter can postpone the anticipation
of actions that have no ambiguity problem in z observations. Additionally, z
may not be enough for actions with more ambiguities.350

A better solution is to use as threshold an uncertainty value rather than a
probability value. Thus, the model can anticipate an action when it is more
certain about its prediction. Therefore, ambiguous actions, which likely provide
more uncertainty to the model, would need more observations to be anticipated
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(a) Place left

(b) Give left

Figure 5: Two action samples from the Acticipate dataset. In (a), the volunteer wrongly
anticipated the action, thinking it would be a give left action (shown in (b)) instead of a place
left.

properly. On the other hand, those with less ambiguities could be anticipated355

previously. This solution can be taken as a tailored z value for each action
chosen by the model during training.

4.4. Hypotheses and contributions

These observations led us to raise three main hypotheses regarding the Ac-
ticipate dataset:360

1. more actions are likely to cause more ambiguities;

2. context information can help to distinguish different actions represented
by similar movements;

3. uncertainty is a more reliable and effective threshold to anticipate actions
than probability values.365

In this work, the gaze and the object’s position represent the context of each
action. So, we propose a model based on Artificial Neural Networks (ANNs)
that anticipates actions represented by sequences of data with varying lengths.
The proposed model has two versions: a deterministic and a stochastic one.

5. Bayesian Neural Networks and Uncertainty370

Deep neural networks are usually trained by optimization algorithms based
on Stochastic Gradient Descent (SGD). As SGD uses the gradient of the weights,
it needs the loss function to be differentiable for all weights, which implies
the weights must be deterministic variables. In consequence, most deep neural
network models are deterministic, so they are unable to provide their uncertainty375

about their predictions. Thus, to measure uncertainty in this type of model, we
can create a Bayesian Neural Network (BNN).
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In a Bayesian model a posterior distribution must be inferred by applying
the Bayes rule:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

, (12)

where p(θ|D) is the posterior distribution over θ after observing data D; p(D|θ)
is the likelihood of D; p(θ) is the prior belief about the distribution of θ; and∫
p(D|θ)p(θ)dθ is the the normalization term (a.k.a evidence or marginal like-380

lihood).
In many cases, the evidence term in Eq. (12) turns the posterior inference

intractable. However, some works attempted to solve this problem via Varia-
tional Inference (VI) [42]. In 2011, [43] proposed in detail how to use VI in
Bayesian Neural Networks so that a Gaussian distribution with known param-385

eters could approximate its posterior distribution. Although effective, VI was
not yet an easy task to accomplish. Therefore, in 2013, [44] proposed a way to
train a BNN with VI thought a technique called reparametrization trick, which
consists of drawing the activation Z of a layer l from a standard factorized
Gaussian distribution.390

In this sense, the layer l outputs two values, µ and σ, which represents the
mean and variance of a factorized Gaussian distribution N(µ, σ), respectively.
Next, the activation of l is drawn from Z ∼ N(µ, σ). Aiming to approximate
Z by a standard factorized Gaussian distribution (N(0, 1)), the authors use
variational inference. However, as Z is now stochastic, SGD algorithms can not395

be used to train the parameters of l. To solve this problem, they proposed to
parametrize Z so that µ and σ being deterministic with respect to Z, and, by
consequence, differentiable with respect to a cost function. In that way, an SGD
algorithm can be used to train the parameters of layer l. Eq. (13) presents this
approach, so-called reparametrization trick.400

Z ∼ N(µ, σ)

Z = µ+ εσ. (13)

Here, the noise ε ∼ N(0, 1) is responsible for the stochasticity in Z.
Even with a significant contribution, the authors in [44] used Z as the last

layer of an encoder, not in all network activations or weights. Hence, in 2015,
[45] proposed to use this approach to create a BNN considering each weight as
a distribution instead of a deterministic variable. The reparametrization trick405

allowed them to use the SGD algorithm to train the model, and to use VI to
approximate the factorized weight posterior distribution to a distribution with
known parameters. This approach is called Bayes By BackProp (BBB).

Other approaches, as MC dropout[46] and Variational dropout[47], use dropout
to obtain an approximation of a Bayesian model.410

In MC dropout, the model must have a dropout function before each weight
layer. Thus, the Bayesian approximation is achieved by randomly deactivating
weights based on a Bernoulli distribution with the probability of 1− p, where p
is a hyperparameter. The name MC dropout is given once the model prediction
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is calculated by the average of S Monte Carlo (MC) samples on the model with415

the dropout enabled.
Variational Dropout uses the local reparametrization and VI to train and

to approximate the neural network model of a Bayesian model. With the
reparametrization trick in BBB ( Eq. (13)), after a layer i receives xi as in-
put, it first samples the weights θ from a Gaussian distribution N(µ, σ) and420

then computes the activation ŷ = θTx as the inner product between x and
θ. On the other hand, in local reparametrization, the activations are sampled
directly from a factorized Gaussian distribution, as shown in Eq. (14):

µ = θTx

σ = (θ2)Tx2 (14)

ŷ ∼ N(µ, σ).

where, b2 = b ◦ b, where ◦ represents the pointwise multiplication operator.
This local reparametrization technique can be used in conjunction with a425

noise ξ ∼ N(1, α) in order to get the posterior p(ω|D) = N(θ, αθ2), where ω is
the variational parameter, θ is the model weight and α = p/(1 − p). Eq. (15)
presents the variational dropout approach.

