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Abstract— A defining characteristic of intelligent systems is
the ability to make action decisions based on the anticipated
outcomes. Video prediction systems have been demonstrated as
a solution for predicting how the future will unfold visually,
and thus, many models have been proposed that are capable
of predicting future frames based on a history of observed
frames (and sometimes robot actions). However, a compre-
hensive method for determining the fitness of different video
prediction models at guiding the selection of actions is yet to
be developed.

Current metrics assess video prediction models based on
human perception of frame quality. In contrast, we argue that
if these systems are to be used to guide action, necessarily, the
actions the robot performs should be encoded in the predicted
frames. In this paper, we are proposing a new metric to compare
different video prediction models based on this argument.
More specifically, we propose an action inference system and
quantitatively rank different models based on how well we
can infer the robot actions from the predicted frames. Our
extensive experiments show that models with high perceptual
scores can perform poorly in the proposed action inference
tests and thus, may not be suitable options to be used in robot
planning systems.

I. INTRODUCTION

An important stepping stone on the path towards intel-
ligent robotic agents is providing them with the ability to
explore their environment and to learn from interaction.
Visual data, in the form of video, plays a central role in
this problem and has led to great success in problems such
as unsupervised learning of object keypoints [1] and action
recognition [2]. In this direction, the next step should be for
the robot to be able to learn the inherent workings of a real
world environment and to understand how different bodies
move, deform and influence each other.

As suggested by Srivastava et al. [3], if a robot has the
ability to predict the imminent future based on an observed
sequence of visual queues, then it must have acquired a
representation of the spatial and temporal dynamics of the
world. Predicting future video frames is perhaps the most
straightforward materialization of this idea as the better a
system can make predictions about future observations, the
better the acquired feature representation must be [4]. For
example, a robot that is able to predict that a falling stick will
become occluded by a box, must understand (1) where the
trajectory of the stick will take it, (2) be capable of perceiving
depth, and (3) recognize the box in the foreground is opaque.
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Fig. 1: A sawyer robot imagining different possible outcomes
of executing a sequence of actions in the hypothetical task of
pushing a ball to a whole. Image credit: Teresa Serra Nunes.

From a robotic perspective, if the predictions consider
the actions of the agent itself, i.e. are conditioned on the
action, then the representation should also help understand
how performing an action in a given situation will affect
the future appearance of the scene and thus, guide action
decisions, an idea illustrated in fig. 1.

Similarly, the idea of anticipating sensory inputs to op-
timize action response in the human brain is studied under
the theory of prospective coding, which explains the phe-
nomenon by which representations of future states influence
event perception and generation [5], [6]. Forward generative
models constitute a fundamental part of predictive coding
theory, especially in the domain of human action planning [7]
where the latency between the stimulus of the retina and the
corresponding acknowledgement by the responsible region
of the brain makes it difficult to select appropriate actions in
response to rapidly evolving events. The capabilities of Video
Prediction (VP) systems to serve as forward models have
been explored e.g. with the introduction of an architecture
that learns a policy for solving OpenAI Gym [8] Reinforce-
ment Learning (RL) problems using an encoder of observed
video frames and a MDN-RNN to predict future visual codes,
given current and past observations and executed actions [9].
Finn and Levine [10] use a VP model to continuously sample
the expected future given different sequences of actions.
The sequence that maximizes the likelihood of the robot
achieving the goal of pushing an object to a specified location
is selected at each time step to be executed. This type of
model-based control is an active area of research in RL and
large-scale datasets of robotic experiment such as RobotNet



[11], developed concurrently with this work, should allow
future breakthroughs.

In these applications, the ability to select the best possible
action is very dependent on how well the VP model can
anticipate future observations based on the robot’s actions
and the current status of the scene. Having a metric that
can rank video prediction models based on how well they
perform as a forward model is therefore of fundamental
importance.

As will be described in section II, most state-of-the-art
work in video prediction measures the performance of the
models using metrics designed to reflect human perception
of quality. While these metrics might be useful for appli-
cations such as precipitation nowcasting [12] or semantic
segmentation prediction [13], we argue that they are not
necessarily adequate in action oriented applications such as
robotic planning where the quality of the video prediction
model should be measured by how well it can guide action
decisions from the predicted frames.

Inspired by this notion, we propose a new, simple metric
for ranking video prediction models from a robotic stand-
point. Given a sequence of predicted frames, we train a
model to infer the action performed at each time step. The
ability of our inference machine to recognize the correct
sequence of actions only from the predicted frames should
indicate that the representation of the world held by the video
prediction model is correctly encoding action features and it
is able to understand the consequences of executing a given
action at the current state of the environment.

