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Abstract—In this paper, we propose a developmental approach
that allows a robot to interpret and describe the actions of human
agents by reusing previous experience. The robot first learns the
association between words and object affordances by manipulat-
ing the objects in its environment. It then uses this information to
learn a mapping between its own actions and those performed by
a human in a shared environment. It finally fuses the information
from these two models to interpret and describe human actions
in light of its own experience. In our experiments, we show that
the model can be used flexibly to do inference on different aspects
of the scene. We can predict the effects of an action on the basis
of object properties. We can revise the belief that a certain action
occurred, given the observed effects of the human action. In an
early action recognition fashion, we can anticipate the effects
when the action has only been partially observed. By estimating
the probability of words given the evidence and feeding them into
a predefined grammar, we can generate relevant descriptions of
the scene. We believe that this is a step toward providing robots
with the fundamental skills to engage in social collaboration with
humans.

Index Terms—Affordances, embodied cognition, gestures,
humanoid robots, language acquisition through development.

I. INTRODUCTION

COOPERATION, or the ability of working successfully
in groups, is a tenet of human society [1]. This skill is

acquired by human children incrementally, around the sec-
ond year of life, as they develop the ability to coordinate
themselves with peers or adult caregivers in shared problem-
solving activities and social games [2]. This is achieved not
only by mere behavioral coordination, but also by employing
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communicative strategies [3] and by continuously observing
partners’ actions [4]. Loosely inspired by these observations,
this paper presents and evaluates a cognitive system for robots
which permits reasoning over subsequent phases: first about
self-learned knowledge (about affordances and language-based
descriptions of objects), and then about others’ actions.

Even though social robots1 are becoming common in
domestic and public environments, human–robot teams still
lag behind human–human teams in terms of effectiveness.
For robots, interpreting the actions of others and learning
to describe them verbally (for effective cooperation) is chal-
lenging. The reason is that we cannot possibly model all the
imaginable physical, verbal, and nonverbal (e.g., gestures) cues
that can take place during human–robot interaction, due to
the richness of language and the high variability of the real
world outside of structured research laboratories and facto-
ries. Hence, it is necessary to have robots that learn world
elements and properties of language [6], and the ability to
link these verbal elements with other skills, such as other per-
ceptual modalities (e.g., vision of objects and other agents)
and manipulation abilities (e.g., grasping objects and placing
them in order to achieve a goal) [7].

This paper builds upon the intuition that a robot can general-
ize its previously acquired knowledge of the world (e.g., motor
actions, objects properties, physical effects, and verbal descrip-
tions) to those situations where it observes a human agent
performing familiar actions in a shared human–robot scenario.
We follow the developmental robotics perspective [8], [9],
which takes inspiration from the progressive learning phe-
nomena observed in children’s mental development (e.g.,
the understanding of language, the acquisition of manipula-
tion skills, and the comprehension of others’ actions), and
investigates how to model the evolution and acquisition of
these increasingly complex cognitive processes in artificial
autonomous systems.

In particular, we are inspired by the possible existence
of a shared representation for self-related and others-related
knowledge in the human brain [10]–[12], and we look at the
developmental stages in which human children have consoli-
dated an idea of self–other distinction [13] and start to reason
about the external world also in allocentric terms [14], in

1A social robot is “[a robot that is] able to communicate and interact with
us, understand and even relate to us, in a personal way. [It] should be able to
understand us and itself in social terms” [5].
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addition to the ego-centric ones, and could therefore possibly
begin to use knowledge about the self to infer about others.

Extending on our recent work [15], in this paper we com-
bine robot ego-centric learning about language and object
affordances [16] with the observation of external agents
through gesture recognition [17]. Our novel contributions are
as follows.

1) A probabilistic method to fuse self-learned knowledge
of language and object affordances, with socially aware
information of others’ physical actions (in the form of
uncertain soft evidence).

2) Experimental findings showing the reasoning power of
our combined system, which is able to make inferences
and predictions over affordances and words.

3) The possibility of generating verbal descriptions from
the estimated word probabilities and a predefined gram-
mar, with emergence of nontrivial language properties
such as congruent/incongruent conjunctions, synonyms
between two consecutive sentences speaking about the
same concepts.

Furthermore, we make our human action data and proba-
bilistic reasoning code publicly available2,3 in the interest of
reproducibility.

This paper is structured as follows. In Section II, we briefly
overview the literature on the interpretation and verbal descrip-
tion of others in different disciplines. In Section III, we present
our proposed method and its components. In Section IV, we
provide details and assumptions of the approach. Section V
illustrates our results, and in Section VI, we draw our con-
cluding remarks.

II. RELATED WORK

Human cooperation is a phenomenon that we often take for
granted (at least in adults), possibly because it is widespread
and intimately embedded into human societies. However, this
nontrivial skill is greatly facilitated, and influenced, by human
language [18]. For instance, educational research has shown
that, when language is used as a cultural tool for intellec-
tual tasks in preteen students, discursive interaction enables
collective thinking to become more effective, also fostering
individual reasoning and faster learning [19].

