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Abstract— Collaboration involves understanding the action
of others, as well as acting in a way that can be understood by
others. One of those tasks is the handover. In this paper, we
study the behaviour of humans during the handover and design
the mechanisms allowing a robot to learn from that behaviour.

We analyse and model the arm movements of humans while
handing over objects to one another. The contributions of this
paper are the following: (i) a computational model that captures
the behaviour of the “giver” and “receiver” of the object, by
coupling the arm motion; (ii) discuss this approach amidst a
previous coupling strategy; and (iii) embedded the model in the
iCub robot for human to robot handovers .

Our results show that: (i) the robot can coordinate with the
human to timely and safely receive the object; (ii) the robot
behaves in a “human-like” manner while receiving the object;
and (iii) our approach has significant advantages to the previous
approach.

I. INTRODUCTION

The ability of humans to collaborate seamlessly is
grounded on two types of shared, common languages, that
allow them to express their intentions and understand the
intentions of others: (i) verbal communication, which is slow,
intricate, and there are numerous languages to learn; and
(ii) non-verbal communication, which is fast, simple, and
universal to some extent. Expressing our intended action
verbally to robots would be computationally expensive, slow
and non-adaptive to perturbations in interactions. Instead,
non-verbal communication cues explore the expressiveness
of our motor repertoire, allowing us to decode the action
intended in real-time as well as to express one’s action. This
work looks in detail to the advantage of understanding non-
verbal cues and applying it to a robotic challenge.

The contributions of the paper are: (i) model the human-
human arm motion during handover actions; (ii) find the
relation between “giver” and “receiver” during the handover
motion; (iii) generate a controller inspired on the human-
human handover coupling function for a humanoid robot;
(iv) validate the controller with human-to-robot handover
experiments by successfully applying the prior controller.

Our approach begins by addressing the human-human non-
verbal communication during handover actions. Section III
describes the Human-Human Interaction (HHI) scenario built
for that purpose. The experimental scenario and the data used
in this paper is publicly available from [1]. The experiments
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Vislab, Institute for Systems and Robotics, Instituto Superior Técnico, Uni-
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Fig. 1: A human handing over a ball to a robot. The human
and the robot have markers on their arm which are used to
calculate the distance between wrists.

comprise of a turn-taking task in which humans perform joint
actions of giving and receiving objects. The wrist data of the
human participants are extracted for the handover actions and
labelled as: (i) “giver”, (ii) “receiver” wrist motion.

In [2], the wrist data was used to model the handover
action in a master-slave approach. The model coupled the
position of the slave (“receiver”), to the position of the
master (“giver”), which meant that one human is dependent
on the other’s location. For this paper, we develop a new ap-
proach for the human-human handover. The relation “giver”-
“receiver” is defined by a Coupled Dynamical System (CDS)
which relates the distance between each arm motion dur-
ing the handover action. The model is compared with the
previous approach in [2] by weighing the advantages and
disadvantages of the alternative as mentioned above (Section
IV).

A controller for the iCub humanoid robot is developed
inspired by the new coupling model. In Section V, a Human-
Robot Interaction (HRI) scenario is created to validate the
model and evaluate the performance of the controller in com-
parison with the prior approach. Additionally, the controller’s
generated motion of the wrists are analysed alongside the real
human data.

Section VI is reserved for discussion of the HRI results fol-
lowing by formed conclusions on the approach. We reason on
the model’s ability to extract the coupling intricacies between
humans during a handover action. Furthermore, we address
the generated controller’s ability to reproduce “human-like”
arm motion for understandable handover behaviour. Lastly,
we discuss future directions of research.



II. RELATED WORK

Neuroscientists discuss the evidence for the existence of
particular neurons, which they call “mirror neurons”, that
serve as a mapping function, both in primates and in humans,
to explore the implications for understanding and imitating
actions [3]. Inspired by this hypothesis, we argue that in
order for safe and reliable interactions between humans and
robots, the robot must possess the ability to map human be-
haviour. Hence, we analyse humans during the manipulation
of objects, either individually and in collaborative tasks. The
focus of this paper will be on human arm behaviour while
interacting with other humans during handover actions.

First and foremost, it is essential to mention fellow authors
that are working to achieve human-robot mutual under-
standing. Sciutti et al. [4], [5], [6] have developed social
interactions between humans and robots in order to study
human adaptation to robot behaviour. Dragan et al. argue
that in order for others to understand the intention of an
action, the movement should be as legible, i.e. informative,
as possible [7]. The term legibility describes how quickly an
arm trajectory unveils its the end-goal before the movement
is complete. Our previous work [8] extends on that principle,
showing that humans use gaze, head, and arm movement
to decode the action, and when incorporating onto a robot,
the gaze behaviour adds additional information to read the
robot’s intention.

