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Abstract
Service robots are built and developed for various applications to support humans as companion, caretaker, or domestic
support. As the number of elderly people grows, service robots will be in increasing demand. Particularly, one of the main
tasks performed by elderly people, and others, is the complex task of cleaning. Therefore, cleaning tasks, such as sweeping
floors, washing dishes, and wiping windows, have been developed for the domestic environment using service robots or
robot manipulators with several control approaches. This article is primarily focused on control methodology used for
cleaning tasks. Specifically, this work mainly discusses classical control and learning-based controlled methods. The
classical control approaches, which consist of position control, force control, and impedance control , are commonly used
for cleaning purposes in a highly controlled environment. However, classical control methods cannot be generalized for
cluttered environment so that learning-based control methods could be an alternative solution. Learning-based control
methods for cleaning tasks can encompass three approaches: learning from demonstration (LfD), supervised learning (SL),
and reinforcement learning (RL). These control approaches have their own capabilities to generalize the cleaning tasks in
the new environment. For example, LfD, which many research groups have used for cleaning tasks, can generate complex
cleaning trajectories based on human demonstration. Also, SL can support the prediction of dirt areas and cleaning motion
using large number of data set. Finally, RL can learn cleaning actions and interact with the new environment by the robot
itself. In this context, this article aims to provide a general overview of robotic cleaning tasks based on different types of
control methods using manipulator. It also suggest a description of the future directions of cleaning tasks based on the
evaluation of the control approaches.
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Introduction

The development of robots has led to an incredible influ-

ence scientifically and socially for several decades. The

robot of today is showing considerable potential in various

fields such as cleaning, tidying up, or doing the laundry in

1 Istituto di BioRobotica, Scuola Superiore Sant’Anna, Pontedera, Italy
2Centro di Micro-BioRobotica, Istituto Italiano di Tecnologia, Pontedera,

Italy
3 Institute for Systems and Robotics, Instituto Superior Tecnico,

Universidade de Lisboa, Lisboa, Portugal

Corresponding author:

Filippo Cavallo, Istituto di BioRobotica, Scuola Superiore Sant’Anna,

56025- Pontedera, Italia.

Email: filippo.cavallo@santannapisa.it

International Journal of Advanced
Robotic Systems

July-August 2019: 1–21
ª The Author(s) 2019

DOI: 10.1177/1729881419857432
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0001-7423-7850
https://orcid.org/0000-0001-7423-7850
https://orcid.org/0000-0001-7432-5033
https://orcid.org/0000-0001-7432-5033
mailto:filippo.cavallo@santannapisa.it
https://doi.org/10.1177/1729881419857432
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881419857432&domain=pdf&date_stamp=2019-07-28


the domestic environment. Cleaning tasks, in particular, are

the most frequent household chores in human environments

according to the analysis of Cakmak and Takayama.1 If

service robots could perform cleaning tasks with effective

and efficient way, this development would have a note-

worthy impact on our daily lives.

The development of the robotic cleaning task is signif-

icant for the home environment because the percentage of

older people in the world’s population is growing. Accord-

ing to current statistics, the number of people over age 65 is

predicted to triple between 2000 and 2050. As a result, in

2050, the ratio of working-age people to the number of

seniors age 65 and above is expected to decrease. Also, the

number of 65þ people was approximately 17.5% of the

total population in 2012 and is expected to increase to

30% by 2050. Therefore, if service robots could clean the

human environment, elderly or physically handicapped

people would be able to stay longer in their own homes

and be less dependent on caretakers.

In the market, different types of commercial

service robots are available for different purposes, includ-

ing floor, pool, solar panel, lawn, and windows (Figure 1(a)

to (e)).2–16,18–29,35 A popular cleaning robot is iRobot,

which has sold for use in more than 10 million homes

worldwide.11 Siemens has developed a navigation system

for floor cleaning robots and extensively tested it in several

chain store supermarkets.36 However, these robots can per-

form specific tasks and cannot be used for multipurpose

cleaning tasks of households.

In fact, the floor cleaning robots are useful and save time

for people, but the cleaning strategies of the robots are not

implemented in a very effective way. Initial floor cleaning

robots are operated with random movement, with no guar-

antee that the robot will visit every area or corner of the

domestic environment. Current floor cleaning robots are

working in a smart way to clean an entire floor surface, but

some dirt still remains in a few spots. Moreover, these

robots are only developed for cleaning floors at home.