ŷ = θT (x ◦ ξ). (15)

As ξ is drawn from a Gaussian distribution, the marginal distribution ŷ =
p(ŷ|x) is also a Gaussian distribution. Thus, one can sample ŷ directly from its430

marginal distribution p(ŷ|x), as presented in Eq. (16).

µ = θTx

σ = α(θ2)Tx2 (16)

ŷ ∼ N(µ, σ).

Even though p in MC dropout is a hyperparameter, α in variational dropout
can be taken as a trained parameter, giving different importance for each element
in (θ2)Tx2.

In a Bayesian model, regardless of the particular approach employed to infer435

the posterior distribution, the prediction of an observation x∗ is calculated by
integrating the likelihood of x∗ over the entire posterior distribution (Eq. (17)).
As this process involves an intractable integration, an unbiased approximation
can be obtained by a Monte Carlo simulation, as presented in Eq. (18).

p(y∗|x∗) =

∫
p(D|θ)p(θ|D)dθ (17)

≈ 1

S

S∑
s=1

p(y∗|x∗; θs). (18)
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Here, S is the number of samples, y∗ is the probability distribution of classes440

given x∗, and θs ∼ p(θ|D) is the sth parameter θ drawn from the posterior
p(θ|D). For the variational dropout model, this posterior is p(ω|D). However,
for MC dropout, this posterior distribution is represented by the dropout func-
tion inside each network layer.

5.0.1. Uncertainty445

There are two main types of uncertainty in Bayesian modeling: aleatoric
and epistemic. Aleatoric is the uncertainty of an event (a.k.a irreducible uncer-
tainty). In a classification problem, this uncertainty is related to the event that
generates the data. Therefore, even though some works propose ways to assess
the aleatoric uncertainty of a model [48, 49], it is not an easy task to perform,450

as in most cases, one can not know how the data was sampled or which event
generated them.

Epistemic uncertainty assesses the model uncertainty about the data and
can be easily calculated when the model is stochastic. This type of uncertainty
can be decreased by observing more data. Thus, it is important when one wants455

to know which class needs more data to improve model prediction. A detailed
explanation about uncertainties for Bayesian Deep Neural Networks can be find
in [50].

In this work, we are interested in determining the uncertainty of the model’s
prediction, which corresponds to its epistemic uncertainty. In this sense, the460

more data it receives during training, the more confident it would be about its
predictions. Thereby, actions with fewer samples data would lead the model to
uncertain predictions. In this case, it is possible to use epistemic uncertainty
to realize when the model should wait for more observations to increase its
certainty about prediction, and then anticipate the action correctly.465

The epistemic uncertainty of a Bayesian Neural Network model can be es-
timated by the entropy or the mutual information metrics [50]. In the case
of an MC simulation with S samples, a model with C actions can calculate
the entropy of theses predictions (samples) by using Eq. (20) and the mutual
information by Eq. (21).

Epred(x, c) =
1

S

S∑
s=1

p(y = c|x; θs), (19)

H(x) = −
C∑

c=1

Epred(x, c) log(Epred(x, c)), (20)

I(x) = H(x) +
1

S

C∑
c=1

S∑
t=1

p(y = c|x; θs) log p(y = c|x; θs). (21)

6. Proposal

In this section, we present our proposed architecture, which is divided into
four main steps: (i) feature extraction and selection, (ii) feature embedding,
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(iii) classification model, and (iv) a novel decision-making criterion. The next
topics will cover each step in detail.470

6.1. Feature extraction and selection

This work proposes to use gaze and object position as the context informa-
tion, and the evolution of the 2D body joints features as the movement infor-
mation to perform action anticipation. Our approach aims to use only RGB
images, where gaze and skeleton joints information are not straight available.475

Therefore, to obtain the gaze and skeleton joints of the people present in
the images, we consider to use the Openpose model[51] over each RGB image
to extract such information. We used the Openpose version trained for COCO
dataset that provides 19 2D joints for the body and 25 2D points for each hand.

It is important to mention that in [18], the authors used gaze and 3D body480

joints since they had glasses and a MoCap system, while, in our approach, we
have only 2D joints to use as data, because we are considering just RGB images.
Also, because the actor wore glasses during data acquisition, algorithms for 2D
gaze estimation did not work. For this reason, we decided to use the head joints
as information that likely may represent head direction or even gaze. However,485

this representation is a task to be assumed by the model. Aiming to reduce
dimensionality, we calculated the central point of each hand instead of using
their 25 2D points directly.

For the object information, we extracted the central point of the red ball
for each frame using a segmentation method. This pre-processing procedure is490

summarized in Fig. 6 and described as follows:

1. Openpose model receives an RGB image representing an observation. This
operation results in 19 joints and 25 hand points from each user present
in the image.

2. A filter to remove false-positive users is applied.495

3. Select the most important joints (arms, shoulders, and head)

4. Use hand points to calculate the central point of each hand

5. Give the same RGB image as input to segmentation function to extract
the central point of the object.

Figure 6: Summary of the feature extraction and selection step.
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6.2. Feature Embedding500

After the pre-processing step, head information is represented by: (i) five
2D points (vh ∈ R10×1); (ii) object information by one 2D point (vo ∈ R2×1);
and (iii) user pose (movement) by nine 2D points (vm ∈ R18×1), where the first
seven points represent arms and shoulders, and the last two points represent
the hands. Notice that, movement, head, and object have different quantity of505

points, which generate an unbalanced feature vector. Because of that, the model
may consider the movement more important than the other features. Therefore,
we propose to balance the input source by using an embedding structure, in such
a way that movement and context features have the same dimension. Besides
that, to represent the context, head and object features were also defined with510

the same dimension, so they had the same importance. The embedding process
is explained below.