As studies of neurobiology and psychology as pointed
out, synchrony is an indispensable trait of social interaction
[9]. Studies show that humans tend to synchronize with
interactive partners [10], [11], either by adapting the speed to
the partner, following the same gaze direction, manipulating
the objects the same way. Moreover, when applied to HRI,
humans tended to synchronize better to humanoid robots than
to other non-humanoid robots [12]. Reflecting the familiarity
with the motor repertoire of the humanoid and giving an
advantage to human-like robots when aiming for safe and
efficient interaction. The advantage humanoid robots have
when it comes to the motor repertoire, is linked to their
overall body structure when comparing to the human body.
Humans are predisposed to understand human movement
[13]. As such, robots which reproduce movements, humans
recognize the intention of, are ideal for sharing common
spaces with them. The robot’s intention would be understood
quickly, preventing any collision and harm during the inter-
action.

Before a robot can imitate a human, it needs to decode
human behaviour. Human behaviour is predicated on the
intention, and the intention can be interpreted from its verbal
and non-verbal communication [14]. The verbal communica-
tion will not be addressed in this paper since it is slow and
unreliable for action intention. Non-verbal communication
cues are the source of action understanding for humans, and
we argue that robots can extract valuable information to use
for HRI scenarios.

Raković et al. [15] studies gaze behaviour between two
humans interacting with one another to develop models of

action intention. From the movement of the eyes, it extracts
information that can decode human intention. Additionally,
robots use the learned gaze behaviour to communicate to
humans, through their own gaze behaviour, what action they
are going to perform. Ferreira Duarte et al. [16] worked
on aligning the behaviour of a robot to the human, in
a sense, trying to aim for synchronization of movements.
Where the robot, in order to correctly adapt to the human,
it reads the non-verbal cues from the eyes to decode human
understanding, and adjust its action accordingly.

Work from [17] used the head orientation of the human
for handovers in an HRI scenario. A joint-action controller
with head orientation feedback allowed for fewer drops of the
object since the robot could align its action to the reaction
of the human more accurately. We observe a tendency in
developing handover approaches that take into account the
human understanding, i.e. the alignment, during interactions.
Ferreira Duarte et al. [2] focuses on the communication of
arm movement during HHI and how it can be applied to
HRI. It analyses handover actions and models the behaviour
using CDS to couple the two human arm movements. The
limitation is on the need to define a priori a handover
location, which is a preset point in space between the human
and the robot.

Vignolo et al. [18] created a dataset of biological and non-
biological motions and built a computational model capable
of discriminating between the two types of motions. The
robot is then capable of detecting the presence of humans
just by the arm trajectory, without the need to human
position or shape. Notwithstanding, no collaborative tasks,
such as handovers, were included in the dataset. It would
be interesting to extend the dataset to incorporate this type
of actions. Rasch et al. [19] focused on analysing the arm
motion of the giver when handing over an object. The authors
then apply it to two robots, one humanoid and one non-
humanoid, and from the HRI experiments they conclude
that humans prefer the humanoid movement because of its
biological motion. The authors from [20] found that users
tend to place objects in such a way that it facilitates the task
of the second user. Nonetheless, no handover was performed
as the experiments were merely the manipulation of objects
to reach a common goal.

Overall, the relevant work exhibits a lack of in-depth anal-
ysis of the non-verbal communication between two humans
when interacting with one another and when sharing objects
to reach a common goal. In the following section, we address
the HHI experiments performed and the data collected to
analyse the arm movements during handovers.

III. HUMAN-HUMAN INTERACTION

In order to analyse the arm behaviour of humans during
handover actions, a HHI scenario was set. The experi-
mental scenario consists of a dyadic interaction between 2
participants. Figure 2 shows two participants in the midst
of performing a handover action in order to complete the
instructed task. The experiments were performed with 6
participants. The dyadic pairs are instructed to participate



in a game type task involving building a tower composed
of toy blocks. The handover interaction is one of two types
of actions present in the experimental setup: (i) placing an
object on his/her tower, (ii) handover the object to be placed
by the other participant on his/her tower. For information
regarding the HHI experiment, description on the instruction
given to each participant, data collection and synchronisation,
the publicly available dataset paper [1] is referred.

Fig. 2: Two of the participants are sitting face-to-face and
the participant on the right is handing over the object to the
participant on the left in order for him to place the block
on top of his tower. dp and dh are respectively, the distance
between wrists, parallel to the floor, and the difference of
height, perpendicular to the floor, between wrists.