The ability to understand and interpret our peers has also
been studied in neuroscience and psychology, focusing on
internal simulations and re-enactments of previous experi-
ences [20], [21], or on visuomotor neurons [11], i.e., neurons
that are activated by visual stimuli. Mirror neurons respond
to action and object interaction, both when the agent acts and
when it observes the same action performed by others, hence
the name “mirror.” They are based on the principle that per-
ceptual input can be linked with the human action system for
predicting future outcomes of actions, i.e., the effect of actions,
particularly when the person possesses concrete prior personal
experience of the actions being observed in others [22], [23].

In applying the mirror neuron theory in robotics, as we and
others do [24], [25], an agent can first acquire knowledge

2https://github.com/giampierosalvi/AffordancesAndSpeech: the code
from [16] has been extended to support the experiments in this paper.

3https://github.com/gsaponaro/tcds-gestures: code from this paper.

by sensing and self-exploring its surrounding environment.
Afterwards, it can employ that learned knowledge to novel
observations of another agent (e.g., a human person) who per-
forms similar physical actions to the ones executed during
prior training. In particular, when the two interacting agents
are a caregiver and an infant, the mechanism is called parental
scaffolding, having been implemented on robots too [26], [27].
These works tackle the so-called correspondence problem [28],
in our case in a simple collaboration scenario, assuming that
the two agents are capable of applying actions to objects lead-
ing to similar effects, enabling the transfer, and that they
operate on a shared space (i.e., a table accessible by both
agents’ arms). The morphology and the motor realization of
the actions can be different between the two agents.

Some authors have studied the ability to interpret other
agents under the deep learning paradigm. In [29], a recurrent
neural network is proposed to have an artificial simulated agent
infer human intention (as output) from joint input information
about objects, their potential affordances or opportunities, and
human actions, employing different time scales for different
actions. However, in that work a virtual simulation able to
produce large quantities of data was used. This is both unre-
alistic when trying to explain human cognition, and limited,
because a simulator cannot model all the physical events and
the unpredictability of the real world. In contrast, we use real,
noisy data acquired from robots and sensors to validate our
model. In addition, deep neural networks trained with large
amounts of data can be difficult to inspect in their inner
layers and activations [30], whereas our Bayesian model is
focused on exhibiting emerging patterns of causality, choices,
explanations from relatively few data points.

DeepMind and Google published a method [31] to per-
form relational reasoning on images, i.e., a system that learns
to reflect about entities and their mutual relations, with the
ability of providing answers to questions such as “Are there
any rubber things that have the same size as the yellow
metallic cylinder?” That work is very powerful from the
point of view of cognitive systems, vision, and language.
Our approach is different because: 1) we focus on robotic
cognitive systems, including manipulation and the uncertain-
ties inherent to robot vision and control and 2) we follow
the developmental paradigm and the embodiment hypothe-
sis [8], meaning that, leveraging the fact that a human and
a humanoid produce actions with similar effects, we relate
words with the robot’s sensorimotor experience, rather than
sensory only (purely images-to-text).

In robotics and cognitive systems research, both object-
directed action recognition in external agents [32] and the
incorporation of language in human–robot systems [33], [34]
have received ample attention, for example using the concept
of intuitive physics [35], [36] to be able to predict outcomes
from real or simulated interactions with objects. A growing
interest is devoted to robots that learn new cognitive skills
and improve their capabilities by interacting autonomously
with the surrounding environment. Robots operating in the
real, unstructured world may understand available opportuni-
ties conditioned on their body, perception, and sensorimotor
experiences: the intersection of these elements gives rise to
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object affordances (action possibilities), as they are called in
psychology [37]. The advantage of robot affordances lies in
the ability to capture essential functional properties of envi-
ronment objects in terms of the actions that the agent is
able to perform with them, allowing to reason with prior
knowledge about never-before-seen scenarios, thus exhibiting
learning [38], [39] and some degree of online adaptation [40].

Zech et al. [41] published a systematic taxonomy of robot
affordance models. According to their criteria (we refer the
reader to the taxonomy for the precise definitions), in terms
of perception this paper classifies as using an agent perspec-
tive, meso-level features, first order, and stable temporality; in
terms of development: acquisition by exploration, prediction
by inference, generalization exploitation by action selection
and language, and offline learning.

Several works have studied the potential coupling between
learning robot affordances and language grounding. The union
of these two elements can give new skills to cognitive robots,
such as: creation of categorical concepts from multimodal
association obtained by grasping and observing objects, while
listening to partial verbal descriptions [42], [43]; associating
spoken words with sensorimotor experience [16], [44]; linking
language with sensorimotor representations [45]; or carrying
out complex tasks (which require planning of a sequence
of actions) expressed in natural language instructions to a
robot [46].

In particular Salvi et al. [16], which this paper extends,
proposed a joint model to learn robot affordances (i.e.,
relationships between actions, objects, and resulting effects)
together with word meanings. The data used for learning such
a model is from robot manipulation experiments, acquired
from an ego-centric perspective. Each experiment is associ-
ated with a number of alternative verbal descriptions uttered
by two human speakers, for a total of 1270 recordings. That
framework assumes that the robot action is known a priori
during the training phase (e.g., during a grasping action the
robot knows with certainty that it is performing a grasp), and
the resulting model can be used at testing to make inferences
about the environment. In a recent work [15], we relaxed the
assumption of knowing the action. We did this by merging
the action estimation obtained from an external gesture recog-
nizer [17] as hard evidence (i.e., certain evidence) to the full
model, meaning that the action was deterministic. By con-
trast, in this paper we propose a theoretical way to fuse the
two sources of information (about the self and about others)
in a fully probabilistic manner, therefore introducing soft evi-
dence. This addition allows to perform more fine-grained types
of inferences and reasoning than before. First, predictions
over affordances and words when observing another agent
with uncertainty. Second, the generation of verbal descrip-
tions from the estimated word probabilities, for easier human
interpretation of the model’s explanations.