1. Embed head information: eh = f(WT
h vh + bh), where eh ∈ R16×1, Wh ∈

R10×16 and bh ∈ R16×1.

2. Embed object information: eo = f(WT
o vo +bo), where eo ∈ R16×1, Wo ∈515

R2×16 and bo ∈ R16×1.

3. Embed movement information: em = f(WT
mvm+bm), where em ∈ R16×1,

Wm ∈ R18×16 and bm ∈ R16×1.

4. Embed context information: ec = f(WT
c [eo|eh] + bc), where ec ∈ R16×1,

Wc ∈ R32×16, and bc ∈ R16×1 and | is a vector concatenation operator.520

5. Create the embedded input vector: ecm = [ec|em], where ecm ∈ R32×1.

Object Head
Pose (Movement)  

Feature Embedding

16 16

1616

16 16

(2 values) (10 values)
(18 values)

Trainable 
parameters

Figure 7: Feature embedding process for each observation. The connections between joints
as well as the object shape are showed just for the sake of visualization. However, only their
points are used.

Each W∗ and b∗ represents weights that are trained by the model, whereas
f(•) represents the ReLU activation function. Thus, during the training phase,
the model simultaneously learns to incorporate observations and classify actions.
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6.3. Classification model525

Since the problem addressed here has a sequential nature, and we assume
that there exist dependencies between observations of different timesteps, we
can treat the problem in two ways: considering that all sequences are limited
to a fixed size of M observations or assuming the original size of sequences.

The problem with the first approach is to disregard the variance in the530

size of all sequences, besides introducing a new hyperparameter M . Thus, a
sequence with T observations (T > M) must be truncated at observation T−M ,
meanwhile a sequence with L observations (L < M) must be padded with M−L
values (an illustration of this process can be seen in Fig. 8). Therefore, aiming
to acquire a score that corresponds to the chance of a sequence up to time t535

(t ≤ M) belongs to one action class, we can feed the model with a sequence
of size M , where the first t observations came from the real sequence, and the
last M − t are padding values. An advantage of this approach is to enable
the use of non-sequential models, like Naive Bayes or Multilayer Perceptron, to
classify the sequence, since the dependence between observations can be treated540

as dependence between features. The main problem with this approach is the
waste of processing power when the sequence is starting (since the majority
of the input data is padded with default values), besides the possible poor
performance when the dependence between long sequences must be considered.

Figure 8: Representation of two sequences with different sizes for a model that receives a fixed
input sequence of size M. At each time t, the tth observation from the sequence is added to
the fixed model sequence. Therefore, the model can predict the action represented by the t
observations.

For the second case, only a sequential model can be used, as the size of the545

sequence is not available. In this case, models as HMM (Hidden Markov Model)
and CRF (Conditional Random Fields) are possible candidates. However, these
models assume the Markovian condition: a given observation depends only on
the previous one. This assumption might not capture long dependencies on a
sequence, which occurs during action execution. Therefore, we decided to use550
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LSTM (Long-Short Term Memory)[52], a variant of RNN that can capture long
dependencies in a sequence of observations.

An LSTM contains four trainable gates. These gates are responsible for
capturing long and short dependencies in a sequence. An LSTM cell receives
as input an observation vector, a hidden state, and an echo cell. The input555

vector represents the actual observation; the hidden state represents the short-
term memory and chooses what information should be paid attention in the
next observation. The echo cell represents the long-term memory. At each
new observation, the echo cell stores important pieces of information about the
actual observation and forget part of its past when it considers less significant.560

LSTM has been used mainly for NLP [8, 7] but in the last few years recogni-
tion tasks in videos are commonly using it as well. The Eq. (22)-(27) represent
all LSTM gates and activations, respectively:

• Forget gate, ft, forget part of the memory stored in the echo cell.

ft = σg(Wfxt + Ufht−1 + bf ). (22)

• Input gate, it, select part of the observation to be stored into the next
echo cell.

it = σg(Wixt + Uiht−1 + bi). (23)

• Output cell, ot, select what part of the input will be propagated to the
next observation by the hidden state.

ot = σg(Woxt + Uoht−1 + bo). (24)

• Update gate, gt, normalize the observation in order to store it into the
next echo cell. Part of this information will be forgot by using the input
gate.

gt = tanh(Woxt + Uoht−1 + bo). (25)

• Next echo cell, ct, forget part of the past observations and store part of
the new one.

ct = ft ◦ ct−1 + it ◦ gt. (26)

• next hidden state, ht, select a part of the normalized echo cell by using
the output gate.

ht = ot ◦ tanh(ct). (27)

where σg(•) and tanh(•) are, respectively, sigmoid and hyperbolic-tangent
activation functions.565

Fig. 9 presents the proposed model. It comprises two LSTM layers followed
by a softmax classifier. The first LSTM cell receives as input at timestep t the

embedded input vector e
(t)
cm, the hidden state h

(t)
1 ∈ R64×1 and the echo cell

c
(t)
1 ∈ R64×1. The second LSTM cell receives as input the hidden state h

(t)
1
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Figure 9: Proposed model architecture

resulted from the first layer, the hidden state h
(t)
2 ∈ R64×1, and the echo cell570

c
(t)
2 ∈ R64×1. Next, a fully connected layer receives as input h

(t)
2 , applies a

transformation using a matrix Wfc ∈ Rd×64 (d is the number of actions) and
normalize it using a softmax function. So,

ŝ(t) = softmax(Wfch
(t)
2 ),

where ŝ(t) ∈ Rd×1, and each element of ŝ(t) can be interpreted as the probability
of an action given the embedded input vector in the timestep t. Now, With575

this result and choosing a probability threshold value p, by using Eq. (5), the
anticipation can be accomplished.