Their workspace is constrained to two-dimensional flat

surfaces, and it cannot clean floors or furniture or non-

flat surfaces.

Figure 1(f) shows examples of future robots that can be

used for multipurpose cleaning and is inspired by the whole

human body or the human hand. In addition, these robots

are highly dexterous, anthropomorphic, and can handle

cluttered environments.37 For example, it demonstrates that

these robots can perform floor cleaning, dish washing,

kitchen table cleaning, and so on.30–34 It is a fundamental

step in the development of a modern cleaning robot that

could be used for developing more advanced service robots

Figure 1. Commercial cleaning robots: (a) floor cleaning robots,2–13 (b) pool cleaning robots,14–17 (c) solar panel cleaning robots,18–21

(d) lawn cleaning robots,22–25 (e) window cleaning robots,26–29 and (f) future multipurpose cleaning robots.30–34.
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to handle complete household cleaning tasks from kitchen

to living room, wash room to corridor, table to windows,

indoor to outdoor, and so on.

In the actual environment, there are many different types

of cleaning tasks. Leidner et al. classified how humans

clean using tools in various situations.38 The classifications

of the cleaning motion are natural for human, but these

cleaning robots can have difficulty in following the motion.

Therefore, many research groups have developed cleaning

tasks using robot manipulators because the robot can not

only mimic human movement but also have dexterity for

cleaning in various environments such as window, table,

sofa, furniture, and so on. However, robot cleaning using

the manipulators is a complex. For example, wiping,

sweeping, scrubbing, and tidying up activities in which

human uses cleaning motions are difficult to develop using

a manipulator due to its complex control strategy. Where

the cleaning strategy should be at least considered for two

basic components such as trajectory planning without col-

lisions and perception to identify the dirt.

To overcome the challenges using the robot manipula-

tor, a variety of control approaches for robotic cleaning

tasks have been researched. In this article, we present a

comprehensive summary of control architectures that are

used for cleaning purposes. We categorize the architecture

into two main approaches: classic control architecture and

learning-based control architecture. In further categoriza-

tion, we considered in three classic control methods: posi-

tion control (PC), force control (FC), and impedance

control (IC). For the learning-based control, we consider

three strategies: learning from demonstration (LfD), super-

vised learning (SL), and reinforcement learning (RL).

Additionally, this article focuses on the control approaches

for robotic cleaning tasks, which are demonstrated in actual

(real time) and virtual environment (simulation).

This article presents an overview of control strategies

for cleaning robots using manipulators. It includes the

methodology of paper selection, a classification of the main

cleaning tasks, a detailed description of the classical and

learning-based control approaches, and some final discus-

sions and conclusions.

Methodology: Search strategy and
selection criteria

For the literature review of cleaning robots, we considered

a set of parameters, including different paper databases,

paper selection, keyword selection, and so on. We searched

electronic databases from April 2018 to May 2018 using

IEEE Xplore, Pubmed, Google scholar, Science Direct,

Scopus, and Web of science to identify articles concerning

aspects of modeling, recognizing, interpreting, and imple-

menting cleaning tasks in service robotics applications.

Specifically, terms and keywords used for the literature

research were robotic cleaning tasks, service robot, sweep-

ing, cleaning, wiping, and scrubbing for each database.

After collecting the papers, we sorted them based on

cleaning task classification and types of control strategies

used to perform cleaning tasks. All data extracted from the

papers and reported in Table 1: control strategy, performed

tasks, types of sensors used, and types of robotic platform.

Concerning selection criteria, the results were sorted for

each database with a maximum of 100 results for each

combination of key words. During the screening procedure,

items were excluded if they were an abstract, duplicates, a

chapter from a book, not written in English language, and

not full access. Moreover, the references were fully

assessed during the evaluation procedure, and papers were

excluded if they did not appear appropriate for this review

after the reading of title and abstract.

Particularly, some papers were discarded based on two

categories: (1) if the paper did not include words that were

strongly related to the purpose of this review, that is,

“sweeping,” “washing,” “vacuuming,” “scrubbing,” “tidy

up,”” cleaning,” and “wiping” and their derivatives or

synonyms; and (2) if the paper did not include control

strategies for cleaning tasks; the time period of the litera-

ture survey was from January 2004 to May 2018. After an

intensive procedure for paper selection, 71 papers were

adopted for review (Figure 2).