This paper has the following three contributions:

• we propose a novel action-based quality assessment
metric for robotic video prediction models;

• we apply the metric on several different models and
quantitatively rank them from a robotic action-inference
perspective;

• we qualitatively compare our method with other metrics
and show that in most cases our quality measure can
independently assess models, providing new insights
about their performance as action-conditioned video
prediction models.

In addition, we provide the implementation of our experi-
ments to facilitate assessment of VP models that we did not
consider or will be proposed in the future1.

The rest of the paper is organized as follows: in section II
we examine the related work on different VP models with an
emphasis on the research directions that we consider in this
paper. In section III we explain the details of of our method,
metrics we used, and several design choices we considered
that made this work possible. Section IV begins with a
description of the dataset used in our experiments. It then
continues by discussing how well different methods could
compete in our metric and how do they compare in terms of
other metrics already developed in the literature. Finally, we

1https://github.com/m-serra/action-inference-for-
video-prediction-benchmarking

draw our conclusions and discuss promising future research
directions in section V.

II. RELATED LINES OF RESEARCH

A. Video Prediction

The importance of anticipation and predictive sensori
processing has long been regarded as crucial in controlling
neural and cognitive processes such as perception, decision
making and motion in both humans and animals, with studies
on the subject dating at least as far back as the 19th

century [14] and extending into the 21st century [15], [16]. In
the field of robotics, these concepts inspired the development
of sensori-motor networks [17] which emulate the interaction
between the visual and motor systems in organisms to predict
future visual stimulus. Santos et al. [18] applied sensori-
motor networks to small image patches to predict the next
time step’s stimulus.

However, when the problem is extended to more generic
settings involving observations of a complete scene and
longer temporal sequences, the high dimensionality of the
data and the rich, complex, and uncertain dynamics of the
real world become a bigger hurdle. In recent years, research
in neural networks has mitigated these problems, with the
development of Convolutional Neural Networks (CNNs),
that reduce the dimensionality burden in image processing,
Recurrent Neural Networkss (RNNs) which capture the in-
formation contained in sequential data, and a combination
of the two in the Convolutional Long Short Term Memorys
(ConvLSTMs) [12]. All these systems have been widely used
in the field of video prediction.

Influential work on video prediction by Mathieu et al. [4]
focused on improving the quality of the generated video by
experimenting with different loss functions as an alternative
to `2, which is hypothesized to cause blurry predictions.
One of the most meaningful contributions to video prediction
was perhaps the introduction of the concept of pixel motion
by Finn et al. [10], Xue et al. [19] and De Brabandere et
al. [20] which liberates the system from having to predict
every pixel from scratch by instead modelling pixel motion
from previous images and applying it to the most recent
observation. Since then several authors have continued the
work in this direction: Babaeizadeh et al. [21] account for
the stochasticity of the world by conditioning the predictions
on stochastic variables while Lee et al. [22] explore how
the introduction of a Generative Adversarial Network (GAN)
improves the visual quality of predictions.

Other lines of research have included motion and content
decomposition [23], predicting transformations on feature
maps [24], [19], and biologically inspired approaches [25]
which propose a hierarchical architecture that emulates the
top-down and bottom-up transmission of local predictions
and errors in predictive coding theories of human perception.

In this work we focus on action-conditioned video predic-
tion models as it is presumable that those are the most suited
models for use in robotic planning. We select 1) Convolu-
tional Dynamic Neural Advection (CDNA): a deterministic
model based on pixel-motion modelling [26], 2) Stochastic



Adversarial Video Prediction (SAVP): which also models
pixel motion but introduces variational and adversarial terms
to the loss, to try to improve prediction quality and ac-
count for the variability in the environment [22], 3) a
variant of SAVP in which the adversarial term is suppressed,
4) Stochastic Variational Video Prediction (SV2P): an exten-
sion of CDNA conditioned on stochastic variables, 5) and
finally we test Stochastic Video Generation with Learned
Prior (SVG-LP): the stochastic, action-free model of [27].

