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Abstract—To estimate the pose of an unmanned aerial vehicle
(UAV) during the landing process aboard a ship is used a
vision system based on a standard RGB camera using one
workstation for processing data. It is used a ground-based vision
system to allow the use of a small size and weight UAV, due
to the low computer requirements onboard. The resampling
step in the particle filter takes a decisive role in the obtained
pose estimation, and ten traditional resampling steps are tested
and compared with a developed resampling strategy inspired
by the genetic algorithms. The obtained results show that a
classical resampling step is not sufficient in this problem and gets
easily stuck in local minima. Those local minima are originated
by the high dimensional search space and from the employed
observation likelihood metric, which is very dependent on the
UAV geometry which generates ambiguity in the pose estimate for
complementary poses (poses with large wing pixel overlap, where
the majority of the UAV area is concentrated). Results show that
the errors obtained are lower and much more compatible with
the requirements for this kind of problems when compared to
the common existing resampling strategies.

Keywords—Model-Based Pose Estimation, Particle Filters, Au-
tonomous Vehicles, Computer Vision.

I. INTRODUCTION

Portugal has to control approximately 41335 km2 of territo-
rial waters, and the fast patrol boats (FPB) have an important
role in this mission. Their efficiency can be significantly
improved by the support of unmanned aerial vehicles (UAVs),
extending the range and capability of operation (e.g. able to
transmit georeferenced video in real-time to the FBP). Having
less human intervention in the most difficult maneuvers (e.g.
landing and take-off) increases the system reliability and is
no longer needed to use trained and certified UAV pilots. The
available landing site in this kind of ships is usually a small
area of 5x6m (stern section), and this limits the used UAV
payload [1], [2]. The used UAV model has 5 kg maximum
take-off weight (MTOW), 180 cm of wingspan, 150 cm of
length and one autonomy of approximately 2 hours.

The vast majority of the developed systems in this field
are based on the UAV [3], [4], not being usually considered
land-based systems [5]. A ground-based vision system [1], [2]
makes it possible to use more processing power, allowing the
use of more computationally intensive methods. This choice
permits the use of simpler UAVs with commercial autopilots
not designed exclusively for this task and with low processing

requirements. The only requirement is the ability to execute
the trajectories given by the ground control station (GCS) for
command and control (C2) after the relative position estimate
between the camera and the UAV is obtained. The use of
computer vision makes the system tolerant to GPS jamming
and able to operate at locations where the signal can be lost
or imprecise.

The vision system localization brings, however, several
challenges since the moving platform is at sea and is affected
by the meteorological conditions. The objective is to obtain in
real time, using a ground-based vision system, the airplane 3D
position and orientation allowing a successful landing maneu-
ver. In this kind of problems, we can apply a particle filtering
framework that represents the distribution of an object’s pose
as a set of weighted hypotheses (particles) that provides us a
confidence measure.

The particle filter is a computationally expensive method,
in particular, the particle generation (in this case the object
rendering) and the particle evaluation. We will focus on apply-
ing a particle filtering framework to a 3D model-based pose
estimation problem, trying to retrieve as much information
as possible from existing resampling schemes. We compare
the performance of ten traditional schemes with a resampling
step inspired by the evolution strategies present in genetic
algorithms [6], [7] (Genetic Algorithm based Framework –
GAbF), to avoid sample impoverishment.

This paper is organized as follows. In section 2 the overall
system description is made. In section 3 the adopted particle
filter formulation is explained. In section 4 we present some
experimental results, comparing the performance obtained in
the tested resampling strategies. Finally, in section 5 we
present the conclusions and provide directions for further
research work.

II. OVERALL SYSTEM DESCRIPTION

Landing on a ship is a tough task, especially in small ships
that are very sensitive to the weather conditions (e.g. wave
and the wind) and have a small area available for landing
purposes (as seen in Figure 1). We are using a net-based
retention system (Figure 2) that guarantees the safe landing
of the UAV. The retention system must be adapted to each
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Fig. 1. UAV landing illustration.

Fig. 2. Landing area – Experimental tests.

case ensuring the minimal mechanical injury to the UAV and
the platform.

The proposed method (Figure 3) is divided into three major
parts [1], [2]:

• Target Detection – Consists of searching in the image for
regions of interest (ROI). This ROI represents an image
area that may contain an object classified as the UAV to
land;

• Pose estimation – Consists of particle initialization (us-
ing a pre-trained database of the UAV in multiple poses),
particle evaluation (rank each particle by likelihood) and a
local optimization (particles are resampled and optimized
to best fit the object appearance in the image);

• Propagation – The best particle on each iteration is
considered the UAV pose estimation for that time instant,
and the particle propagation between frames is made
adding noise to each one of them to describe the particle
uncertainty.

