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José Santos-Victor
Instituto Superior Técnico
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Abstract—Humans have a particular way of moving their body
when interacting with the environment and with other humans.
The movement of the body is commonly known and expresses the
intention of the action. The express of intent by our movement
is classified as non-verbal cues, and from them, it is possible to
understand and anticipate the actions of humans. In robotics,
humans need to understand the intention of the robot in order
to efficiently and safely interact in a dyadic activity. If robots
could possess the same non-verbal cues when executing the same
actions, then humans would be capable of interacting with robots
the way they interact with other humans.

We propose a robotic controller capable of executing actions
of moving objects on a table (placing) and handover objects to
humans (giving) in a human-like behaviour. Our first contri-
bution is to model the behaviour of the non-verbal cues of a
human interacting with other humans while performing placing
and giving actions. From the recordings of the motion of the
human, we build a computational model of the trajectory of the
head, torso, and arm for the different actions. Additionally, the
human motion model was consolidated with the integration of a
previously developed human gaze behaviour model. As a second
contribution, we embedded this model in the controller of an
iCub humanoid robot and compared the generated trajectories
to the real human model, and additionally, compare with the
existing minimum-jerk controller for the iCub (iKin).

Our results show that it is possible to model the complete upper
body human behaviour during placing and giving interactions,
and the generated trajectories from the model give a better
approximation of the human-like behaviour in a humanoid robot
than the existing inverse kinematics solver. From this work, we
can conclude that our controller is capable of achieving a human-
like behaviour for the robot which is a step towards robots
capable of understanding and being understood by humans.

Index Terms—Human Motion, Humanoid Robots, Human-like
Behaviour, Motion Controller

I. INTRODUCTION

Collaborating implies also acting together, which entails not
only understanding which action the partner is performing
but also being able to imitate it appropriately [1]. Hence
robots need to adapt to the human trajectory in order to be
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Fig. 1: Human-Human Interaction: an experiment involving
one actor. The bottom figure has the top view of the table and
the organisation of the participants around the table. S1, S2,
and S3 refer to the three subjects the actor interacts with,
and P1, P2, and P3 are the placing location of the object
when executing the placing action. On the actor side, there
are the reference coordinates for the degrees of freedom of the
head and torso of the actor. The Θ,Φ,Ψ are the corresponding
rotation axis of the head and torso of the actor.

predictable, [2]. Busch et al. [3] developed a reinforcement
learning technique that based on human in the loop input, the
robot would adapt its behaviour in order to behave in a more
understandable manner. Without an intention recogniser, and
with only human feedback, it can adapt its behaviour to make
it more legible.
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The robot must move in such a way that the human
trusts and understands it, i.e. legibility in the motion, [4]. [5]
generated legible motion for robots from predicting the future
actions of humans.

To be effective for human-robot collaboration a robot should
plan its motion so that it is both safe and efficient, [6]. This can
be achieved by avoiding the workspace previously-occupied by
the human, and the motion is as legible as possible.

This work is based on the experiment from [7] of human-
human interaction (HHI) scenario, to study non-verbal com-
munication cues between humans.

The experiment (Section III) consists of an actor performing
goal-oriented actions in front of three humans sitting at a round
table (Fig.1-top). The actor picks up a ball placed in front of
him and has to either (i) place the ball on the table in front of
one of the three persons or (ii) give the ball to one of them.
Considering the two actions (placing/giving) and three spatial
parametrisations (left/middle/right), the actor executes one out
of six action-possibilities.

The recordings of the upper body and eye gaze motion are
used to develop a computational model of the human actions
(Section IV). The contribution of this paper is on extending
the human modelling by incorporating the motion of the head
and torso to the eyes and arm motion already computed from
the previous work [7]. The head, torso, and arm movement
were modelled with Gaussian Mixture Models (GMM), and
Gaussian Mixture Regression (GMR) is used to generate the
trajectories. The eye gaze behaviour was modelled based on
an existing biologically inspired approach [8].

The other contribution involved developing a controller de-
veloped from the computational model. This controller extends
from the previous [7] by integrating the head and torso motion.
The controller is implemented on the iCub humanoid robot,
with the purpose of comparing with the human collected data
in the HHI scenario (Section V). Additionally, we compare
the developed controller with the incorporated controller on
the iCub robot: (i) a Cartesian controller based on minimum-
jerk that controls the end-effector of the arm [9], (ii) a second
Cartesian controller for the eyes and head [10].

In Section VI we discuss our experiments and results
concerning the human-likeness of the trajectories of the robot
for our controller and compare with the existing controller of
the iCub. Finally, we draw some conclusions and establish
directions for future objectives.