B. Assessment of video prediction models

A common trend in video prediction models is the eval-
uation of model performance based on metrics designed to
mirror human perception of quality in image and video, i.e.,
Quality of Experience (QoE). This is a subjective concept,
which depends not only on the data fidelity of the recon-
structed image or video but also on the personal experience
and expectations of the viewer [28]. The standard measure
for QoE is the Mean Opinion Score (MOS) which is the
average quality rating, given by a sample of viewers. QoE
prediction is an active area of research in which proposed
methods are usually compared to the Peak Signal to Noise
Ratio (PSNR) benchmark. PSNR is a logarithmic measure
of the mean squared error between a distorted image. Its
mathematical simplicity and convenient optimization prop-
erties make it one of the most popular metrics for image
quality [29]. However, PSNR compares images pixel by
pixel, not taking into account the content, leading to patho-
logical cases [28] in which it fails at approximating human
judgement.

An alternative metric that addresses this problem is the
Structural Similarity (SSIM) Index [30], which is founded
on the principle that signals that are close in space have
strong dependencies between each other and that the human
visual system is highly adapted for extracting this structural
information. SSIM indices are calculated using a sliding
window which produces an index map. This index is 1 if
the structure of corresponding patches of the two images is
the same and the final SSIM score corresponds to the average
of the index map. More recently, Learned Perceptual Image
Patch Similarity (LPIPS) metrics, based on learned features
of neural networks such as VGG have shown remarkable
capabilities as a perceptual distance metric [31].

Inspired by the developments in image generation, meth-
ods that are specifically designed for assessing realism in
generated video have also been proposed [32]. E.g. the
Fréchet Video Distance (FVD) [33] accounts for visual
quality, temporal coherence, and diversity by measuring the
distance between the distribution that originated the observed
data and the distribution from which the predicted video is
generated, instead of comparing pixels or image patches.

In this work we compare the performance of VP models
on our proposed metric with performance on commonly used
PSNR and SSIM, and on FVD.

III. METHODS

In this section we present a simple method for ranking
VP models based on their capacity to guide a robotic agent’s
action decisions, reflected by the performance of an action
inference system. We start by assuming that the better the
dynamics representation of the agent is at encoding action
features, the better it will be for planning actions based on
the expected outcome. Under this assumption, the problem
turns into evaluating how well a VP model is encoding action
features and assigning it a score based on such evaluation.

With this in mind, we hypothesise that the capacity to
observe a sequence of predicted frames and infer the exe-
cuted actions should be an indicator that the VP model is
correctly encoding action features. To better illustrate the
idea, first consider a failure case: if the VP model generates
a sequence of predicted frames that do not correspond to the
executed actions by the robot, then no action inference model
can recognize the correct set of actions from the predicted
images, resulting in a low action inference score. On the
other hand, if the VP model understands the consequences of
the input actions, then the frames it predicts should correctly
reflect the action and its consequences, allowing an inference
model to recognize the actual executed actions and attain a
high score.

A. Video prediction

In order to compare how the proposed metric correlates
with PSNR, SSIM and FVD, we start by selecting a group
of VP models from prior work to be tested using our metric.
By comparing model performance under metrics designed to
predict human quality perception with our metric, designed
to assess the capabilities of the model to guide action
decisions, we intend to answer the question “Does a good
video prediction from a human perspective correspond to a
good video prediction from the standpoint of a robot making
decisions?”. This is an interesting question considering that
a change in model ranking, when compared to PSNR or
SSIM, may not only influence the choice of the VP in
an action planning experiment but also indicate that the
best representation for a robot to make a decision may not
resemble anything a human may recognize [34], [35] and
inspire new lines of research such as optimizing for losses
other than ground truth similarity.

The selection of the tested VP models described in section
II was made with the goal of covering the main approaches
to robotic video prediction, which opens up the possibility
of identifying the most significant features of a VP model
used in a robotic planning context.

B. Action inference model

To assess the quality of models, we first train a simple
convolutional neural network to infer the actions executed
between every two frames using predicted videos. The ac-
tions are assumed to be continuous and multidimensional, to
be representative of most robotic control action-spaces. Each
pair of frames is concatenated along the channels dimension
and given to the network as input, as illustrated in fig. 2.



Because action dynamics should not change over time, model
parameters are shared across all time steps of a sequence.
While a RNN would typically have been useful for learning
the sequence of executed actions, we choose to input a
window of two frames at a time, cutting off any temporal
correlation between actions. This forces the inference model
to identify actions from the frames instead of focusing on
learning the temporal action distribution. The option for a
window size of two frames is due to the fact that in the
selected dataset the robot’s actions are randomly updated
every two frames. For datasets with different conditions,
however, the window size parameter can control the temporal
information received by the network without shifting the
attention of the model from the frames, and it is expected
that bigger windows should result in better action inference.