6.4. Decision-making criterion

As mentioned before, this work proposes a novel decision-making criterion
based on the model uncertainty. In this sense, because the proposed model is580

deterministic, we propose to use three new stochastic versions of it: A Bayesian
LSTM using Bayes By BackProp (BLSTMBBB), an MC dropout Bayesian
LSTM based on [53] (BLSTMMC), and a Variational Dropout Bayesian LSTM
(BLSTMV D).

With these stochastic models, the uncertainty is obtained by running the585

architecture of Fig. 9 S times (MC sampling) using the same input sequence. As
the models are stochastics, they must give a different value for each prediction.
Thus, the Mutual Information (MI) over the S predictions give us the epistemic
model uncertainty about the class prediction for the respective observation. MI
is calculated using Eq. (21). Therefore, we propose to use a threshold over the590

mutual information (our new decision-making criterion) to anticipate actions.
For this, Eq. (5) must be redefined as:

g(ŝ(t), u) =

{
argmax(m(ŝ(t))), h(ŝ(t)) < u

−1, otherwise
, (28)

where u is an uncertainty value, h is the mutual information function (Eq. (21)),
and m is the average of the S predictions.
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Even though one can use the entropy (Eq. (20)) to measure the uncertainty,595

we chose to use MI because it takes into account not only entropy between
classes (averaged over the S predictions) but also the mean entropy between
them all.

7. Experiments

As discussed in Sec. 4, all experiments in this work used the Acticipate600

dataset. From the dataset, we extracted four different kinds of data by using
the procedure described in Sec. 6: head points, object position, arm joints,
and hand position. The head points and object position forms the context;
arm joints and hand positions form a pose, which evolution in time represents
the movement (also called here main entity). To better compare results and605

reach more reliable conclusions about how each source of information influences
the action anticipation, we decided to carry out experiments using different
combinations of the context (head and object) and movement, for the original
version of the dataset (6 actions) and its extended version (12 actions).

The most common approaches, presented in Sec. 2, need a large dataset610

to be trained. Hence, they are not suitable to be used here, with the Actici-
pate dataset. However, to better compare and discuss our results, we used as
baselines the proposal in [18], that uses Acticipate dataset, in addition to five
classical models: Naive Bayes (NB), Multilayer Perceptron (MLP), 1D Con-
volutional Neural Network (CONV-1D), Support Vector Machine (SVM) and615

HMM. For the first four models, as mentioned before (Sec. 6), we used a fixed
sequence size (as illustrated in Fig. 8), while for HMM we used the sequences
with their original sizes.

Considering the architecture of the baseline models:

• NB uses a Gaussian Model to predict its conditional probability;620

• MLP is composed of only one hidden layer;

• CONV-1D has three stacked 1D Convolutional layers followed by an MLP
as classifier;

• SVM implements its non-linear version by using an RBF kernel; and

• HMM has its emissivity probability drown from a Gaussian Distribution,625

which enables continuous observations.

The five models were trained with the original dataset (6 actions) and its
extended version (12 actions). For the experiments with these five models, we
did not apply the proposed embedding technique. So each observation is rep-
resented by a vector with 18 values corresponding to the arms, two values for630

the object, and 10 for head points (see Sec. 6.2). By combining these features
(movement, object, and head), we carried out a total of 45 different baseline ex-
periments. However, for the sake of explanations, we will present only the most
conclusive ones. We also carried out more 11 experiments with different versions
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Table 1: List of all experiments

Id Model Type Movement
Context Dataset Version

Head Object 6 actions 12 actions

1 NB baseline X X X
2 CONV-1D baseline X X X
3 MLP baseline X X X
4 SV M baseline X X X
5 HMM baseline X X X
6 DLSTM6m Deterministic X X
7 DLSTM6mh Deterministic X X X
8 DLSTM12m Deterministic X X
9 DLSTM12h Deterministic X X
10 DLSTM12o Deterministic X X
11 DLSTM12mh Deterministic X X X
12 DLSTM12mo Deterministic X X X
13 DLSTM12mho Deterministic X X X X
14 BLSTMMC MC Dropout X X X X
15 BLSTMV D Variational Dropout X X X X
16 BLSTMBBB Bayes By BackProp X X X X

of the proposed model, which will be explained next. Table 1 summarizes the635

main 16 experiments.
The experiments 6 and 7 (original dataset) in Table 1 provide results that

can be compared with [18] and the baseline experiments (5 first experiments),
which will validate our proposal against the other models. The experiments
from 8 to 13 provide results to show the ambiguities between actions and the640

importance of context to anticipate them. The last three experiments show the
importance of uncertainty in an anticipation model, and the contribution of the
proposed decision-making criterion based on the uncertainty. For this reason,
three Bayesian models were implemented: MC dropout, Variational Dropout,
and Bayes by Backprop. For variational dropout, as mentioned before, we opt645

to use α (Eq. (16)) as a trainable parameter. With these three models, we can
identify which model is best for this kind of application.