Classification of cleaning tasks

In the domestic environment, most people perform house-

hold chores such as doing the dishes, cleaning washrooms,

and doing the laundry every day. As described in the work

of Cakmak and Takayama,1 49.8% of all chores are clean-

ing tasks, and the tasks are defined with several verbs in the

actual environment. The common verbs for cleaning tasks

include wiping, sweeping, washing, tidy up, vacuuming,

and scrubbing. In fact, as people grow up, they learn how

to clean household objects and their own place naturally.

However, in terms of robotic operation, it is difficult to

define the cleaning actions and complex manipulation.

Therefore, Leidner et al.38 classified the cleaning tasks

based on the principle of wiping the surface using a tool.

Broadly speaking, it can be applied for most of the cleaning

tasks. Additionally, the authors defined three basic terms

for the process: tool, medium, and surface. They described

medium as particles or liquid such as dust that are placed

between the tool and surface. Based on the author’s paper,

we classify cleaning tasks that is operated with total six

robotic motions described in Figure 3.

*Wiping: The motion of removing (a substance) from

the surface with hand. For example, dirt from the

surface or table should be considered as skimming

(see Figure 3(a)).

*Sweeping: The motion is to collect dust placed on

the floor. Then, the dust is accumulated in a spe-

cific place as collecting (see Figure 3(b)).

Kim et al. 3



Table 1. Summary of control methods used for different cleaning tasks.

Control approaches
for cleaning Sensor used Actions Robotic platform Reference

Classical Position Camera Tidy up PR2 Nebel et al. 39

Nao humanoid Hornung et al.40

Mobile robot Takahama et al.41

Wiping PR2 Hess et al.42

Dornhege and Hertle43

Cody King et al.44

Sweeping Care-o-bot 3 Bormann et al.45

Sweeping HRP-2 Okada et al.46

Vacuuming Okada et al.47

Washing Okada et al.48

Force sensor Sweeping ABB YuMi robot Liang et al.49

Camera and force sensor Sweeping Daily assistive robot Yamazaki et al.50

F/T sensor Wiping HOAP-2 Sato et al.51

Kormushev et al.52

Tension sensor Wiping Musculoskeletal robot arm Chen et al.53

No sensor Wiping Humanoid manipulator Shimizu54

Sweeping Simulation Lana et al.55

Force Force sensor Wiping Bimanual humanoid robot Ortenzi et al.56

F/T sensor Wiping HOAP-2 Sato et al.51

Inflatable arm Sanan et al.57

SS-arm III Choi et al.58

Torque sensor Wiping SS-arm III Le et al.59

Grip sensor Washing T-WREX Sanchez et al.60

Impedance Camera Wiping Rollin’ Justin Leidner et al.61

COMAN Rocchi et al.62

Cody King et al.44

Wiping, scrubbing Rollin’ Justin Leidner et al.63

Collecting, scrubbing Rollin’ Justin Leidner et al.64

Force sensor Wiping Redundant manipulators Patel et al.65

Torque sensor Wiping LW-II robot Urbanek et al.66

Learning LfD Camera Wiping Mitsubishi PA-10 Nemec and Ude67

Jaco arm Boteanu et al.68

ARMAR-III Gams and Ude69

Sweeping Barrett WAM manipulator PA-10 Alizadeh et al.70

KUKA lightweight robot Pervez and Lee71

Nao Ye and Alterovitz72

PR2 Elliott et al.73

Wiping, scrubbing ARMAR-III Dometios et al.74

Wiping, sweeping iCub Kim et al.75

Camera and force sensor Wiping ARMAR-III Do et al.76

Camera and torque sensor Wiping KUKA LWR-4 Gams and Ude69

Camera and F/T sensor Wiping, sweeping TOMM Dianov et al.77

Force sensor Wiping ARMAR-III Zhou et al.78

Sweeping ISYBOT Restrepo et al.79

F/T sensor Wiping KUKA LWR-4 Gams et al.80

Gams et al. 81

HOAP-2 Kormushev et al.52

Sweeping WAM robot Silvério et al.82

Hoyos et al.83

Torque sensor Sweeping Universal robot Paxton et al.84

No sensor Wiping Simulation Zhou et al.85

SL Camera Wiping KUKA robots Kabir et al.86

Human-like arm Eppner et al.87

KUKA robots Langsfeld et al.88

Vacuuming Humanoid robots Attamimi et al.89

Scrubbing Lynxmotion AL5D robot Rahmatizadeh et al.90

Scrubbing KUKA robots Kabir et al.91

(continued)
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*Scrubbing: The action of scrubbing is rubbing some-

thing hard by a tool. It repeats the action several

times to remove the dirt by exerting force (see

Figure 3(c)).