Fig. 2: Action inference network. At each time step the
network receives a pair of frames and outputs a multidi-
mensional recognized action.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

We conduct our experiments using the BAIR robot push
dataset [36] which consists of a robotic arm pushing a
collection of objects on a table. This dataset was collected in
the context of visual planning and video prediction and has
since become a benchmark in the field [27], [37], [38], [39].
The dataset contains 43520 examples of random movements,
as exemplified by a birds eye view of the gripper trajectory
during a sample in fig. 3. Videos are 30 frames long, with
64 × 64 RGB images, collected at 10 Hz. The dataset also
provides the commanded action sequences, a 4-dimensional
array representing the joint velocities and whether the gripper
is open or closed, and a 3-dimensional array representing the
Cartesian coordinates of the gripper. All tested VP models
were pre-trained by the respective authors with exception of
CDNA, which was trained on over 200000 iterations, using
scheduled sampling [40]. At training time, models receive 2
context frames and actions (with the exception of SVG-LP
which only receives the frames) and predict video up to time
step 12, with each prediction being fed back as input for the
next time step.

In our work, after training a forward pass is made over the
entire training set and the generated predictions, this time
generalizing until step 30, are saved as a new dataset for
subsequent training of the action inference model. Having a
dataset of predictions for each VP model, the action inference
network is trained on the 28 frame long predictions. In our
experiments, we define the actions being inferred as the
displacements ∆x and ∆y of the robot’s gripper along the x
and y axis, between every two time steps. The ground truth

Fig. 3: A sample trajectory of the gripper illustrating the
random nature of the actions.

targets for the actions are directly extracted from the BAIR
dataset gripper state sequences by subtracting consecutive
temporal positions for both axis. This results in an action
sequence of length 27 for each 28-frame predicted video.

A characteristic of the BAIR dataset which has particular
effect on the results is the fact that joint velocities are only
updated every two frames. Even though the gripper position
still changes at every time step, the variance of the change,
i.e. the variance of ∆x and ∆y is higher on time steps in
which joint velocities are updated. This aspect of the data
is depicted in fig. 4 where the ∆y targets of the test set
are scattered, revealing an alternating standard deviation. In
practice, this alternating nature results in the action inference
network not experiencing all types of actions the same way,
therefore becoming better fit to some situations than others.
For this reason, results are presented separately for odd and
even frames corresponding to time steps in fig. 4.

Fig. 4: Distribution of the test targets ∆y, revealing a
characteristic alternating standard deviation.

B. Quantitative Comparison

We start by evaluating the selected group of VP models on
some of the traditionally used metrics described in section
II and on the recently proposed FVD. As opposed to the
methodology adopted by some of the previous work [22],
[27] in which 100 possible futures are sampled and the best
score of the group is reported, we choose to sample a single
time, in order to better approximate the conditions of a
robot planning actions. This approach has especial impact



on action-free models like SVG-LP, that are exposed to
greater uncertainty. Regarding the action-conditioned mod-
els, the results displayed in fig. 5 are in line with previous
reports, indicating that models have better performance when
conditioned on both actions and stochastic variables, as is
the case with SAVP-VAE and SV2P. On the other hand,
the addition of an adversarial loss term seems to affect
performance negatively, which reflects on SAVP having a
lower PSNR/SSIM score than a deterministic model like
CDNA despite the high visual appeal of the predicted frames.

Fig. 5: Average PSNR and SSIM over the test set with 95%
confidence interval. Results were reproduced with modifica-
tion from [26], [27], [22].

We compute the FVD values for the test set predictions
in table I using batches of size 32 and discard the two
context frames to only consider the predictions of length 28.
This approach is different from the one proposed in [33],
therefore resulting in higher FVD values but preserving
model rankings.