7.1. Experiment setups

For each RGB image in the video, the pre-processing procedure described
in Sec. 6 was applied. Every missing data related to joints, hands and the650

object position were set to -1. Additionally the padding value used in the fixed
sequence size for the four first experiments was also considered -1. To evaluate
the model’s quality, the dataset was divided into 80% for training and 20% for
testing. In each experiment, a 10-fold cross-validation over the training set was
performed, where nine folds were used to train and one fold to validate. For each655

fold (round), the training process was finished when the recognition accuracy
(the accuracy achieved at the last observation of the sequence) over the nine
training folders in the previous five epochs was higher than 98% (early stop) or
when the iterations exceeded the maximum number of epochs.

The 16 experiments in Table 1 can be divided into four main categories:660

baselines with 6 actions (from 1 to 5), deterministic with 6 actions (6 and 7),
deterministic with 12 actions (from 8 to 13) and stochastic with 12 actions
(14,15 and 16). In both deterministic experiments, different configurations of
the input data (movement, head and object) were achieved by assigning −1 to
vm, vo, and/or vh in the entire dataset. For instance, by assigning −1 to vo, the665

model considers only movement (vm) and head (vh) information. For each one
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Table 2: List of hyperparameters used in each experiment with the proposed models

Hyperparameters
Model Configurations

DLSTM∗ BLSTMMC BLSTMV D BLSTMBBB

Batch size 216 216 216 32
Truncate sequence 100 100 100 128
Sequence size 100 100 100 64
Max epochs 100 100 100 200
LR 1e-2 1e-2 1e-2 1e-2
LR decay (per epoch) 1% 1% 1% 1%
Weight decay 1e-5 1e-5 – –
Dropout (keep prob) 0.7 0.2 – –
Optimizer Adam Adam Adam Adam

Table 3: List of hyperparameters used in each baseline experiment

Hyperparameters NB MLP SVM CONV-1D HMM

Architecture Gaussian
hidden layer

(48)
Kernel
(RBF)

Conv Layers
(1x7x32, 1x5x32, 1x5x32)

Hiddens layer
(64)

States
(5)

Sequence Size 72 64 64 96 64
Max Epoch - 50 - 50 -
Batch Size - 32 32 -
Learning Rate - 1e-3 - 1e-3 -
Optimizer - Adam - Adam -

of the 16 experiments, proper hyperparameters were chosen by using a Bayesian
Optimization process. The hyperparameters used in the tests are presented in
Table 2 and 3.

7.2. Software and hardware environments670

The models, including Openpose (a deep neural network), were implemented
in Pytorch v1.0 and scikit-learn v0.22. The Bayesian Optimization was imple-
mented using the library Hyperopt3. Additional parts, as object segmentation,
filters, and chart plot scripts, were implemented using OpenCV v4.1, Python
v3.7, Numpy v1.16.4, and Matplotlib v2.2.3. The computer used in the experi-675

ments had the following configuration:

• Linux Operating System, distribution Ubuntu Server 16.04;

• Intel Core i7-7700 processor, 3.60 GHz with four physical cores;

• 32 GB of RAM;

3https://github.com/hyperopt/hyperopt
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Table 4: Comparing the results obtained by the models (baselines and DLSTM) at different
observation ratios. The results for [18] were provided by the authors. The subscription 6mh
indicates that the correspondent model was trained with the original dataset (6 actions) using
movement (m) and head (h) as source of information.

Models
Percentage of observation

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HMM6mh 19.05% 19.05% 38.10% 57.14% 90.48% 95.24% 100.00% 100.00% 100.00% 100.00%
NB6mh 19.05% 9.52% 9.52% 9.52% 19.05% 33.33% 71.43% 95.24% 95.24% 95.24%
CONV6mh 9.52% 14.29% 19.05% 19.05% 33.33% 47.62% 42.86% 61.90% 61.90% 80.95%
MLP6mh 19.05% 19.05% 28.57% 28.57% 33.33% 47.62% 71.43% 90.48% 85.71% 95.24%
SV M6mh 19.05% 19.05% 19.05% 19.05% 28.57% 71.43% 95.24% 95.24% 95.24% 95.24%
DLSTM6m 14.29% 28.57% 38.10% 71.43% 85.71% 95.24% 95.24% 95.24% 95.24% 95.24%
DLSTM6mh 14.29% 38.10% 47.62% 90.48% 95.24% 100.00% 100.00% 100.00% 100.00% 100.00%
[18] (Pose 3D ) 16.25% 21.25% 28.75% 51.25% 76.25% 85.00% 86.25% 86.25% 86.25% 85.00%
[18] (Pose 3D + Gaze) 15.00% 16.25% 40.00% 73.75% 86.25% 97.50% 96.25% 92.50% 91.25% 87.50%

• 1 TB of storage unit (hard drive);680

• Nvidia Titan V graphic card.

8. Results and Discussions

For each one of the 16 experiments, after running the Bayesian Optimization
over the 10-fold cross-validation, the best hyperparameter configuration found
was used to train the model with the complete training set. Then, each model685

was tested with the test set, which was never seen by the model during training.
The results over the test set were plotted in many charts and carefully analyzed.
Some of these charts are presented and discussed in this section.