III. METHOD

The purpose of this paper is to model the development of
language learning from self-centered, individualistic learning
to socially aware learning. This transition happens gradually
in subsequent phases. In the first phase, the system engages

in manipulation activities with objects in its environment [38].
The robot learns object affordances by associating object prop-
erties, actions, and the corresponding effects. In a second
phase, the robot interacts with a human who uses spoken lan-
guage to describe the robot’s activities [16]. Here, the robot
interprets the meaning of the words, grounding them in the
action–perception experience acquired so far. Although this
phase can already be considered social for the presence of
a human narrator, it is still self-centered, because the robot
is still learning how to interpret its own actions. In the last
phase, which is the contribution of this paper, the system turns
to observing human actions of a similar nature as the ones
explored in the first phases (see Fig. 1). The robot reuses the
experience acquired in the first phases to interpret the new
observations and to address the correspondence problem [28]
between its own actions and the actions performed by the
human. In this phase, human movements are interpreted using
the experience acquired so far, and they are incorporated into
the model using a statistical gesture recognizer [17].

Fig. 2 illustrates the probabilistic dependencies in the
complete model and will be detailed in the following sections.

To permit the transfer from robot self-centered knowledge to
human knowledge to work, we assume that the same actions,
performed on objects with the same properties, cause the same
effects and are described by the same words. In other terms, all
of the variables under consideration (which will be described
in Section IV) are the link between robot and human.

In our theoretical formulation and in our implementation,
we will hinge on the existence of the discrete Action variable,
the value of which is known to the robot in the ego-centric
phase of learning, but must be inferred when observing human
actions. This variable connects all the other observable vari-
ables in the model: human gesture features, object properties,
effect variables, and words. This allows the robot to:

1) use language in order to determine the mapping between
human and own actions, and learn the corresponding
perceptual models;

2) in many cases, use the affordance variables to infer
the above mapping even in the absence of verbal
descriptions;

3) once the perceptual models for human actions are
acquired, use the complete model to do inference on
any variable given some evidence.

In the remainder of this section, first we provide details, in
Section III-A, about the probabilistic models enclosed in the
affordance–words model box of Fig. 2. Then, in Section III-B,
we describe the gesture recognition method. Finally, in
Section III-C, we describe the way in which we combine
evidence from the two models.

A. Affordance–Words Model

We use a Bayesian probabilistic framework to allow a robot
to ground the basic world behavior and verbal descriptions
associated to it. All variables in the model are discrete or are
discretized from continuous sensory variables through clus-
tering in a preliminary learning phase. The variables can
be divided according to their use: action variable A = {a},
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(a)

(b)

(c)

Fig. 1. Examples of human actions from the point of view of the robot. (a) Grasp action: moving the hand toward an object vertically, then grasping and
lifting it. (b) Tap action: moving the hand toward an object laterally then touching it, causing a motion effect. (c) Touch action: moving the hand toward an
object vertically, touching it (without grasping), then retracting the hand.

Fig. 2. Abstract representation of the probabilistic dependencies in the model.

object feature variables F = {f1, f2, . . .}, effect variables E =
{e1, e2, . . . }, and word variables W = {w1, w2, . . .}. Details on
the specific variables used in this paper are given in Section IV.

The Bayesian network (BN) model [47] relates all
these variables by means of the joint probability distri-
bution PBN(A, F, E, W), sketched by the affordance–words
model box in Fig. 2. The dependency structure and the

model parameters are estimated by the robot in an ego-centric
way through interaction with the environment. As a conse-
quence, during learning, the robot knows what action it is
performing with certainty, and the variable A assumes a deter-
ministic value. During inference, the probability distribution
of the variable A can be inferred from evidence on the other
variables. For example, if the robot is asked to make a spher-
ical object roll, it will be able to select the action tap as
most likely to obtain the desired effect, based on previous
experience.

B. Gesture Recognition

When observing a human performing an action, the value
of the variable A is not known to the robot neither during
learning nor during inference. During learning, we assume
that the robot has not yet acquired a perceptual model of
the gestures associated to the human actions. However, the
value of A can be inferred, either from a verbal description of
the scene, or from the other affordance variables through the
affordance–words model described earlier.

For example, suppose that the affordance–words model pre-
dicts that performing a tap action on a spherical object will
result in a high velocity of the object. If the human performs
an unknown action on a spherical object and obtains a high
velocity, the robot will be able to infer that the action is
most probably a tap, although it was not able to recognize
the gesture associated with this action.

This information can be used to train our statistical gesture
recognition system [17]. The system recognizes actions (from
gesture features) and corresponds to the gesture/action recog-
nition block in Fig. 2. It is based on Hidden markov models
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(HMMs) with Gaussian mixture models as emission probabil-
ity distributions. Our input features are the 3-D coordinates
of the tracked human hand indicated by the gi variables in
Fig. 2. The coordinates are transformed to be centered on the
person torso (to be invariant to the distance between the user
and the sensor) and normalized to account for variability in
amplitude (to be invariant to wide/emphatic vs narrow/subtle
executions of the same action).