The data collected are the wrist position of each participant
during the handover action. The participants were wearing
markers on the wrist of in order for the Optitrack system
to track the moving arm at 200Hz. A total of 72 right-
hand wrist trajectories were recorded for the handover action:
36 corresponding to the “giver” of the action, and the
remainder are the corresponding motion of the “receiver”
when receiving the object.

IV. COUPLING OF ARM MOVEMENTS

This section contains the description of the approach. It
relates the arm of the “giver” with the arm of the “receiver”
during handover actions. Following the description, we pro-
ceed with generating a model of the approach from the data
of the wrists. Then we discuss the resulted model and draw
some conclusions of the approach while comparing with the
previous work.

A. Dynamical Systems
Our approach consists of three modules: one module

representing the arm movement of the “giver”, a second
module relating to the arm movement of the “receiver”, and
a third module relating the two arm movements which is the
coupling function. Figure 3 illustrates the configuration of
the non-verbal communication of human arm movements in
handover actions. The modules of the “giver” and “receiver”
are each a Dynamical System (DS) to represent the wrist
movement to the final goal, defined as the handover location.

The DS represents the wrist motion as a discrete vector
ξξξ(t) ∈ Rd ∀t ∈ [0, Tn], n ∈ [1, N ]. Tn is the discrete time

Fig. 3: Schematics of the Coupling of Arm Movements. Pg
and Pr are the wrist position of the “giver” and “receiver”,
respectively. Pg’ and Pr’ are the computed estimated wrist
position of “giver” and “receiver”, respectively, from the
coupling function in the next iteration.

of the n-th step of the wrist data that has N steps until it
reaches the handover location. {ξξξtn, ξ̇ξξ

t

n} are respectively the
state vector and its derivative, evaluated at time t for the n-th
data point. The DS is a first-order differential equation:

ξ̇̇ξ̇ξ = fff(ξξξ)+ ∈ (1)

where fff : Rd → Rd is a continuous differential function.
Equation 1 has an equilibrium point ξ̇̇ξ̇ξ∗ = fff(ξξξ∗)+ ∈ which is
set as handover location for each participant. The zero mean
Gaussian noise ∈ adds robustness to wrist motion variability.
The DS encoding follows the joint distribution P(ξξξtn, ξ̇ξξ

t
n)

of [21] as Gaussian Mixture Models (GMM).
The DS of the “giver” and “receiver” were defined in [2]

(represented in Figure 2 as the leader’s internal model and
follower’s internal model, respectively). The two DS have the
function of generating human-like trajectories for the wrist.

The CDS works as the communication channel between
the two participants. The standard CDS works as a master-
slave system [22], where one DS influences the second DS.
Previous work from [2] inspired on their approach, defining
the coupling module as an intermediate system that based
on the wrist motion of the “giver” (master system) it affects
the wrist motion of the “receiver” (slave system).

P(ξg, ξ̇g|θg) (2)

P(Ψg(ξg), ξr|θgr) (3)

P(ξr, ξ̇r|θr) (4)

where P(ξg, ξ̇g|θg) is the dynamics of the “giver”,
P(Ψg(ξg), ξr|θcouple) the dynamics of the coupling func-
tion between the two, and P(ξr, ξ̇r|θr) “receiver”. Ψg(ξg)
denotes the coupling function where the input is the wrist
motion of the “giver” and when computing the coupling the
output gives the estimated wrist position for the “receiver”.
θg , θcouple, and θr are the GMM parameters.

B. Approach for Human-Human Coordination

Our new approach alters the way “giver”, and “receiver”
are viewed. The dynamics of master-slave does not suit a
context of human-human coordination. What we learn from
literature is that humans synchronize their movements [10],
and it happens as well between humans and robots [11]. As
such, a different approach must be considered in order to
achieve synchronization between the two sides:



P(ξg, ξ̇g|θg) (5)

P(Ψ(ξcouple), ξcouple|θcouple) (6)

P(ξr, ξ̇r|θr) (7)

where P(ξg, ξ̇g|θg) is the dynamics of the “giver”, and
P(ξr, ξ̇r|θr) is the dynamics of the “receiver”. However, the
coupling system is defined by P(Ψ(ξcouple), ξcouple|θcouple),
where the variable couple is the relation between “giver” and
“receiver”’s wrist position. Ψ(ξcouple) denotes the coupling
function defined as:

Ψ(ξcouple) = |Pg - Pr| (8)

where Pg and Pr are the positions of the wrist of the “giver”
and “receiver”, respectively. The absolute distance between
wrist positions was chosen since when the distance reaches
zero, it means the wrists have reached the point of shortest
distance, which we assume is the handover location. For DS
and CDS, the equilibrium point is the convergence of the
system, in a sense, it makes sense that the convergence point
of a human-human coordination system of arm movements
for a handover action would be the handover location.
Moreover, the DS and CDS are robust to perturbations on
the input variable, which is convenient due to the oscillatory
behaviour of the human arm movement.