8.1. Baseline models in the original dataset

As can be seen in Table 4, the classical models, used as baselines, offer690

a satisfactory result when one analyzes only the accuracy obtained at each
observation ratio. However, as mentioned before, this type of analyzis brings
poor conclusions about the model’s capacity to anticipate the actions. A good
anticipation model should increase the differentiation between classes, while
the number of observations also increases. Therefore, let’s look at the graphs695

in Fig. 10, where we have the distribution of probabilities between classes for
each observation ratio of an action give middle. Note that the baseline models
fail to accumulate knowledge about the performing actions (NB, HMM, MLP,
CONV-1D, and SVM) or even respond over-confidently (NB) about prediction.
In HMM the distribution is almost uniform, making it difficult to determine700

a proper probability to be used as a decision-making threshold. Naive Bayes
responds with high confidence even at the beginning of the action. So it is
not a reliable model to be used in anticipation tasks. The other three models,
MLP, SVM, and CONV-1D are quite noisy and do not give confidence about the
correct action. In contrast, the proposed DLSTM was capable of representing705

the evolution of the action, in such a way that clearly differentiates one action
from the others while more observations are provided.

For a more complete analyzis, Table 5 brings the anticipation accuracy of
each model calculated by Eq. (9). As we can see, the baseline models, even been
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Figure 10: Evolution of an action give middle with its respective prediction for each baseline
model and the proposed DLSTM. All models are trained on the original dataset (6 actions)
with movement and head information.

Table 5: Maximum anticipation accuracy (second column) obtained by each model (first
column) when applying the probability threshold (last column). To achieve the corresponding
accuracy the model needed on average an observation ratio such that specified in third column.
As the NB model is extremely over-confident in its predictions, it is not suitable to anticipate
actions.

Model
Anticipation

Accuracy
Mean Observation

Ratio Needed
Probability
Threshold

HMM 76.19% 0.45 0.38
NB It is not possible to anticipate
CONV-1D 47.62% 0.69 0.91
SVM 57.14% 0.55 0.68
MLP 61.90% 0.60 0.94
DLSTM 95.25% 0.40 0.90

quite effective in the recognition task, fail when applied to anticipation task.710

The max accuracy achieved by the HMM was 76.19% when using a threshold of
0.38. With such a small threshold, it is difficult to trust in this model, once at
least one of the remaining classes can reach close values (e.g., 0.37). The best
among the other baseline models (MLP) achieved only 61.90% with a threshold
of 0.94. While Naive Bayes could not even anticipate an action due to its over-715

confidence. On the other hand, DLSTM was capable of anticipating 95.25% of
actions when applying a threshold of 0.90. All these pieces of evidence show us
the superiority of the proposed model compared with the baselines.

Another import result is that our proposal, even using 2D skeleton joints ex-
tracted from images, outperforms [18], that used eye gaze and 3D pose (Tab. 4).720

With movement + head information we achieved 90% of accuracy with less than
40% of observations. On the other hand, the authors’ model, in [18], achieves
90% of accuracy after more than 50% of observations. As discussed before, an
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effective anticipation model must also be an effective recognizer. Our model
DLSTM6mh recognized all actions at the last observation (100% of average ac-725

curacy); meanwhile, their model achieved a maximum of 97.5% with an obser-
vation ratio 0.60 and decreased to 87% with an observation ratio 1.0. Therefore,
their model did not recognize all actions in the dataset.

In addition to the results above, DLSTM6mh can anticipate an action three
frames before than DLSTM6m, on average. As the video has a sample rate of730

30Hz, this anticipation corresponds to 100ms, which is greater than the 92ms
presented in [18] when comparing pose with pose+gaze. As such, besides out-
performing [18], our proposal was able to solve the action recognition problem
in the Acticipate dataset and improve the action anticipation results.

8.2. Deterministic models in the extended dataset735

Fig. 11 shows the results for the 6 experiments (from 8 to 13) using the
extended version of the dataset. We can observe that DLSTM12m, DLSTM12h,
and DLSTM12mh did not achieve 100% accuracy at the last observation. This
result shows that they were unable to separate actions properly, even when
using head information. The 6 new actions are the only difference between740

DLSTM6mh and these three models. As such, when the dataset was divided
into more actions, more ambiguities were generated among them. Therefore,
these results support our first hypothesis: more actions are likely to cause more
ambiguities.

Figure 11: Results for deterministic models in the extended dataset (12 actions). Each exper-
iment is the same model trained with different input data.

The models that use object information (DLSTM12o, DLSTM12mo, DLSTM12mho)745
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were able to recognize all actions (accuracy at 100% of observations). Further,
they achieved better results in the anticipation task. They start with more
than 40% of accuracy at the first observation, and the model with complete
context (DLSTM12mho) achieves 98% of accuracy at the observation ratio of
0.42. Therefore, actions with similar movements can be distinguished better750

when using context information. So, this result supports our second hypothe-
sis: context information can help to distinguish different actions represented by
similar movements. We can also see how this last model was able to extract
relevant information from the object position and head points. Even though the
object is represented by only two values (a 2-dimensional point), as we suppose,755

it provided an important information about the actions to the model. This
result shows the efficacy of our feature embedding process.

As mentioned above, after using the object information, the model might be
able to anticipate some actions after a few observations. For better visualization,
Fig. 12 illustrates the accuracy of the same 6 models for the 6 new added actions760

(receive and pick (left, middle, right)). The models that use object context start
with a classification accuracy greater than 65% and achieve 90% of accuracy
after less than 10% of observations. The best model reaches 95% of accuracy
with less than 5% of observations, on average. In terms of frames, for the
Acticipate dataset, that corresponds to an average of 4 frames. These results765

support our statement about the importance of object information for these 6
new actions.