*Vacuuming: The motion of vacuuming is to absorb

(suck up) dust and dirt from floors or other sur-

faces using an air pump. However, the action is

unrelated to the direction of the tool motion (see

Figure 3(d)).

*Washing: The action of washing needs two different

actions, which are emitting and scrubbing where

emitting corresponds to water ejection on the sur-

face and scrubbing to remove the dirt using tools

(see Figure 3(e)).

*Tidy up: The action of tidy up is used to organize and

arrange messy room. For example, the action repeats

pick some objects and place the objects in specific

area or box to tidy up the room (see Figure 3(f)).

In this work, we categorized control methods that are

used for cleaning tasks. Based on our selected papers, we

divided these control methods into two basic types: classi-

cal and learning-based. We also subcategorized them by

considering the sensor used, robotic platform, and perfor-

mance. The detailed categorization is tabulated in Table 1.

Control approach for cleaning tasks

In this section, we discuss detailed study of classical con-

trol and learning-based control for cleaning tasks. The clas-

sical control is used for predefined task for cleaning

without learning or adapting environment with different

feedback from the sensors. Moreover, learning-based

Table 1. (continued)

Control approaches
for cleaning Sensor used Actions Robotic platform Reference

Sweeping KUKA robots Pervez et al.92

Wiping, sweeping iCub Kim et al.75

Cauli et al.93

Camera and F/T sensor Wiping ARMAR-III Do et al.76

Force sensor Wiping Myorobotic arm Martius et al.94

F/T sensor Wiping Universal robot Stelter et al.95

Gripper sensors Tidy up Fetch robot Akinola et al.96

RL Camera Tidy up Jaco arm Pajarinen and Kyrki97

WAM arm Martı́nez et al.103

WAM manipulator Covallero et al.98

Martı́nez et al.99

Vacuuming PR2 Hess et al.104

Sweeping PR2 Devin et al.100

Sawyer robot Liu et al.101

No sensor Tidy up Simulation Cruz et al.102

LfD: learning from demonstration; SL: supervised learning; RL: reinforcement learning.

Figure 2. Paper selection methodology from different databases.
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control is used to learn the robot from human demonstra-

tions, self-exploration, or prerecorded data sets to clean the

environment. After learning, the robot can generalize

cleaning tasks in unfamiliar environment.

Classical control approach

Position control. PC is an important method in the early stage

of cleaning tasks to show the possibility of robot movement

to achieve continuous and repetitive cleaning motion. In

this approach, robot kinematics especially inverse kine-

matics plays an important role. For example, Yamazaki

et al.50 describe a Jacobian-based inverse kinematics

method for controlling upper body motion. The authors

used the singularity robust inverse method,105 which has

a good track record in stability, so that it helps to avoid self-

collision using redundant degrees of freedom (DoFs) of

upper body during cleaning experiments. Okada and col-

leagues46–48 also generated body posture and constraint of

handling information using the whole body inverse kine-

matics technique. In this way, the whole body posture

sequence is used for sweeping motion. Liang et al. task-

space kinematic control is developed for dual arm PC for

cleaning.49 To generate a sweeping motion, both arms

rotate using full dual PC with the closed-loop system.

Another approach using analytical and algebraic methods

for the inverse kinematics of a manipulator was developed

for wiping tables and mirrors using a manipulator.54,55 The

analytical approach focuses on solving and decoupling of

inverse kinematics about a spherical wrist of the

manipulator with a generalized unconstrained orientation.

The algebraic approach uses the manipulation task model,

which describe poses, linear and angular velocities, forces

and moments for generating cleaning actions, and imple-

mented only in a simulation. To generate trajectories for

cleaning tasks, motion planning algorithms are needed.

Takahama et al. suggested performing manipulation for

tidying books in a room using the dual arm.41 The manip-

ulation requires a sequence of motions that confirm posi-

tion and planning of manipulator’s motion. Hess et al.

proposed novel coverage path planning for robotic manip-

ulators that can clean arbitrary 3-D surfaces.42 Normal cov-

erage path planning returns suboptimal paths with respect

to the joint space. Therefore, the author suggested a gen-

eralization of the traveling salesman problem approach,

which transforms the surface into a graph that defines a set

of clusters over nodes. Dornhege and colleagues discussed

integrated task and motion planning for wiping tasks using

the PR2 robot.39,40,43 Their approach combines classical

symbolic planning with the geometric reasoning in the tem-

poral fast downward/modules planner with semantic

attachments. The planner is able to deal with unexpected

events, such as execution failures, but not in the current

state. Then, if the planner cannot find the goal, it monitors

the robot movements and replans if necessary.