The model for each action is a left-to-right HMM, where
the transition model between the Q discrete states S =
{s1, . . . , sQ} is structured so that states with a lower index
represent events that occur earlier in time.

Although not expressed so far in the notation, the continu-
ous variables gi are measured at regular time intervals. At a
certain time step t, the D-dimensional feature vector can be
expressed as g[t] = {g1[t], . . . , gD[t]}. The input to the model
is a sequence of T such feature vectors g[1], . . . , g[T] that we
call for simplicity GT

1 , where T can vary for every recording.
At recognition (testing) time, we can use the models

to estimate the likelihood of a new sequence of obser-
vations GT

1 given each possible action, by means of the
forward–backward inference algorithm. We can express this
likelihood as LHMM(GT

1 |A = ak), where ak is one of the possi-
ble actions. By normalizing the likelihoods, assuming that the
gestures are equally likely a priori, we can obtain the posterior
probability of the action given the sequence of observations
as

PHMM
(
A = ak|GT

1

) = LHMM
(
GT

1 |A = ak
)

∑
h LHMM

(
GT

1 |A = ah
) . (1)

C. Combining the BN With Gesture HMMs

Once learned, the two models described above define two
probability distributions over the relevant variables for the
problem: 1) PBN(A, F, E, W) and 2) PHMM(A|GT

1 ). The goal
during inference is to merge the information provided by both
models and estimate Pcomb(A, F, E, W|GT

1 ), that is, the joint
probability of all the affordance and word variables, given that
we observe a certain action performed by the human.

To simplify the notation, we call X =
{A, F, E, W} the set of affordance and word vari-
ables {a, f1, f2, . . . , e1, e2, . . . , w1, w2, . . . }. During inference,
we have a (possibly empty) set of observed variables Xobs ⊆ X,
and a set of variables Xinf ⊆ X on which we wish to perform
the inference. In order for the inference to be nontrivial, it
must be Xobs ∩ Xinf = ∅, that is, we should not observe any
inference variable. According to the BN alone, the inference
will compute the probability distribution of the inference vari-
ables Xinf given the observed variables Xobs by marginalizing
over all the other (latent) variables Xlat = X\(Xobs ∪ Xinf),
where \ is the set difference operation

PBN(Xinf|Xobs) =
∑

Xlat

PBN(Xinf, Xlat|Xobs).

If we want to combine the evidence brought by the
BN with the evidence brought by the HMM, there are

two cases that can occur:
1) the action variable is included among the inference

variables: A ∈ Xinf; or
2) the action variable is not included among the inference

variables: A ∈ Xlat.
Here, we are excluding the case where we observe the action

directly (A ∈ Xobs) for two reasons. First, this would corre-
spond to the robot performing it by itself, whereas we are
interested in interpreting other people’s actions, which is a
necessary skill to engage in social collaboration with humans.
Second, this would make the evidence on the gesture fea-
tures GT

1 irrelevant, because in the model of Fig. 2 there is
a tail-to-tail connection [47] from GT

1 to the rest of the vari-
ables through the action variable, which means that, given the
action, all dependencies to the gesture features are dropped.

The two cases 1) and 2) enumerated above can be addressed
separately when we do inference. In the first case, we call X′

inf
the set of inference variables excluding the action A, that is,
Xinf = {X′

inf, A}. We can write

Pcomb
(
Xinf|Xobs, GT

1

)

= Pcomb
(
A, X′

inf|Xobs, GT
1

)

=
∑

Xlat

Pcomb
(
A, X′

inf, Xlat|Xobs, GT
1

)

=
∑

Xlat

[
PBN

(
A, X′

inf, Xlat|Xobs, GT
1

)

PHMM
(
A, X′

inf, Xlat|Xobs, GT
1

)]

=
⎡

⎣
∑

Xlat

PBN
(
A, X′

inf, Xlat|Xobs
)
⎤

⎦PHMM
(
A|GT

1

)

= PBN(Xinf|Xobs)PHMM
(
A|GT

1

)
. (2)

This means that we can evaluate the two models independently,
then multiply the distribution that we obtain from the BN (over
all the possible value of the inference variables) by the HMM
posterior for the corresponding value of the action.

In the second case, where the action is among the latent
variables, we define, similarly, Xlat = {A, X′

lat}, and we have

Pcomb
(
Xinf|Xobs, GT

1

)

=
∑

{A,X′
lat}

Pcomb
(
Xinf, A, X′

lat|Xobs, GT
1

)

=
∑

{A,X′
lat}

[
PBN

(
Xinf, A, X′

lat|Xobs, GT
1

)

PHMM
(
Xinf, A, X′

lat|Xobs, GT
1

)]

=
∑

{A,X′
lat}

[
PBN

(
Xinf, A, X′

lat|Xobs
)
PHMM

(
A|GT

1

)]

=
∑

A

⎡

⎣PHMM
(
A|GT

1

) ∑

X′
lat

PBN
(
Xinf, A, X′

lat|Xobs
)
⎤

⎦

=
∑

A

[
PHMM

(
A|GT

1

)
PBN(Xinf, A|Xobs)