The target detection stage is critical since we are operating
in an outdoor environment (Figure 4) and we need to have
illumination invariance. The presence of other objects in

Fig. 3. Simplified system description.

Fig. 4. Outdoor real UAV images (examples).

Fig. 5. Obtained ROI using a cascade classifier (LBP).

the image can affect the system performance and reliability.
Currently, this initial UAV detection is made using a trained
local binary pattern (LBP) cascade classifier [1], [8], ensuring
that we have a region of interest (ROI) given by the classifier
(Figure 5) with small error percentage [1], [2].

In the pose estimation stage, the particle initialization is
achieved using the detected ROI in the previous target de-
tection stage, obtaining the oriented bounding box (OBB)
that contains the airplane corner points applying the FAST
feature detector [9]. Then the OBB is compared with a pre-
trained database of UAV OBB in multiple poses that was
generated using multiple UAV synthetic images in different
poses. The difference between the angle and the aspect ratio
of the observation and database is calculated online using the
Euclidean distance, and all the poses with a satisfactory score
will be the initial dataset of the particle filter. We assume that
the object’s points are all at the same depth (Z coordinate),
projected in a plane parallel to the image. The Z coordinate
can be computed by the relationship between the OBB areas
and depth. The X and Y coordinates are calculated by the
relation between the coordinate of the center of the observation
OBB, the obtained Z coordinate and the intrinsic camera
parameters focal length f and camera center coordinates C
(obtained by calibration). A correct camera calibration step is
essential to ensure precision in system performance.

The working environment is critical and will affect many
system operation choices namely the selection of the likeli-
hood metric. If we are operating in an outdoor environment,
we need to select a metric invariant to illumination changes.
Towards this goal, the particle evaluation, in this case, is
achieved using one color likelihood metric [1], [2].

In the color likelihood the histograms (as seen in Figure 6)
are obtained in the RGB color space (12 bins for each color —
B = 12), and the distance between them are calculated using
the Bhattacharyya similarity metric:

Lcolor = 1 − ΣB
b=1

√
hinner(b) · houter(b) (1)

where hinner is the inner histogram, houter is the outer
histogram and b is the respective histogram bin. Since we
are not using any information on the likelihood metric that is
directly affected by the illumination changes, we can guarantee
robustness to this factor but not for example for the existence
of another similar object in the captured frame. For this, we
need to adopt other methods to be able to confirm that we
are detecting the UAV and for this purpose, we use a LBP
classifier to obtain a ROI to be analyzed minimizing the
obtained error, as described before. More tests need to be made
to characterize the classifier performance accurately.



Fig. 6. An example of inner (black) and outer (blue) histograms.

In this article, we will focus on the local optimization (inside
the Pose estimation stage) that is based on a particle filtering
framework. The adopted local optimization framework will be
the primary focus of section 3, and the obtained experimental
results will be shown in section 4.

III. IMPLEMENTATION DESCRIPTION

The developed approach is based on the evolution strategies
present on the genetic algorithms [6], [7], avoiding sample im-
poverishment. Crossover and mutation operators are adopted,
increasing the filter performance and decreasing the number
of needed particles for object pose estimation. Particle filters
use multiple hypotheses for estimation, which usually works
well for non-linear dynamics and observation models.

A. Resampling

The resampling consists in selecting new particle positions
and weights such that the discrepancy between the resam-
pled weights is reduced, i.e. eliminating particles with low
importance weights and by multiplying particles having high
importance weights. The particle filters have several sources
of error, that can be summarized in the following points:

• The number of particles is finite, and the resampling leads
to approximation errors;

• The resampling step can result in loss of solution diversity
(the variance of the particles decrease), principally if we
do not have sensor reads;

• Divergence between the system distribution and the pro-
posal distribution (that generates the particles) that can
lead to particle degeneracy (only a few of the particles
will have significant weight);

• When the number of particles is low compared with the
state space dimension, we can have particle deprivation
(accidentally discard all particles near the correct state
during the resampling step).

If we just introduce a resampling step between successive
iterations the parameter space is explored only in the initial
iteration, reducing the obtained solution diversity. After t
iterations the posterior density will contain one single value,
being a poor approach to the problem. To deal with this, we
can add some artificial dynamic noise between iterations [10]:

xt+1 = xt + ϕ (2)

where ϕ is artificial noise that can have constant variance,
a decreasing variance in time or have another kind of rules
developed for the specific implementation. The amount of
added noise must be tuned to decrease the needed particle
filter convergence time. We adopt three different approaches
in our experimental results:
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Fig. 7. Particle filter optimization phases.

• Constant variance noise (Noise) — Between successive
iterations, after the resampling step, is added noise with
constant variance;

• Three discrete phases noise (3Phase) — Each different
phase has a constant variance (decreasing from phase 1
to 3) and is executed n times;

• Decreasing variance noise (Iterative) — The variance
decreases after each iteration, and is performed until it
reaches a minimum value.