Chitta et al. used MoveIt framework106 on Care-o-bot 3

to clean a trash bin using PC with self-collisions avoidan-

ce45(Figure 4(a)).

Another study was conducted for hospital cleaning pur-

poses: The author used the PC to control two joints in the

Figure 3. Many different activities are performed in cleaning actions. Combined several cleaning actions such as (a) wiping toy car,42, (b)
sweeping lentils,103 (c) scrubbing cup,63 (d) vacuuming lentils,104 (e) washing dishes,46 and (e) tidy up table.40
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wrist of a Cody robot for cleaning the bed of a patient.44

This control method enables the robot manipulator to adapt

to the surface of the patient’s arm using position feedback

from joint encoder. Also, in the bilateral control system, PC

is used for the pneumatic artificial muscle’s arm to generate

flexion motions without time delays for wiping pink ink.53

Besides, this application is developed using proportional

derivative (PD) controller for the movement of arm joints

to clean a vertical surface using a humanoid robot in the

work of Sato et al. and Kormushev et al.51,52

The PC is mainly used for predefined task in cleaning

environment. However, if the robot faces uncertainty from

the environment, the control method cannot easily adjust to

the situation. In particular, without force and torque, feed-

back could be crashed or damaged the robot manipulator

during cleaning.

Force control. In the FC architecture, sensors measure

applied forces from the environment. Therefore, FC, which

considers the interaction between the device and the envi-

ronment, plays an important role in cleaning tasks. Sanchez

et al. used nonlinear FC and passive counter-balancing to

perform a wide range of force for washing using a pneu-

matic robot.60 Sato et al. proposed a force tracking control-

ler51 (Figure 4(b)). The controller is able to operate torque

control mode that can generate varying trajectories even if

small tracking errors are occurred. The authors used an

ankle force controller, which calculated the hand force

using a foot pressure sensor with zero moment point107 and

center of mass108 for cleaning a whiteboard. Choi et al.58

and Le et al.59 proposed an algorithm to estimate external

force exerted on the end-effector of a robot manipulator

using information from joint torque sensors. The algorithm

is used for wiping the table with the combination of time

delay estimation that adapts the robot manipulator with

unknown input as the external force. Moreover, FC is used

to solve the problem of constrained motion for cleaning

actions. Ortenzi et al. suggested operational space

dynamics for wiping a whiteboard56 (Figure 4(c)). This

approach is used to minimize joint torque and increase

stability while the robot is in contact with the environment.

An inflatable manipulator consisted of McKibben actuators

is used to wipe a surface. The manipulator adapts and con-

tacts to the surface and cleans it using its reaction forces57

(Figure 4(d)). The FC is one of the most useful control

approaches for interacting with the environment. Also, the

robots can adapt their cleaning motion for uneven surfaces

based on force data. However, the control method is still

not useful where the forces are continuously changing and

the robot failed to generate cleaning trajectory. Therefore,

this method is also limited to highly controlled

environments.

Impedance control. IC could be the most suitable approach

for cleaning tasks109 because it allows dynamic interaction

(both force and motion) between the robot and the environ-

ment. Specifically, the IC architecture is quite different

from FC and PC. For example, in the case of PC, we only

consider end-effector position using kinematics; in the case

of FC, only static force is employed; and in the case of IC,

PC, and FC, both are considered. Thus, IC is defined as the

ratio of force output to motion input, or the force that

Figure 4. Cleaning robots using classical control approaches: (a) cleaning a trash bin using Care-O-bot 3 (position control),45 (b)
cleaning a vertical surface using humanoid robot HOAP-2 (position control and force control),51 (c) wiping a whiteboard using bimanual
humanoid robot (force control),56 (d) wiping motions using inflatable manipulator (force control),57 (e) wiping a widow using Rollin’
Justin (impedance control),63 and (f) erasing a whiteboard using COMAN (impedance control).62

Kim et al. 7



results from the motion input. Moreover, we found several

robots that use IC algorithms for different cleaning pur-

poses, including those by Urbanek et al., who used Carte-

sian IC for a table wiping scenario.66 Actually, Cartesian

impedance is modeled as a mass-spring-damper system in

the Cartesian directions of the tool center point to create a

compliant behavior for the robotic end-effector.