Figure 12: Results for deterministic models in the extended dataset but cosidering only the 6
new actions.

To measure the anticipation accuracy, we use the Eq. 9 with a threshold
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p = 0.9 for the 6 models. Fig. 13 presents the evolution of an action pick
right after passing throughout the 6 models. The charts illustrate how the770

model that uses only movement (DLSTM12m) made a mistake in its antici-
pation. This mistake can be caused by the overconfidence of the model when
anticipating ambiguous actions. Other models, which use part/complete con-
text information, anticipated the action correctly. Notice that the model with
full context (head + object), anticipated the action after observing only 2% of775

the data sequence (two frames in its corresponding video). Another interesting
result is that the models confused those classes we supposed they would. After
analyzing the videos, one can notice that action pick right has similar move-
ment to place right, give right and receive right, and similar gaze to place right.
Thus, DLSM12m pick right mistook for receive right and DLSM12h was not780

certain about pick right and place right. These characteristics appear in almost
all predictions.

(a) (b) (c)

(d) (e) (f)

Observation Ratio Observation Ratio Observation Ratio

Observation Ratio Observation RatioObservation Ratio

Figure 13: Evolution of sample of a pick right action for the 6 deterministic models.

To highlight the trade-off between the threshold and the anticipation accu-
racy, the chart in Fig. 14 presents the variation of anticipation accuracy and the
percentage of observations w.r.t threshold (p). In the chart, we see that when785

p = 0.9, DLSTM12mho can anticipate correctly 95.42% of actions by using, on
average, 19% of the video sequence. Each action in Acticipate dataset has an
everage of 79 images. Thus, this 19% in observation ratio corresponds to an
average of 15 frames of a video. On the other hand, by aiming the minimum
number of observations, with p = 0.8, the model would anticipate correctly790

92.50% of actions by using, on average, 18% of observation (14 frames).
With p = 0.9, function g in Eq. (5) is not able to consider overconfidence in

the model prediction, which may generate many false-positives. As discussed in
Sec. 4, a possible solution to reduce the number of false-positives is to force the
model to wait for more z observations to reaffirm its prediction. The problem795

with this approach is that z is a new parameter that can harm the anticipation,
and must be chosen carefully. Fig. 15 illustrates how anticipation accuracy
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Figure 14: Variation of anticipation accuracy and average observation ratio w.r.t probability
threshold.

(p = 0.9) and average observation ratio vary w.r.t z, where z is the additional
observation ratio after anticipation. The best anticipation accuracy (97.08%) is
achieved when z = 0.18. In other words, the model needs to wait on average800

for more 18% of observations to achieve an anticipation accuracy of 97.08%.
Comparing with previous results, the gain of less than 2% in the accuracy
cost an increase of more than the double of observations to the anticipation
time (passing from 19% to 43%). Furthermore, the minimum observation ratio
necessary to anticipate any action is now 18%, even for less ambiguous actions,805

such as those presented previously in Fig. 4 and Fig. 13. As conclusion, besides
the fact that the choice of z inserts a new trade-off in the project (accuracy vs
observation ratio), it does not provide an effective way to improve the action
anticipation task.

8.3. Stochastic models810

The results of the Bayesian models LSTMMC , BLSTMV D andBLSTMBBB

will be compared to DLSTM12mho, our best deterministic model for the ex-
tended dataset. During prediction time, we fed each Bayesian model 20 times
with the same observation xt, which corresponds to an MC sampling with
S = 20. Next, by applying Eq. (21) over the S predictions, we measured the815

epistemic uncertainty of each model prediction, concerning the observation xt.
Then, we could use Eq. (28) to anticipate the action or not.

The Bayesian models also recognized all actions in the extended dataset.
Furthermore, they achieved better results in anticipation accuracy thanDLSTM12mho,
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Figure 15: Variation of anticipation accuracy and average observation ratio w.r.t additional
observation ratio after anticipation. If in time t the max probability exceeds the 0.9, the
model must wait for more z observations in order to conforms its prediction.

even if it waits for an observation ratio of z = 0.18. By applying the same pro-820

cedure in Fig. 14, we could choose a threshold value to be used in each model.
Therefore, for each model, the anticipation threshold was chosen by analyzing
the variation of anticipation accuracy and the average observation time w.r.t
the uncertainty value. Fig. 16 shows this comparison for BLSTMMC .

Table 6 compares the results of the Bayesian models with our best deter-825

ministic model (DLSTM12mho). Note that BLSTMMC achieves the best an-
ticipation accuracy (98.75%) using the uncertainty threshold u = 0.5. How-
ever, BLSTMV D and BLSTMBBB also achieves satisfactory results: with
u = 0.5, BLSTMV D achieved 98.33% of anticipation accuracy, and with u = 0.3
BLSTMBBB achieves 97.08%.830

Table 6: Results of stochastic models and the best deterministic model.