II. STATE OF THE ART

Robotics have focused on the last couple of years on
improving the interaction and communication of robots with
humans. Approaches vary a great deal: from human motion
understanding [2], [11], to action recognition [12]. More
research has been looking at how humans behave to predict
their intentions, [13].

Work from [14], [15] analyse human behaviour when in-
teracting with objects in order to develop coupled dynamical
systems framework for arm-hand and eye-arm-hand motion
control for robots, respectively. The framework is focused on

motor control coupling. In previous work [7], we extend this
work to analyse the dyadic interactions between humans and
develop computational models of eye-arm motion control for
robots when interacting with the environment and humans.
Here, we extend our previous work, to complete the computa-
tional model to include eyes, head, torso, and arm movements
in the behaviour of robots.

Dragan et al [4] discuss the aspects of predictability and
legibility of arm movements. They define legible robot actions
as copies of human actions but executed with exaggerated
movements, and demonstrate that they can be understood
sooner. Instead, in our work, legibility is not achieved by
exaggerating the arm movements, but by modelling the natural
coordination of human eye, head, torso and arm movements.
The dataset1 used in this paper has already been successfully
used to model the behaviour of the human arm [7] as well as
a novel action anticipation algorithm, that integrates the cues
from both gaze and body motion to provide faster and more
accurate predictions of human’s action [16].

Work from [17], [18], [19] also develop Human-Robot
Interaction scenarios similar to ours. Notwithstanding there
are limitations on their work concerning the robot used in the
experiments. Due to the limited number of degrees of freedom
in the head of the robot, it can not reach the desire human-like
motion. In our work, we use the iCub humanoid robot that has
a human-like face where the eyes can independently move, as
well as the same motor repertoire of humans and thus express
a readable behaviour of eye-gaze and head-gaze.

III. HUMAN-HUMAN INTERACTION SCENARIO

In this section, we explain briefly the human-human interac-
tion (HHI) used to model and generate human-like behaviour.
The scenario can be seen in Fig. 1(top). For each trial, one
actor executes a set of actions:

• placing an object on the table to the actor’s left, center,
or right.

• giving an object to a person on actor’s left, center, or
right

The actor movements were recorded with an OptiTrack
motion capture (MoCap) system. The eye gaze was recorded
with the Pupil-Labs eye tracker [20]. For more details on the
recordings and specifications of the experiment refer to [7].

IV. MODELING HUMAN BEHAVIOUR IN PLACING AND
GIVING ACTIONS

In paper [7] we model the behaviour of the end-effector of
the experiment scenario, i.e. the wrist, and qualitative analyses
of the eyes. The work is an extension which includes the
modelling of the head movements, as well as the torso move-
ments to replicate the human-like behaviour during placing
and giving actions.

A. Human Body Behaviour
We use a Gaussian Mixture Model (GMM) [21] to model

the trajectories of the arm movement in a probabilistic frame-
1http://vislab.isr.tecnico.ulisboa.pt/datasets/#acticipate1dataset.ACTICIPATE.ral-
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Fig. 2: GMR of the head (above) and torso (below) movement over time for the different actions in radians.

work. The motion is represented as a state variable {ξj}Nj=1 ∈
R3, where N is the total number of arm trajectories for all
actions, and ξj are the Cartesian coordinates of the hand for
giving or placing actions. The GMM defines a joint probability
distribution function over the set of data from demonstrated
trajectories as a mixture of k Gaussian distributions each one
described by the prior probability, the mean value and the
covariance matrix.

p(k) = πk

p(ξj |k) = N (ξj ;µk,Σk) (1)

=
1√

(2π)D|Σk|
e−

1
2 ((ξj−µj)T Σ−1

k (ξj−µj))

where {πk;µk,Σk} is the prior probability, mean value, and
covariance, respectively, for each k normal distribution.

To model the torso and head the data analysed was the joints
corresponding to the neck and limb of the human actor in the
dataset. Since the neck and limb did not move in space because
the human actor was sitting, the relevant information was not
the Cartesian coordinates but the rotational axis (Φ,Ψ, and Θ).
From OptiTrack we collect the quaternions corresponding to
the joints, and from it, we represent the orientational axis in

each joint. In quaternion is the recommended representation
of rotations in three-dimensional space since it as no problems
with singularities. Four quaternions represent each joint,

q = [qx, qy, qz, qw]T (2)

The Gaussian Mixture Regression (GMR) for the behaviour
of the head and torso was calculated in quaternions. After
the reconstruction of the trajectories, the conversion to Euler
angles is performed, and the result is seen in Figure 2.