With Cartesian IC, we can operate the robot with mul-

tiple DoFs robustly. This approach is extended to apply a

compliant whole-body IC framework for interacting with

the environment using the Rollin’ Justin robot.61 The con-

trol is used to move the arm with Cartesian tool motion,

which is distributed based on high particle density areas

according to the rapidly exploring random trees and kernel

density estimation (KDE). The same authors used an iden-

tical control approach and developed a generic method to

parameterized whole-body controllers for compliant

manipulation tasks with different contacts63,64 (Figure

4(e)). They implemented a hybrid reasoning mechanism

for task parameterization and integrated symbolic transi-

tions to improve cleaning actions. As a result, the robot

could demonstrate not only scrubbing a mug but also col-

lecting particles of dust with a sponge. In addition, aug-

mented hybrid IC was used with an outer–inner loop

controller to wipe a surface using seven-DoF redundant

robot arms.65 The outer-loop controller is used to apply

force feedback to control the end-effector and the inner-

loop controller conducts to obtain the proper joint torque

using joint-space inverse dynamics with an error reference

controller. Rocchi et al. introduced a novel whole-body

control library (OpenSot), which is combined with joint

IC to create a framework that can effectively generate com-

plex whole-body motion behaviors for humanoids62 (Fig-

ure 4(f)). The framework uses the compliant inverse

kinematics control scheme for erasing a whiteboard using

COMAN. The control scheme consists of a PD controller

for generating joint torque for the robot manipulator, and

the current robot joint state is updated to the PD controller.

Furthermore, another implementation of IC to clean a

human on a bed using equilibrium point control was devel-

oped by King et al.44 The control is a form of IC inspired by

the equilibrium point hypothesis for all arm motions. Using

equilibrium point control (EPC), the motion of the robot’s

arm is commanded by adjusting the position of a Cartesian-

space equilibrium point over time.

IC is one of the most suitable and safe approaches to con-

trol robots. Due to its adaptability to the environment, con-

trolling force output versus motion, it modifies the trajectory

in a continuous way. However, if the robot faces a new envi-

ronment, the trajectory adaptation-based control can be a

problem concerning generalization of the cleaning motion.

Learning-based control approach

Cleaning is one of the most complex and diverse tasks for a

robot due to its high variability, as well as the highly

unstructured and cluttered environment. To deal with these

problems, researchers suggested that robots could be taught

to learn. This learning-based approach could allow robots

to manage variability, which the classical approach could

not handle. Several works have examined the field of robot

learning, particularly for cleaning. Here, we consider

robotic control through the learning approach in three cate-

gories: (1) LfD, (2) SL, and (3) RL.

Learning from demonstration. Robot LfD is a control method

in which the robot performs new tasks autonomously. It can

be derived from observations of a human’s demonstration

rather than manually programming for the robot’s desired

behavior. The control approach is used to increase robotic

capabilities to adapt and generalize robotic cleaning tasks

to the new environment. LfD is developed with several

methods: dynamic movement primitives (DMPs), Gaussian

mixture model (GMM), Gaussian mixture regression

(GMR), Hidden Markov model (HMM), and so on.66,70

DMPs are the units of action that are formalized and

encoded as a stable dynamic system.110 DMP is a method

to teach a robot skills from a task demonstration and repro-

duce the task with a new environment. Paxton et al. pro-

posed an approach for LfD with noisy human

demonstration to generalize the sweeping task84 (Figure

5(a)). The method uses GMM/GMR to reproduce a nom-

inal path by mimicking human behavior. Then, the DMP

model and inverse optimal control are incorporated with a

reward function for generating the necessary path in a new

situation. The reward function consists of covariance

matrix R and environmental features captured during the

demonstration. Gaussian function with covariance matrix R

can be learned from the features of the demonstration data

and helps to reproduce new sweeping trajectories with dif-

ferent positions of obstacles in a new environment. More-

over, Kormushe et al. developed an integrated approach for

a whiteboard cleaning task using upper body kinesthetic

teaching52 (Figure 6(a)). During the demonstration phase,

the position, velocity, and acceleration of the end-effector

are recorded in the robot’s frame of reference using forward

kinematics. Then, in the learning phase, DMP is encoded to

extract variation and correlation information across demon-

stration data, and a set of virtual attractors is used to reach a

goal. The set of attractors is learned by weighted least-

squares regression. As a result, robot is able to imitate

human movements and reproduce the learned trajectories

for cleaning the whiteboard.