Model Parameter
Anticipation
Accuracy

Average
Observation Ratio

DLSTM12mho p = 0.9 / z = 0.0 95.42% 19%
DLSTM12mho p = 0.79 / z = 0.0 92.50% 18%
DLSTM12mho p = 0.9 / z = 0.18 97.08% 43%
BLSTMMC u = 0.5 98.75% 25%
BLSTMMC u = 1.5 94.58% 22%
BLSTMV D u = 0.5 98.33% 26%
BLSTMV D u = 1.5 85.42% 20%
BLSTMBBB u = 0.3 97.08% 25%
BLSTMBBB u = 1.3 93.33% 20%
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Figure 16: Variation of anticipation accuracy and average observation ratio w.r.t uncertainty
threshold for MC dropout model

Considering the minimum number of observations necessary for a good an-
ticipation accuracy, DLSTM12mho gives the best result. On average, with
p = 0.79, it needs to receive 18% of observations to achieve an anticipation accu-
racy of 92.50%. However, even needing less observations (18%) with p = 0.79, it
presents less accuracy (92.50%) than considering more observations at a thresh-835

old of p = 0.9, which achieves an accuracy of 95.42%. Therefore, we can see that
there is a tradeoff of accuracy for a less number of observations. In summary,
the best model achieved 98.75% after observing, on average, 25% of the action
(BLSTMMC). An increase of 6.67% in the accuracy with a cost of only 7% in
extra observations. Much better than using z in the deterministic model, where840

an increase of less than 2% costs 24% on extra observations. Besides, we do not
need to choose more than one hyperparameter, only the uncertainty threshold
u.

8.4. Discussions

As we mentioned in the previous sections, the model must have a short antic-845

ipation time for human-machine interaction and be accurate in its prediction.
For BLSTMMC , it needs 25% of observations to achieve its best prediction
value, which indeed is not a high value. For instance, in a system based on im-
ages sampled at 30Hz (ordinary cameras), an action that lasts 2 seconds would
be anticipated by such a model after elapsed on average 0.5s from its first frame.850

In other words, it might anticipate an action after the system observes, on av-
erage, 15 frames. Therefore, once the model can be considered accurate in its
prediction, the system has about 1.5s to make a right decision.
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As expected, our Bayesian models provided better results than deterministic
ones with a small cost in additional observations. The overconfidence in model855

prediction decreases when waiting for more observations. However, as we could
see, for deterministic models, this is a new parameter to be chosen (z) and
did not provide satisfactory results. On the other hand, by using uncertainty
as a threshold, we have only one parameter to be chosen, and the model can
achieve better results of accuracy with a small cost in the observation ratio.860

These results support our last hypothesis that: uncertainty is a more reliable
and effective threshold to anticipate actions than probability values.

In our opinion, the MC dropout [46, 53] and variational dropout [47] were the
best models implemented in this work. Once dropout and local reparametriza-
tion can provide a different sample for each observation, a mini-batch with S865

observations correspond to an MC sampling of size S, which helps the model
posterior distribution inference. Besides, for prediction, we only need to cre-
ate a mini-batch of size S, repeating the same observation, that favors parallel
prediction in GPUs. On the other hand, the reparametrization trick does not
take advantage of the mini-batch to make samples. Every observation in the870

mini-batch uses the same sampled weight.
As a consequence, in our experience, BBB models train slower than Bayesian

dropout approaches, and, during prediction, it needs to run the model S times
with the same observation, which makes impractical to parallelize the prediction
in GPUs. However, it seems that a significant advantage of BBB is the possi-875

bility of pruning the model by analyzing each parameter. As they are Gaussian
distributions, the relation mean-variance can indicate if a parameter is required
or maybe discarded [43, 45].

Finally, we could see that the proposed model outperformed the baselines,
including [18], even using less accurate information (2D vs. 3D pose and head880

joints vs. eye gaze). The results supported the raised hypotheses and showed
how the uncertainty provided by Bayesian models is vital for action anticipation.
Our proposal can be used in other datasets even though the presented results
were acquired in a small collaborative dataset. In this sense, it is necessary to
analyze the possible sources of context for each class and adapt our embedding885

layer to represent all the context data.

9. Conclusions and Future Works

Machines need the capacity of anticipating actions to achieve effective in-
teraction with humans. As such, the problem of action anticipation is drawing
substantial research attention in recent years. Although many works have ex-890

plored the issue, they do not provide a concise explanation about the importance
of context in anticipating actions. They do not discuss how to handle the prob-
lem of the uncertainty inherent in this kind of task and how to make decisions
in a real-time situation.

We propose a decision-making criterion based on the uncertainty provided895

by a stochastic (Bayesian) LSTM model that can practically be used for action
anticipation tasks. By selecting the action that minimizes the uncertainty, our
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model improves the action anticipation performance compared with the conven-
tional class-likelihood maximization (i.e., deterministic model).

Considering arm motion as the primary source of information for action900

anticipation, we evaluate the influence of two additional (contextual) sources
of information in the Acticipate dataset: gaze and object attributes. When
considering all information sources in our stochastic LSTM, we achieved 100% of
average accuracy in the action recognition task and 98.78% of average accuracy
in the action anticipation task, outperforming previous results. Thus, our model905

serves both action recognition and anticipation purposes, while needing only
25% of the observations, on average, to anticipate each action. The results
also show the evident importance of context for the anticipation task, since
the actions that depend on the eye gaze information or the object position
had impressive improvement in their anticipation time contrasted with [18].910

For instance, actions that depend exclusively on the object information are
anticipated precociously, some of them with only two observations.

Our work extends the current state-of-the-art and results in action antic-
ipation, for small collaborative datasets. Also, our proposal uses context in-
formation to improve the classification probability, and the uncertainty as the915

decision-making criterion that can be used with any other probabilistic model.
As future work, we aim to increase the collaborative setup complexity by

adding more objects to each action and designing a collaborative scenario where
the performed actions depend on more than one object. Another important issue
to be addressed is how to extract proper context from general datasets. In such920

a way, we could use this proposal to solve more complex anticipation tasks.
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