To see the recorded trajectories of the actor’s hand during
the execution of the actions we refer to [7]. Figure 2 and 3 only
show the reconstructed mean average trajectory of the human
behaviour for the head, torso, and arm. The same conditions
were applied to model the head, torso, and arm: four Gaussian
distributions for each Cartesian coordinate for the arm, and
four Gaussian distributions for each rotational axis of the head,
and torso.

B. Human Gaze Behaviour

The human gaze behaviour was inspired from [8] which uses
a discrete-time Markov Chain (DTMC) to model the sequence
of saccadic eye movements for handover actions, distinguish-
ing before and after the handover takes place. In our case, we
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Fig. 3: GMR of the end-effector, i.e. wrist, over time for the different actions in meters. ’Shift Left’ refers to the actions where
the actor had to move to the left, the ’End Goal’ is considered the default actions, where the actor would interact directly in
front, and the ’Shift Right’ are for the actions to the right side of the actor.

are interested in before the handover. The placing action, for
its simplicity, the gaze behaviour correspond to a simple shift
from the initial position to the final intended object position.
The states are S = {Object, Face,Hand, F inal}, so the
transition matrix is a simplified version from [8]. The states for
the giving action are then Sgiving = {Object, Face,Hand},
and for placing Splacing = {Object, F inal}, where Face
and Hand correspond to the face and hand of the subject
is interacting with, and Final is the final intended object
position.

The actor starts by gazing the Object, after the object is
grabbed if it is placing, the human looks at the table where the
object is placed (Final). If it is giving it will switch between
the Face of the human or the Hand [7].

V. HUMAN-ROBOT INTERACTION EXPERIMENT

To evaluate the new model of a biologically inspired tra-
jectory of a human executing placing and giving actions we
will proceed to apply the model to a robotic controller in a
humanoid robot. The humanoid robot chosen is the iCub, a
robot used for human studies with a similar motor repertoire
of a human.

Our controller is composed of several modules running in
parallel consisting of the generated human trajectories for the
movement of the eyes, head, torso, and arm during placing
and giving actions.

The experiments performed involve the robot acting just
like the human in the HHI scenario. The robot performs
placing and giving actions behaving in a biologically inspired
trajectory. For comparison and to evaluate the performance
of the controller we apply a comparison with the human-
generated trajectories from the human data. Additionally, and
for a direct comparison, we perform the same experiments
using the controller used as a default on the iCub robot,
the Cartesian controller based on minimum-jerk that uses an

inverse kinematics solver, [9]. In this paper, we will refer to
this controller as iKin.

The field lines in the plots represent the generated trajectory
from the human data. The dashed line represents the trajectory
followed by the robot when running the human-like model.
The dashed-dotted line is the result of running the iKin
solver for the same conditions without any restrictions on the
movement. For this example, we restrict the comparison to one
action, giving action to one of the direction. The experiments
were performed for all actions (Table I), but we limited the
visualisation to one action because the giving actions are the
most complex behaviours and they all gave similar results.
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Fig. 4: Comparing trajectories of human model, biologically
inspired controller and inverse kinematics solver (iKin) for the
torso movement for the giving action.

The following conditions of the experiments are kept con-
stant for an accurate comparison between the two controllers:
(i) the saccadic eye movements. This is to remove any influ-
ence in the neck behaviour that would change the trajectory
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Fig. 5: Comparing trajectories of human model, biologically
inspired controller and inverse kinematics solver (iKin) for the
head movement for the giving action.

of the head in any of the experiments; (ii) the neck response
time to new commands of position was constant in both
experiments; (iii) the maximum and minimum velocity as well
as the acceleration of the joint movements for the head, torso
and arm. The degrees of freedom (DOF) of the robot during
the HRI experiments were the same in both experiments. When
running our controller, each module was in control of the
corresponding degrees of freedom: (i) the head with 3 DOF,
the yaw, pitch, and roll of the neck, (ii) the torso with 3 DOF,
the yaw, pitch, roll of the limb, (iii) the arm with 7 DOF, 3
from the shoulder, elbow, 3 from the wrist. The hand DOF was
out of the scope of this paper. For the arm, we only control
the end-effector which we refer here as the wrist. The DOF
involved in the arm (shoulder, elbow, and wrist) are taken care
of by the Cartesian solver [9]. The focus on the paper is on the
trajectory of the wrist position. Both controllers are running in
a separate thread and the thread loops every five milliseconds,
so the frequency of update is 200 Hz (0.2 kHz).