For implementing consecutive movement primitives for

wiping actions with DMP, the second-order and third-order

DMP are mostly used.67 In particularly, the third-order

DMP is used to generate a new trajectory using modifica-

tion of Gaussian kernel functions. It can also generate the

sequencing of discrete motions and can be evaluated by

the task of wiping the table. In addition, it is applied to the

online coaching of robots with human–robot interaction.69

The coaching method consists of visual feedback, stiff
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force feedback, and compliant force feedback and used for

periodic DMP using online adaptation of weights. The

weights of a periodic DMP can be learned via incremental

locally weighted regression.112 It is also employed with

force feedback for wiping tilted surfaces using trajectory

generated by the robot80,81 (Figure 5(b)). The same

authors also proposed a similar approach with DMP

learned from visual feedback using a two-layered imita-

tion system, which consists of canonical dynamic system

and output dynamical systems.113 In this control method,

it uses decoupled periodic movement learning and force

profile learning for generating the adaptation of wiping

movement.

Ernesti and colleagues proposed a periodic DMP com-

bined with a rhythmic motion for wiping a table76,114 (Fig-

ure 5(c)). The rhythmic DMP is needed to encode transient

and periodic movement for using a two-dimensional cano-

nical system. The system explains the current phase of the

periodic motion and the distance of the current state from

the periodic pattern. Therefore, the system can reproduce

multiple paths corresponding to the original trajectory,

even though the robot starts from different starting points.

Another approach of the DMP is coordinate change DMP

(CC-DMP), which explicitly represents the relationship

between leader and follower in multi-agent collaborative

tasks.78,85 CC-DMP captures the variance in the leader’s

motion in the simulation, while the coupling term learns

specific variations for force adaptation by the current situ-

ation and the environment. For example, in a wiping sys-

tem, CC-DMP is used to encode the relationship between a

wiping movement and a moving wiping surface, while the

coupling term adapts to the roughness, which is different

but relatively static for a variable surface. As a result, the

robot generates a desired constant pressure on the surface.

The extension of CC-DMP is represented with a vision-

based controller to adopt the reference path of a robot’s

end-effector to allow wiping of a dynamic whiteboard.74

In addition, a task-parameterized DMP (TP-DMP)

approach is exploited with adaptive motion encoding to a

sweeping task based on a few demonstrations.71 The

authors extracted the task parameter (e.g. trash point) and

applied expectation-maximization (EM) algorithm to a

mixture of GMMs for TP-DMP. In addition, Urbanek

et al.66 presented wiping a surface using primitive move-

ment by generating rhythmic patterns using a sum of

weighted Gauss kernels for mapping desired movement.

The rhythmic robot arm movements are generated using

Cartesian IC.

Figure 5. Cleaning robots using leaning robots using learning-based control approaches: (a) sweeping a table using UR5 (LfD),84 (b)
wiping surfaces using ARMAR-III (LfD),81 (c) wiping a table using ARMAR-III (SL),76 (d) wiping and sweeping a table using iCub (LfD with
SL75), (e) wiping a glass using KUKA robots (AILC with RL),111 and (f) sweeping papers using WAM robots (LfD).82 LfD: learning from
demonstration; SL: supervised learning; AILC: adaptive iterative learning control; RL: reinforcement learning.

Kim et al. 9



GMM provides a suitable and compact way to encode a

set of human demonstrations of a specific task or skill.

Therefore, many researchers use GMM to solve complex

tasks.115–117 However, GMM is not able to perform all tasks,

so Levine et al.118 proposed task-parameterized GMM (TP-

GMM), which is a technique for permitting generalizing of

trajectories from demonstrated trajectories and task para-

meters (frames). This method is helpful for developing

cleaning tasks. Silvério et al. developed a learning bimanual

end-effector pose for the bimanual sweeping task82 (Figure

5(f)). They combined TP-GMM and quaternion-based

dynamic systems to learn full end-effector poses of a

bimanual robotic manipulator. TP-GMM is used to encode

the demonstration for learning multiple frames and adapt

orientation control of the two end-effectors. The system

allows a desired impedance for the reproduction, and trajec-

tories are generated by GMR learned with TP-GMM. In

addition, a similar approach of Silvério et al.82 without a

dynamic system was used with partially observable task

parameters for sweeping task.70 In this method, during the

kinesthetic teaching as the human demonstration, dustpan

frame, dust pieces, and robot frame as task parameters are

recorded. To generalize the task, TP-GMM is computed

using EM algorithm. The learned TP-GMM parameter can

Figure 6. Learning-based control schemes for domestic cleaning applications: (a) learning from demonstration,52 (b) supervised
learning,75 and (c) reinforcement learning.100
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reproduce trajectories using GMR with the lack of informa-