]
. (3)

This time, we first need to use the BN to do inference on
the variables Xinf and A, and then we marginalize out the
action variable A after having multiplied the probabilities by
the HMM posterior.
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D. Generation and Scoring of Verbal Descriptions

In order to illustrate the language capabilities of the model,
rather than displaying the probability distribution of the words
inferred by the model, we use the context-free grammar (CFG)
described in the Appendix to generate written descriptions of
the robot observations, on the basis of those probabilities. Note
that this grammar is defined here with the only purpose of
interpreting the probability distributions over the words. In
the affordance–words model that we use, the speech recog-
nizer is based on a free loop of words with uniform prior,
and the Bayesian model relies on a bag-of-words assump-
tion. No grammatical (syntactic) information about the spoken
descriptions was, therefore, used during learning.

In the current study, by merging the affordance–words
model and the gesture recognition model, we allow the robot
to reinterpret the concepts it has learned in the self-centered
phase, but we do not add any new words to the model.
Consequently, the descriptions that the model generates when
observing humans use the same words to describe the agent
(see also Section V-E).

The textual descriptions are generated as follows: given
some evidence Xobs that we provide to the model and some
human observation features Gt

1 extracted from frames 1 to t,
we extract the generated word probabilities P(wi|Xobs, Gt

1).
We generate N sentences randomly from the CFG using the
HSGen tool from HTK [48]. Then, the sentences are rescored
according to the log-likelihood of each word in the sentence,
normalized by the length of the sentence

score
(
sj|Xobs, Gt

1

) = 1

Lj

Lj∑

k=1

log P
(
wjk|Xobs, Gt

1

)
(4)

where sj is the jth sentence, Lj is the number of words in the
sentence sj, and wjk is the kth word in the sentence sj. Finally,
an N-best list of possible descriptions is produced by sorting
the scores.

IV. EXPERIMENTAL SETTINGS

Our experiments consist on testing our method on a num-
ber of example scenarios that will be described in Section V.
In this section, we provide experimental details and key
assumptions of the method.

A. Affordance–Words Model

Table I presents a list of variables and the corresponding val-
ues used in the affordance–words model. Note that the name
of the values of the affordance variables have been assigned
by us arbitrarily to the clusters, for the sake of making the
results more human-interpretable. However, the robot has no
prior knowledge about the meaning of these clusters nor about
their order, in case they correspond to ordered quantities.
For extracting object features and effects from the sensory
data, we assume that the robot possesses visual segmenta-
tion and geometric reasoning capabilities, meaning that it is
able to segment the (potentially multiple) regions of interest
corresponding to the physical objects of the world from the

TABLE I
SYMBOLIC VARIABLES OF THE BAYESIAN NETWORK (FROM [16]), WITH

THE CORRESPONDING DISCRETE VALUES OBTAINED FROM CLUSTERING

DURING ROBOT EXPLORATION OF THE ENVIRONMENT. WE CALL Word
Variables THE BOOLEANS OF THE LAST ROW, WHEREAS WE CALL

Affordance Variables ALL THE OTHER SYMBOLS

background (e.g., a planar surface such as a table) and to
determine their positions.

We use the following notation in order to distinguish
between the values of the affordance variables (all but the
last row in Table I) and the words (last row in the table).
Words and sentences are always enclosed in quotation marks.
For example, “sphere” will refer to the spoken word, whereas
sphere will refer to the value of the shape variable correspond-
ing to the specific cluster. Similarly, “grasp” will correspond
to a spoken word, whereas grasp corresponds to a value of the
action variable.

There is no one-to-one correspondence between the values
of the affordance variables and words. This was partly emerg-
ing from the natural variability that is inherent in the way
humans describe situations in spoken words. It was also a
design choice, because we wanted to prove that the model
was not merely able to recover simple word–meaning asso-
ciations, but was able to cope with more natural spoken
utterances. Consequently, in the spoken descriptions, we have
the following.

1) There are many synonyms for the same concept: for
instance, cubic objects are called “box,” “square,” or
“cube.” Also, actions and effects are described using dif-
ferent tenses [“is grasping,” “grasped,” and “has (just)
grasped”].

2) Different affordance variable values may have the same
associated verbal description, e.g., two color clusters
corresponding to different shades of green are both
referred to as “green.”

3) Finally, many affordance variable values have no direct
description: for example, the object velocity and object–
hand velocity (slow, medium, and fast), or the object–
hand contact (short and long) are never described
directly, and need to be inferred from the situation.

The affordance–words model does not account for the con-
cepts of parts of speech, verb tenses or temporal aspects
explicitly. For example, the words “is,” “grasping,” “has,”
“grasped,” “just,” and so on, are initially completely distinct
and unrelated to the model, which has no prior information
about what verbs, adjectives or nouns are, nor about similarity
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between words. It is only through the association with the
other robot observations that the model realizes that grasp-
ing has the same meaning as grasped. The following three
phrases, which were used interchangeably in the experiments,
are mapped to exactly the same meaning, after learning.

1) Is grasping.
2) Has grasped.
3) Grasped.

Note that the model per se would be fully capable to distin-
guish between those phrases, provided that they were used in
different situations, which however was not the case in our
experimental data.