For each VP model’s predictions dataset, the action infer-
ence model that produces the best validation score during
training is selected. To measure how well it can identify the
executed actions, we compute the R2 goodness-of-fit metric
which in our particular case represents the percentage of
change in ground truth action variance that is explained by
the inferred actions. A model that perfectly identifies the
executed actions will have a score of 1.0 whereas a model
that simply outputs the mean ∆x and ∆y will have a score
of 0.0. It is worth noting that while R2 may not be a strong
enough statistic for comparing different regression models,
the focus of this work is to assess the predictions made by
different VP models, using the same training regime for the
inference model. In our experiments R2 is computed along
the 256 test examples for each time step and the evolution of
the metric over time is reported in fig. 6. The Mean Absolute
Error (MAE) is also presented in fig. 7, computed in the
same way as R2, for each time step. The most immediate

Fig. 6: R2 results over time for predictions made by different
VP models. Odd and even time steps are shown separately.

characteristic in the temporal evolution of action inference
that arises from an initial analysis of figures 6 and 7 is that
the temporal downgrade artefact in performance observed in
PSNR and SSIM is not manifested in the capacity of the
model to recognize the actions, with exception of results for
CDNA. This quality of the metric stems from the fact that
the parameters of the inference model are shared across all
time steps, a choice based on the fact that action dynamics
do not change over time and therefore VP models should
have a consistent action encoding for all time steps. For
this reason, a VP model that encodes actions in a consistent
manner should allow the inference network to better learn
how to recognize actions and will therefore display stable
R2 and MAE values across time, as is verified for SAVP and
SAVP-VAE. On the other hand, because video predictions
made by CDNA have changing dynamics, starting with
good resolution and transitioning to blurry images as time
advances, it is difficult for the action inference model to
learn to identify actions.

The performance of the action inference on predictions
made by different models indicates, based on figures 6 and
7 and on table I, that the model that is better encoding
action features and would therefore be the most suited
in robotic planning problems is SV2P, closely followed
by SAVP-VAE, implying that conditioning on stochastic
variables is beneficial but the introduction of the adversarial
loss for better image quality removes attention from optimal
encoding of action features. These models even outperform
the ground truth oracle, supporting the argument that the
stochastic variables should be accounting for non observable



Fig. 7: Average MAE results with 95% confidence interval
for predictions made by different VP models. Odd and even
time steps are shown separately.

aspects of the scene and that some blurring of the background
may actually help the inference network focus on the action
features. On the other hand, the action-free SVG-LP model
has an R2 value of approximately 0 and an MAE value of
0.163 which corresponds to the variance of the data. This
indicates, as observed in section IV-C, that the inference
model is unable to identify the actions and limits itself to
predicting a constant average. The origin of this result is
that an action-free stochastic model from which a single
prediction is sampled, may produce a future that is different
from the ground truth, causing recognized actions to not
match the targets and preventing the model from learning
a meaningful mapping during training.

In general, and as reported by [33], PSNR and SSIM
present a very high correlation as both of them are based
on frame by frame comparisons with the original data.
Furthermore, because most VP models use an `2 term in
the loss function, these are biased metrics. We also verify
that multiple ranking changes occur between our proposed
score and FVD, including SV2P scoring the best in action
recognition while having an FVD value close to that of
SVG-LP, which for being action-free has the lowest score
under our metric. These results show that the ability to
recognize actions from predicted images doesn’t necessarily
correlate with previously proposed metrics and that action
inference may offer a valuable perspective for choosing the
best model in a planning scenario.

C. Qualitative Comparison

To better understand how the R2 and MAE results reflect
on action inference in practice, examples of inferred action
sequences are showed against the ground truth in figure 8.
We find the best and worst R2 score on action inference

TABLE I: FVD, R2 and MAE values for each VP model.

Model FVD Value R2 Score MAE Value
CDNA 943.5 0.4339 0.0111
SAVP 738.3 0.5953 0.0092

SAVP-VAE 409.8 0.8427 0.0056
SV2P 691.1 0.8719 0.0049

SVG-LP 728.2 -0.0582 0.0160
Oracle 0.0 0.8203 0.0058

from video predictions from any VP model and then plot
the inferred actions from that video sequence. The best
performing model in the selected examples was SAVP-VAE,
while the worst was SVG-LP. A visual interpretation of
the extent to which the inference network is successful at
recognizing the actions is in conformance with the results
of section IV-B, with the SAVP-VAE and SV2P models
performing the best, followed by SAVP and CDNA.

Fig. 8: Best and worst examples of inferred ∆x.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a novel method for evaluating
the quality of VP models from a robotic standpoint. We
compared different existing video prediction models using
our metric, showing that good performance on metrics that
mirror human perception of quality does not necessarily
imply that the model holds a good representation of action-
effect. In the future we plan to introduce better datasets that
include states of the environment other than gripper position,
such as objects positions and speeds, allowing the assessment
of models based on more comprehensive states. Developing
action or object-state aware cost functions for training VP
models is another possible future line of research.
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