B. Genetic Algorithm based Framework

The GAbF operates in three phases (as seen in Figure 7):
Bootstrap, Coarse Optimization and Fine Optimization.

In the Bootstrap phase the best N possibilities obtained by
comparison with the database are collected in a list (Top N
particles). The likelihood of each particle is evaluated and
stored in the list. The best M particles are stored in an
auxiliary buffer (Top M). The particles with weight very close
to zero (below δ = 0.01) are eliminated and replaced with
a random particle selected from the Top M buffer, added to
Gaussian noise of covariance ΣB . At this point, all particles
have likelihood above δ. In the experimental results using the
other tested resampling strategies, the same Bootstrap phase
was used to make the particle filter initialization.

Then, we run up to 10 improvement steps. In each step, all
particles are evaluated and compared to those in the Top M. If
the obtained weight is higher, the Top M is updated. If there
are at least two particles in the Top M with likelihood bigger
than “Threshold min“, the bootstrap phase ends. Otherwise,
each particle is perturbed with Gaussian noise with covariance
ΣB . If after 10 of these improvement steps we do not have
two particles above “Threshold min“, the bootstrap process is
restarted up to a maximum of 3 restarts. In our experiments,
we have noticed that the occurrence of restarts is very rare.

The coarse optimization phase begins when at least two
particles have a weight higher than “Threshold min“. At any
stage of the coarse and fine optimization steps, the best two
particles have a significant role in the optimization process
because they will provide the chromosomes for an approach
inspired by genetic algorithms.

Each particle in the Top 100 list coming from the bootstrap
process is analyzed. If the particle is the best one, it is
perturbed with some Gaussian noise. If the particle weight is
smaller, the best two particles are combined using a crossover
operation to create a new particle. The crossover operation
consists in the random selection of attributes from the state



vector of the original particles (3D position and the object
orientation). To half of the particles generated by crossover
is applied a soft mutation by adding Gaussian noise to the
result. Together these rules allow a focused particle diversity,
simultaneously converging to the best solution and avoiding
possible local minima. The process stops when at least two
of the particles are above value “Threshold“. If this does not
happen in 10 iterations, the pose optimization filter returns to
the bootstrap phase automatically.

The fine optimization phase is analogous to the coarse
optimization phase but the Gaussian noise variance applied
in mutation is lower, to make a fine-tuning of the estimated
pose. The fine optimization phase ends after five iterations.

We tested ten traditional resampling schemes namely the
[11]–[22]: stratified, systematic, residual, residual systematic,
optimal, reallocation, metropolis, minimum sampling, multi-
nomial and branching. In the next section, the GAbF algorithm
will be compared with these traditional resampling methods.

IV. RESULTS

In this section, we show results from the implemented
framework. With real images we do not have ground truth
information, results are quantitatively evaluated using synthet-
ically generated frames with ground truth. The method was
implemented in C++ on a 2.40 GHz Intel i7 CPU and NVIDIA
GeForce GT 750M.

A. Quantitative Performance Evaluation – Traditional Meth-
ods

1) Translation Error: Figure 8 to Figure 17 show the
obtained translation error from the traditional resampling
strategies. The landing area is an irregular area of 5x6 meters,
so we need to guarantee a minimum translation error of 1
meter to ensure a safe landing.

As we can see from analysis of the obtained Figures, the
translation error decreases with proximity, obtaining a mean
value at 5 meters between 0.5 and 0.6 meters for all the
tested resampling and noise add strategies. This resolution
in translation is clearly achieved, guaranteeing a UAV good
estimation in 3D position across the range of distances covered
in this test. The accuracy of the system can be increased
reducing the number of outliers (outliers are currently less
than 5% of the cases) by using the UAV dynamic model in a
temporal filtering and data association framework.

2) Rotation Error: Figure 18 to Figure 27 show the ob-
tained rotation error, one combined histogram was obtained
for each resampling and noise add strategies. As we can
see from the analysis of the Figures, the results are almost
all the same independently of the resampling and noise add
strategy adopted. This is, we have the vast majority of the
estimation error near zero and 180 degrees (the complementary
pose). This happens mainly due to the UAV design where the
complementary poses achieve a higher correspondence weight
and become easily trapped in a local minimum. Since we
are operating in a high dimensional space, there is ambiguity
between complementary poses, and the pose estimation is

achieved with a significant error. In the iterations of the particle
filter with added artificial noise, the particles in the previous
iteration are moved to a different state even if they are the
best ones. Therefore, the highest likelihood of the sample
set may decrease along the iterations. On the contrary, the
GAbF based method keeps the best particles intact between
consecutive iterations, so the highest likelihood is assuredly
never decreasing.