B. Gesture Recognition

In this paper, we consider three independent, multiple-state
HMMs, each of them trained to recognize one of the con-
sidered manipulation gestures of Fig. 1. The 3-D coordinates
of the human limbs and torso used to extract the input to
the gesture recognizer are obtained with a commodity depth
sensor (Kinect).4

V. RESULTS

In this section, we report the experimental findings obtained
with our proposed model. Because it is based on Bayesian
networks, the model can make inferences over any set of its
variables Xinf, given any other set of observed variables Xobs.
In particular, the model can do reasoning on the elements
that constitute our computational concept of affordances, i.e.,
action, object features, and effects in Fig. 2. Furthermore, it
can do reasoning over words. We present the following types
of results.

1) Inferences over affordance variables (see Table I) in
Sections V-A–V-C.

2) Predictions of word probabilities in Section V-D.
3) Verbal descriptions generated from the word proba-

bilities of the previous point, according to a formal
grammar. The descriptions, in turn, can be interpreted to
observe the emergence of certain language phenomena
(Sections V-E–V-G).

A. Action Recognition

In this experiment, we test the ability of our approach to
recognize actions. Both affordance–words model and gesture
recognition model can each perform inference of the Action
variable individually: the former by using the variables of
Table I, the latter by using human gesture features. We show
how our method performs the inference over action in a joint
way. This includes dealing with information with different
degrees of confidence, or conflicting information.

The scene of Fig. 3 contains a small ball which, after
the manipulative action, exhibits a low velocity. Based on

4Currently, our gesture recognition algorithm relies on human skeleton
tracking software from a depth stream. In our experience, the hand tracking
is not reliable in the presence of a tabletop (i.e., partially occluded human) as
in Fig. 1, so we record the same gestures twice, with and without the table:
the latter is used for ensuring the robustness of the estimated hand coordinate,
the former is used throughout the rest of our model and experiments. We plan
to overcome this limitation in future work.

Fig. 3. Inference over action given the evidence Xobs = {Size =
small, Shape = sphere, ObjVel = slow}, combined with different probabilistic
soft evidence about the action.

the evidence, the affordance model gives the highest prob-
ability PBN(A|Xobs) to the action touch, which usually does
not result in any movement of the object. However, in this
particular simulated situation, we assume that the action per-
formed by the human was an (unsuccessful) tap, that is, a
tap that does not result in any movement for the object. In
the simulation we show the effect of augmenting the infer-
ence with information from a gesture recognizer, that is,
computing Pcomb(A|Xobs, GT

1 ). We analyze the effect of vary-
ing the degree of confidence of the classifier. We start from
a uniform posterior PHMM(A|GT

1 ), corresponding to a poor
classifier, and gradually increase the probability of the cor-
rect action until it reaches 1. In this particular example, in
order to win the belief of the affordance model, the action
recognition needs to be very confident [PHMM(A = tap|
GT

1 ) > 0.81].

B. Effect Prediction

We now show how our approach does inference over a
different variable (instead of the action one which is com-
mon between affordance–words model and gesture model),
i.e., how it predicts the value of the object velocity effect
variable. We will do this by using different degrees of proba-
bilistic confidence about the action, and analyzing the outcome
in terms of velocity prediction. This experiment exposes that
all the variables of Table I jointly link robot and human,
not only the Action variable, for the reasons expressed in
Section III.

Fig. 4 shows the considered inference in two cases: 1) when
the prior information says that the shape is spherical [see
Fig. 4(a)] and 2) when it is cubic [see Fig. 4(b)].

The leftmost distribution in both figures shows the
prediction of object velocity from the affordance–words model
alone, without any additional information. When the shape is
spherical, the model is not sure about the velocity, whereas
if the shape is cubic, the model does not expect high veloc-
ities. If we add clear evidence on the action touch from the
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(a) (b)

Fig. 4. Inference over the object velocity effect of different objects, when given probabilistic soft evidence about the action. Predictions with (a) sphere
object and (b) box object.

(a)

(b)

Fig. 5. Object velocity effect anticipation before impact. The evidence from the gesture recognizer (left) is fed into the affordance–words model before the
end of the execution. The combined model predicts the effect (right) and describes it in words. (a) Action performed on small sphere. Description: “the robot
pushed the ball and the ball moves.” (b) Action performed on big box. Description: “the robot is pushing the big square but the box is inert.”

action recognition model, suddenly the combined model pre-
dicts slow velocities in both cases, as expected. However, if the
action recognition evidence is gradually changed from touch

to tap, the predictions of the model depend on the shape of
the object. Higher velocities are expected for spherical objects
that can roll, compared to cubic objects.
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C. Effect Anticipation

Since the gesture recognition method interprets sequences
of human motions, we can test this predictive ability of the
complete model when we observe an incomplete action. Fig. 5
shows an example of this where we reason about the expected
object velocity caused by a tap action. Fig. 5(a) shows the
action performed on a spherical object, whereas Fig. 5(b) on
a cubic one. The graphs on the left side show the time evolu-
tion of the evidence PHMM(A|Gt

1) from the gesture recognition
model. In order to make the variations emerge more clearly,
instead of the posterior, we show (1/t) logLHMM(Gt

1|A): the
log-likelihood normalized by the length of the sequence.
Note how, in both cases, the correct action is recognized by
the model given enough evidence, although the observation
sequence is not complete. The right side of the plot shows
the prediction of the object velocity, given the incomplete
observation of the action and the object properties. The model
correctly predicts that the sphere will probably move but the
box is unlikely do so. Finally, the captions in the figure also
show the verbal description (see Section III-D) generated by
feeding the probability distribution of the words estimated by
the model given the evidence into the context-free grammar.