C. Modelling Arm Behaviour between Humans

From the analysis of the HHI data we can conclude
that there are only two dimensions of interest that can be
extracted from the data: (i) how far away the arms are from
each other, (ii) the difference of height. This dimensionality
reduction is possible due to the configuration of our HHI
experimental setup. In all experiments, seen in Figure 2, the
dyadic participants were facing each other on opposite sides
of a table. As a result, the movements of reaching and passing
objects were directed forward. The dimension, which can be
described as perpendicular to Figure 2’s image plane, could
be removed from the wrist data, reducing the complexity of
the problem.

Since the DS for the “giver” and “receiver” are identical
as the ones modelled in [2], the focus of this paper is on
modelling the coupling behaviour between the two using our
approach discussed above. From Equation 8 the coupling
function defined is Ψ(dp) =‖ dh ‖. dp = ‖ Pgx - Prx ‖,
where Pgx and Prx are the location, parallel to the table,
from the handover location to the wrist of the “giver” and
“receiver”, respectively. dh = ‖ Pgz - Prz ‖, where Pgz and
Prz are the location, perpendicular to the table, from the
handover location to the wrist of the “giver” and “receiver”,
respectively. The handover location is considered as the final
wrist position for the “giver” and “receiver” for each different
dyad in each experiment trial. The handover location is not
the same for the “giver” and “receiver” since participants
may differ in arm’s length. Additionally, for the purposes of
simplicity, we assume that at dp = dh = 0 the handover takes
place.
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Fig. 4: Learned CDS between “giver” and “receiver”. dp is
the distance between wrists, parallel to the floor, and dh is
the difference of height, perpendicular to the floor, between
wrists. The origin is when the wrists are at the nearest
distance from the two which it is considered as the handover
location.

From the analysis of the coupling model the following can
be concluded: the most notable difference From the analysis
of the coupling model, the most notable difference compared
with the previous approach from [2] is the single coupling
function. In terms of complexity, this approach requires one
less computational step to obtain the relation between “giver”
and “receiver”. The new approach uses the norm difference
of the wrist locations (Equation 8). The norm is believed
to be biologically inspired [23]. The other advantage to the
previous approach is the fact that it no longer considers the
“receiver” as a slave to the “giver” movements. Our new
approach considers each to have an impact. This approach
has bi-directional usage, in a sense that this coupling function
can be used to couple the “receiver” to the “giver” behaviour,
or the “giver” to the “receiver”, depending on which is the
one desired to control.

V. HUMAN-ROBOT INTERACTION

In this section, we describe the generated controller
from the human-human collaborative model. Additionally,
we develop an HRI scenario to validate and evaluate the
performance of our controller as well as to compare it with
the previous controller of [2]. The section concludes with
the discussion of the results obtained and the advantages and
disadvantages found when using this approach.

A. Controller for Coupling of Arm Movements

Our approach is a “giver”-“receiver” system, where each
one influences the way the other moves and behaves benefit-
ing the interaction by synchronizing the movements of both
participants. In a sense, this coupling function can be used to



adapt the “receiver” to the motion of the “giver”, and vice-
versa. dp and dh hold the information of the position of the
“giver” and “receiver”, hence, by knowing the information
of one of the participants, e.g. the “giver”, we can couple
the “receiver” arm movement with our controller. From the
GMMs that built the HHI model, the Gaussian Mixture
Regression (GMR) is used to infer the relation between the
dp and dh.

B. Experimental Setup

The setup for the HRI experiments is as follows. A human
is giving an object to a humanoid (Figure 5) while the
robot receives the object following the coupling behaviour
mentioned above. The OptiTrack motion capture system
tracks the arm (i.e. wrists) movements. Two rigid bodies
are created from markers: (i) the iCub wrist, (ii) human
wrist. These experiments serve to validate the controller’s
robustness to variability on the human arm movement.

C. Validation

Figure 6 shows the coupling model generated from human
data. The “giver” arm movements are the data from the
dataset of Section IV. From the coupling function, we extract
the desired “receiver”’s arm location to synchronize with the
movements of the “giver” in order to perform a successful
handover action.