As we can see from the obtained Figures, the mean value
and the median will be near the center of the obtained
histograms since the majority of the data are located near 0
and 180 degrees. The reallocation resampling has the highest
performance in the obtained results, but still far from the
desired for the system.

B. Quantitative Performance Evaluation – GAbF

Figure 28 show the obtained error using the proposed GAbF
algorithm. The translation and rotation error, in this case,
decreases with the proximity but less markedly for the rotation.
For the translation, we obtain a mean value at 5 meters of
0.3 meters. As referred before, the maximum translation error
allowed is 1 meter to ensure a safe landing. Moreover, this
accomplishes the needed requirement, with lower error than
the obtained for the tested resampling schemes. The rotation
error has a median value of 9.4 degrees, which is much lower
than the obtained before.

The main difference here are the threshold based phases
(Figure 7), and the ability to store information between it-
erations (Top M). This information is very useful when the
algorithm is searching in a wrong direction and diverging from
the expected result, having the ability to use the crossover and
the mutation operators to get back and converge to the best
solution.

V. CONCLUSIONS AND FUTURE WORK

Using this UAV model, and because of its geometry, makes
it easy to obtain high scores on the likelihood function for
complementary poses since the vast majority of its pixels
are located on the wings resulting in a large correspondence
score. The working environment limits our likelihood choice
since we cannot use likelihood formulas that are affected by
illumination changes and can lead to poor results.

The particle filter resampling step was the main focus of our
analysis, and ten existing resampling methods were applied
with three added noise strategies between iterations. For an
effective comparison, the particle number was kept constant
between iterations and one resampling step was applied on
each iteration (the computation time is equivalent between
methods). From the obtained results we can see that the
translation error is between 0.5 and 0.6 meters, a value bellow
the predefined 1 meter of translation error limit. The rotation
error obtained is mainly located near 0 and 180 degrees
primarily due to the complementary poses similarity with
the real ones, which makes the algorithms stuck in local
minima. This happens mainly because between iterations, all
the particles, including the best ones, are disturbed with noise
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Fig. 8. Translation error – Resampling Systematic.
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Fig. 9. Translation error – Resampling Residual.
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Fig. 10. Translation error – Resampling Branching.
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Fig. 11. Translation error – Resampling Optimal.



5 15 25 35 45

Distance (meters)

0

5

10

15

20

25

30

E
rr

o
r

Resampling - Metropolis (Noise)

5 15 25 35 45

Distance (meters)

0

5

10

15

20

25

30

35

E
rr

o
r

Resampling - Metropolis (3Phase)

5 15 25 35 45

Distance (meters)

0

5

10

15

20

25

30

35

40

E
rr

o
r

Resampling - Metropolis (Iterative)

Fig. 12. Translation error – Resampling Metropolis.
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Fig. 13. Translation error – Resampling Stratified.
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Fig. 14. Translation error – Resampling Minimum Sampling.
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Fig. 15. Translation error – Resampling Rallocation.
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Fig. 16. Translation error – Resampling Residual Systematic.
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Fig. 17. Translation error – Resampling Multinomial.
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Fig. 18. Rotation error – Resampling Systematic.
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Fig. 19. Rotation error – Resampling Residual.
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Fig. 20. Rotation error – Resampling Branching.
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Fig. 21. Rotation error – Resampling Optimal.
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Fig. 22. Rotation error – Resampling Metropolis.
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Fig. 23. Rotation error – Resampling Stratified.
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Fig. 24. Rotation error – Resampling Minimum Sampling.
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Fig. 25. Rotation error – Resampling Reallocation.
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Fig. 26. Rotation error – Resampling Residual Systematic.
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Fig. 27. Rotation error – Resampling Multinomial.
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Fig. 28. Translation error (left) and rotation error (right) — GAbF.

(using one of the defined three strategies), and we can diverge
easily from the result since the likelihood metric is very
narrow.

A method named GAbF was developed and implemented,
this architecture allows a very accurate position estimation
(about 4% median error at 5 m) and a reasonable attitude error
(about 10 median error at 5m). This happens mainly because
we are using a three phase threshold value noise and saving
the best particles in a buffer. Dependently of the obtained
weight, we combine this particles with crossover and mutation
operators. The mutation operator has the objective of giving
particle diversity to the solution. This approach allows us to
keep the best particles saved in a buffer, and if we diverge from
the result, we can ease recovery the right path by using this
information. We are using a finite set of particles, and in a high
dimensional space if we do not maintain some information that
is important we can easily get stuck in a complementary pose
or searching in one area that is far from the real pose.

The obtained results are suitable for the following stages
of the work, which we will focus on temporal filtering to
add robustness to the pose estimation since we can discard
some poses that are too different from the previous since it is
physically impossible between successive frames to rotate e.g.
180 degrees.
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