D. Prediction of Word Probabilities

Our model permits to make predictions over the word vari-
ables associated to affordance evidence. In Fig. 6, we show the
variation in word occurrence probabilities between two cases.

1) When the robot’s prior knowledge evidence consists
of information about object features and effects only:
{Size=big, Shape=sphere, ObjVel=fast}.

2) When the evidence corresponds to the one of the
previous point, with the addition of the tap action
observed from the gesture recognizer (hard evidence).

In this result, we notice two facts. First, the proba-
bilities of words related to tapping and pushing increase
when a tapping action evidence from gesture recognition
is introduced; conversely, the probabilities of other action
words (touching and poking) decreases. Second, the proba-
bility of the word “rolling” (which is an effect of an action
onto an object) also increases when the tap action evidence is
entered.

E. Verbal Descriptions and Choice of Synonyms

By generating and scoring natural language descriptions of
what the robot observes (see Section III-D), we can provide
evidence to the model and interpret the verbal results. Recall
that, with our method, we do not add new words to the model
when we observe the human performing actions. Rather, the
human-readable descriptions that we generate are based on
the same words that were present in the self-centered learn-
ing phase. In this phase, the verbal descriptions described
the agent of the observed actions is either “the robot,” “he,”
or “Baltazar” (the name of the robot). Consequently, the
affordance–words model learned by the robot includes those
words as the subject of the action.

As an example, by providing the evidence {Color=yellow,
Size=big, Shape=sphere, ObjVel=fast} to the model, we

Fig. 6. Variation of word occurrence probabilities: �P(wi) =
Pcomb(wi|Xobs, Action=tap) − PBN(wi|Xobs), where Xobs =
{Size=big, Shape=sphere, ObjVel=fast}. This variation corresponds to
the difference of word probability when we add the tap action evi-
dence (obtained from gesture recognition) to the initial evidence about
object features and effects. We have omitted words for which no significant
variation was observed.

TABLE II
TEN-BEST LIST OF SENTENCES GENERATED FROM THE EVIDENCE

XOBS = {COLOR=YELLOW, SIZE=BIG, SHAPE=SPHERE, OBJVEL=FAST}

obtain the sentences reported in Table II. The higher the score,
the better. In many of these sentences, we note that: 1) the
correct verb related to the tap action is generated (in the ini-
tial evidence, no action information was present, only object
features and effects information were) and 2) the object term
“ball” or synonyms thereof (e.g., sphere) are used coherently,
both in the first part of the sentence describing the action and
in the second part describing the effect. The fact that different
synonyms may be used in the same sentence is simply a con-
sequence of the random generation of sentences, described
in Section III-D, and of the fact that usually synonyms are
assigned similar (but not necessarily equal) probabilities by
the model, given the same evidence.

F. Language Phenomenon: Choice of Correct Conjunction

The manipulation experiments that we consider have the
following structure: an agent (human or robot) performs a
physical action onto an object with certain properties, and
this object will produce a certain physical effect as a result.
For example, a touch action on an object yields no physical
movement, but a tap does (especially if the object is spheri-
cal). In the language description associated to an experiment, it
makes sense to measure the conjunction chosen by the model
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(a) (b)

Fig. 7. Ten-best list of sentences generated given two different sets of evidence. In (a), the model interprets the object movement as indicating a successful
grasp and uses the conjunction “and.” In (b), the slow movement is interpreted as no movement at all and, therefore, as an unsuccessful grasp: for that reason,
the conjunction “but” is used. (a) Evidence: Xobs ={Action=grasp, ObjVel=medium}. (b) Evidence: Xobs ={Action=grasp, ObjVel=slow}.

(a)

(b)

(c)

(d)

Fig. 8. Example of descriptions generated by the model. (a) The robot is
grasping the box and the green box is moving.” (b) The robot is poking the
green square and the cube is inert.” (c) The robot picked the ball and the
green ball is moving.” (d) Baltazar is poking the green sphere and the sphere
is still.”

given specific evidence. In particular, it would be desirable
to separate two kinds of behaviors: one in which the action
and effect are coherent (expected conjunction: “and”), and the
other one in which they are contradictory (but).

Fig. 7 shows an example of this behavior of the model. We
give the same action value grasp to the model as evidence,
but two different values for the final object velocity. When
the object velocity is medium [Fig. 7(a)], the model interprets
this as a successful grasp and uses the conjunction “and” to
separate the description of the action from the description of
the effect. When the object velocity is slow (in the clustering
procedure, the velocity was most often zero in those cases),
the model predicts that this is an unsuccessful grasp and uses
the conjunction “but,” instead.

G. Language Phenomenon: Description of Object Features

In Fig. 8, we show examples of verbal descriptions gener-
ated by the model given different values of observed evidence.

1) Xobs = {Action=grasp, Color=green1, Shape=box}
[Fig. 8(a)].

2) Xobs = {Action=touch, Color=green1, Shape=box}
[Fig. 8(b)].