When comparing the two models, the model generated
from the HHI data in Figure 4, and the generated coupling
function between a human and a robot (Figure 6), we
can conclude that the generated relation between “giver”-
“receiver” are similar suggesting that the estimated arm
trajectories of the “receiver” will respect the same coupling
behaviour as in the HHI (Figure 4).

D. Results

The coupling behaviour maintains natural human be-
haviour. The next step is to test it under uncontrolled
conditions: real-time HRI experiment where we deal with

Fig. 5: Side view of the HRI experiments. The wrists of
the robot and human are highlighted in blue and yellow,
respectively, to represent the rigid bodies created by the
motion capture system and visible in Figure 1 on the TV
screen. dp and dh are the two relevant dimensions extracted
from the distance between the two rigid bodies.
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Fig. 6: Coupling relation between human ”giver” arm data
from the dataset, and humanoid robot generated desired arm
position for handover actions.

variability on the human wrist and the robot wrist. Figure 7
illustrates a sequence of specific moments in an interaction
where a human handovers an object to a humanoid robot.

From the HRI experiments, we can conclude that our ap-
proach is capable of successfully handover objects between
a human and a robot. The coupling function receives as input
the distance between a human and the robot wrist (dp and dh)
at the current time step, and the output is the next distance
(new values of dp and dh) for the next step. The robot wrist
is calculated as the difference between the two variables.
From the HRI experiments, we can see that the robot adapts
in real-time to the movements of the human. In Figure 7 we
can see that after the human stretches his arm to handover
the object, the robot tries to move close to the hand of the
human, even when the human moves away from the robot’s
hand. Overall, the controller generated by the coupling model
is robust.

VI. DISCUSSION

This work describes an approach to model non-verbal
communication of arm behaviour. We define a model learned
from human-human experimental data involving object-based
interaction such as handovers. From the learned model, we
design a robotic controller capable of allowing a robot to
synchronize its arm movements to the human partner. As a
result, the robot can “read” the non-verbal cues of the human,
as well as “signal” its own non-verbal cues.

The first contribution is the development of arm movement
coordination model between a “giver” and a “receiver”. CDS
defined the coupling function between the two participants
arm behaviour. This coupling reflects the neurological in-
tricacies that emerge when two humans share a common
goal and collaborate to reach an efficient and successful
completion of the task. The second contribution lies in
the application of those inter-relational ideas to a robot



Fig. 7: HRI scenario of a handover action using the controller for coupling of arm movements. Below each specific moment
it is represented the values for dp and dh which depending on the learned CDS it invokes a particular relation between the
“giver” and “receiver”.

interface/controller. It enables a humanoid robot to share a
common goal while behaving biologically inspired. There-
fore, a robotic controller inspired on the CDS model was
developed as a means to endow the humanoid robot with
such capacity.

Our approach outperforms previous methodologies, such
as [2] because it does not require the initialization of
an imaginary handover location. Additionally, the coupling
model is only composed of one model instead of two,
reducing the computational time, which benefits real-time
interactions. Moreover, it is interesting, as future work, to
explore the potentials of mutual synchronization with this
coupling function. Action alignment for the robot as the
“receiver” as well the “giver” is an interested milestone to
achieve.
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S. Roth, eds.), (Cham), pp. 197–212, Springer International Publishing,
2019.

[17] E. C. Grigore, K. Eder, A. G. Pipe, C. Melhuish, and U. Leonards,
“Joint action understanding improves robot-to-human object han-
dover,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4622–4629, Nov 2013.

[18] A. Vignolo, N. Noceti, F. Rea, A. Sciutti, F. Odone, and G. Sandini,
“Detecting Biological Motion for HumanRobot Interaction: A Link
between Perception and Action,” Frontiers in Robotics and AI, vol. 4,
no. June, 2017.

[19] R. Rasch, S. Wachsmuth, and M. König, “A Joint Motion Model for
Human-Like Robot-Human Handover,” 2018.

[20] Q. Moreau, L. Galvan, T. A. Nazir, and Y. Paulignan, “Dynamics of
Social Interaction: Kinematic Analysis of a Joint Action,” Frontiers in
Psychology, vol. 7, no. December, pp. 1–8, 2016.

[21] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[22] A. Shukla and A. Billard, “Coupled dynamical system based armhand
grasping model for learning fast adaptation strategies,” Robotics and
Autonomous Systems, vol. 60, no. 3, pp. 424–440, 2012. Autonomous
Grasping.

[23] P. Haggard and A. M. Wing, “Remote responses to perturbation in
human prehension,” Neuroscience letters, vol. 122, no. 1, pp. 103–
108, 1991.