Proceeding the HRI experiments is a detailed analysis of the
results obtained. The head is less pronounced in the iKin as in
our controller, Figure 5. This makes the action less readable for
the user. It has been previously addressed the readability of a
robot’s behaviour, and the conclusion is that from the head
movement alone humans are capable of extracting enough
information to decode the robot’s intention [7]. The torso, on
the other hand, has a more aggressive behaviour than in the
human-like behaviour, Figure 4. This may be related to the
iKin solver ”preference” for making the upper body do most
of the work in the robot action execution. Notwithstanding,
this leads to weird behaviours of the robot inclining the torso
back to pick objects that are close to its body. The reason
is correlated with mechanical constraints present on physical
robots, as well as a weight limit per DOF motor. This will be
addressed in more detail in Section VI.

The arm trajectory is not linearly comparable due to the
difference of size between the human and the robot. However,
we can calculate the similarity of the trajectory in normalised
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Fig. 6: Comparing trajectories of human model, biologically
inspired controller and inverse kinematics solver (iKin) for the
arm movement for the giving action.

dimensions, Figure 6. The purpose is to evaluate the trajectory
of the iCub arm when using our controller versus the iKin
controller. From the experiments, it is possible to observe the
resemblance of the trajectory followed by our controller with
the real trajectory of the human arm, and the disparity with
the generated trajectory by the iKin approach.

The overall experiments performed in this section can con-
clude that our controller is capable of producing more human-
like trajectories, following more accurately the behaviour of
a human in dyadic scenarios then if it would be applied the
current controller to the same actions.

Controller 1−
∫ T
0 iCub

∫ T
0 real

2
1−

∫ T
0 iKin

∫ T
0 real

2

head {0.12, 0.06} {95, 2.11}
torso {0.13, 0.05} {240, 23}

TABLE I: Relative measures of the jerk given as the ratio
between the integral of the position of the orientation axis of
the head, torso for the two controllers and the same quantity
computed for the real human model. For each controller and
corresponding body part the average for {placing, giving}
actions are computed.

After analysing Table I the following can be concluded.
Firstly, our controller has on average a 12% error for the
head, and torso, for placing actions, and 5 % error for giving
actions when compared with the human model. Secondly, the
iKin controller has errors that are 2 to 3 orders of magnitude
higher than our controller. Thirdly, placing actions gave higher
error than the giving actions, which it might be related to
the performance metrics which penalises more when the real
trajectory is more straightforward. In those cases, a small
variation in the trajectory of the controllers gives rise to
higher errors. Fourth and finally, the iKin controller gave
very different results for the torso compared to our controller.
This clearly states the limitations of the iKin controller in
representing a biologically inspired trajectory. The iKin con-
troller controls the end-effector of the arm which in turn
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drags the torso, and consequently the head. Although the
head is controlled independently, it is being influenced by
the movement of the arm, and torso. As for our controller,
all modules are running in parallel, with set goals, which are
relative positions/orientations to their particular body part.

VI. DISCUSSIONS AND CONCLUSION

We model the human behaviour of the eyes, head, torso, and
arm for placing and giving actions and successfully develop
a controller that is capable of generating robotic movements
based on the human-like model. To evaluate the performance
of the generated behaviour, we perform experiments of a
robot executing similar actions to the human while running
the new controller against the existing controller [9]. We can
conclude that our controller follows the human-like trajectory
for all body parts and it has a biologically inspired behaviour
when compared with the existing controller. From the HRI
experiments, we observe that both controllers reach the same
end-goal for the end-effector (the wrist), which means that
for specific end-goal locations it is possible to apply our
controller in order for the humanoid robot to have a more
’readable’ behaviour, i.e. a legible behaviour throughout the
whole movement.

Our controller, however, does limit the maximum reach of
the humanoid arm. In order for the robot to reach further away
from its centre of mass, it must behave in a non-biological way.
This is to take into account the limit force on the arms of the
robot. We argue that it is the desired compromise to limit the
reach of the robot to improve the overall understanding of the
behaviour. In the future robots will have motors with higher
torque force which will attenuate this downside.

Due to limitations on time, we did not run the module of
the arm using the joint controller as in the head, and torso,
and instead focused on the end-effector following the wrist
trajectory in the human-generated model. This means that we
did not take into account the location of the joints of the
shoulder and elbow throughout the execution of the action.
Hence the module used to control the arm was an adaptation of
the Cartesian controller but for the full duration of the action.
In comparison with the iKin version, only the final point is
given to the controller. Since we only model the end-effector
(the wrist) in the HHI experiments, we decided it would be
enough to generate the intended human-like trajectory. As our
next goal, we intend to generalise this controller for more
trajectories and build an upper body solver for human inspired
behaviour extending to the full joints of the arm as well.
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