3) Xobs = {Action=grasp, Color=green2, Shape=sphere}
[Fig. 8(c)].

4) Xobs = {Action=touch, Color=green2, Shape=sphere}
[Fig. 8(d)].

Note that the box object in the two first examples has a dark
shade of green (value of color affordance variable of Table I
clustered as: green1), whereas the spherical one in the two last
examples has a lighter shade (color value: green2). However,
the verbal descriptions reported in Fig. 8 all use the adjective
“green.” This behavior emerges from fact that the robot devel-
ops its perceptual symbols (clusters) in an early phase, and
only subsequently associates them with the human vocabulary.
We believe that this phenomenon is practical and potentially
useful (i.e., the possibility that a low-level fine-grained robot
representation can be abstracted into a high-level language
description, which bundles the two shades of green under the
same word).

VI. CONCLUSION

We presented a model that allows a robot to interpret
and describe the actions of external agents, by reusing the
knowledge previously acquired in an ego-centric manner. In a
developmental setting, the robot first learns the link between
words and object affordances by exploring its environment.
Then, it uses this information to learn to classify the gestures
and actions of another agent. Finally, by fusing the information
from the two probabilistic models, in our experiments we
show that the robot can reason over affordances and words
when observing the other agent; this can also be leveraged to
do early action recognition (see Section V-C). Although the
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complete model only estimates probabilities of single words
given the evidence, we showed that feeding these probabili-
ties into a predefined grammar produces human-interpretable
sentences that correctly describe the situation. We also high-
lighted some interesting language-related properties of the
model, such as: congruent/incongruent conjunctions, choice
of appropriate synonym words, and describing object features
with general words.

Our demonstrations are based on a restricted scenario (see
Section IV), i.e., one human and one robot manipulating sim-
ple objects on a shared table, a predefined number of motor
actions and effects, and a vocabulary of approximately 50
words to describe the experiments verbally. However, one of
the main strengths of this paper is that it spans different fields,
such as robot learning, language grounding, and object affor-
dances. We also work with real robotic data, as opposed to
learning images-to-text mappings (as in many works in com-
puter vision) or using robot simulations (as in many works in
robotics).

In terms of scalability, note that our BN model can
learn both dependency structure and parameters of the model
from observations. The method that estimates the dependency
structure, in particular, is sensitive to biases in the data.
Consequently, in order to avoid misconceptions, the robot
needs to explore any possible situation that may occur. For
example, if the robot only observes blue spheres rolling, it
might infer that it is the color that makes the object roll, rather
than its shape. In order to scale the method to a larger num-
ber of concepts, it would be necessary to scale the amount of
data considerably, similarly to what is typically done in deep
learning. In models of developmental robotics, where this is
neither practically feasible, nor desirable, we would need to
devise methods that can generalize more efficiently from very
few observations.

As future work, it would be useful to investigate how the
model can extract syntactic information from the observed
data autonomously, thus relaxing the bag-of-words assump-
tion in the current model. Another line of research would
be to study how the model can guide the discovery of new
acoustic patterns (e.g., [49]–[51]), and how to incorporate the
newly discovered symbols into our affordance–words model.
This would release our current assumption of a predefined set
of words.

APPENDIX

GRAMMAR DEFINITION

Below, we provide the grammar definition used to gener-
ate verbal descriptions from the probability distribution over
words estimated by the model. Note, however, that no gram-
mar was used during the learning phase: the speech recognizer
used as a frontend to the spoken descriptions is based on a
loop of words with no grammar, and the affordance–words
model is based on a bag-of-words assumption, where only the
presence or absence of each word in the description is consid-
ered. The symbol .|. represents alternative items, while the
symbol [.] optional items. Nonterminal symbols are given
between <.> in italics, while words (terminal symbols) are

given in plain text and font: thus, the full set of words is
given by all the plain text words

〈 sentence 〉 ::= 〈 agent 〉 〈 action 〉 〈 object 〉 〈 conjunction 〉
〈 object 〉 〈 effect 〉

〈 agent 〉 ::= the robot | he | baltazar

〈 action 〉 ::= 〈 touch 〉 | 〈 poke 〉 | 〈 tap 〉 | 〈 push 〉 | 〈 grasp 〉 |
〈 pick 〉

〈 touch 〉 ::= touches | [has] [just] touched | is touching

〈 poke 〉 ::= pokes | [has] [just] poked | is poking

〈 tap 〉 ::= taps | [has] [just] tapped | is tapping

〈 push 〉 ::= pushes | [has] [just] pushed | is pushing

〈 grasp 〉 ::= grasps | [has] [just] grasped | is grasping

〈 pick 〉 ::= picks | [has] [just] picked | is picking

〈 object 〉 ::= the [〈 size 〉] [〈 color 〉] 〈 shape 〉
〈 size 〉 ::= big | small

〈 color 〉 ::= green | yellow | blue

〈 shape 〉 ::= sphere | ball | cube | box | square

〈 conjunction 〉 ::= and | but

〈 effect 〉 ::= 〈 inertmove 〉 | 〈 slideroll 〉 | 〈 fallrise 〉
〈 inertmove 〉 ::= is inert | is still | moves | is moving

〈 slideroll 〉 ::= slides | is sliding | rolls | is rolling

〈 fallrise 〉 ::= rises | is rising | falls | is falling.
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