tion of task parameters. Using the same approach, another

study by Alizadeh et al.70 was also applied to the work of

Kim et al.75 (Figure 5(d)) for wiping markers and sweep-

ing lentils. It is an extension of TP-GMM with an incre-

mental learning skill.83 With this method, first, a set of

trajectories is generated using a new model from TP-

GMM with task parameters. Then, new task parameters

are added to the model. Finally, the model parameters are

updated by EM algorithm with the information of the new

trajectories for sweeping task.

In addition, Elliott et al. developed a training surface

approach for extracting the actions using a single clean-

ing demonstration.73 Cleaning pattern is extracted by a

trajectory from original demonstration, where the robot

continuously contacts with the surface using a tool. Ye

and Alterovitz presented demonstration-guided motion

planning (DGMP), where the paths are based on

sampling-based motion planning methods.72 In the

DGMP learning phase, human demonstrations are

encoded into a learned cost metric, which guide a clean-

ing motion planner. Therefore, the robot can perform

table cleaning task guidance from the cost metric with

motion planning in the new environment. Another work

with a similar method was proposed by Restrepo et al.,79

where the authors implemented virtual guides using vir-

tual mechanisms by demonstration. Users modify the

guides iteratively through physical interaction using a

scaled FC to escape the active guide during following

a sweeping trajectory.

Furthermore, in the work of Boteanu et al.,68 a hierarch-

ical task network is used to train primitive tasks for wiping

surfaces based on user teaching. During execution of the

cleaning task, the robot could face two types of failures:

symbolic and execution. If symbolic failures occur, the

robot searches for a way to work the task automatically,

but the robot will request new user demonstration when it

faces execution failures. Dianov et al. also proposed a tech-

nique capable of extracting abstract symbolic task specifi-

cations from human demonstrations and a new framework

with abstract graphing and ontology for plate cleaning.77

The abstract graph represents the key structure of the

learned tasks, and ontology contains the contextual infor-

mation of extracted task structures. The task graph learning

approach is used to learn both abstract graph and ontology.

Moreover, Lee and Ott proposed an approach for the kines-

thetic coaching of motion primitives for a window wiping

motion using an impedance controller.119 To develop the

approach, the author used a modified HMM representation

combined with a Gaussian regression for online incremen-

tal kinesthetic learning to generate the continuous trajec-

tory. While LfD has been successfully used to mimic

human behavior and generate robotic cleaning motions, it

still has a limited ability to adapt and clean to new

environments.

Supervised learning. SL is the machine learning task that

maps an input to an output based on a labeled set of training

examples. It is typically used in classification or regression

processes from given data so that the data learned is used

for applying to unseen situations in a suitable way. The

representative of the learning is the artificial neural net-

work (ANN), Gaussian process regression (GPR), support

vector machines (SVMs) and so on.

For SL, the convolutional neural network (CNN) is one

of the most popular approaches to controlling robots for

different fields of application, such as cleaning, manipula-

tion, grasping, locomotion, and so on.75,118,120,121 Rahma-

tizadeh et al. proposed multitask learning architecture for

cleaning a small object using CNN.90 They collected the

data from human demonstration, and each image is used as

an input. The network consists of CNN and long short-term

memory (LSTM) to operate the robot autonomously. CNN

also plays a role as task selector, and LSTM generates the

robot joint command to send the robot to clean the object

using a towel. Kim et al. and Cauli et al. also developed an

architecture for wiping stains and sweeping lentils using

CNN75,93 (Figures 5(b) and 6(b)). To collect the data for

training CNN, they used kinesthetic teaching moving the

iCub robot arm. They modified the output of an AlexNet122

model to obtain the position and orientation of the end-

effector. The system was able to implicitly distinguish the

two different types of dirt and perform the correct cleaning

movement. In the work of Kim et al.,75 there are strong

assumptions for which robot and table must be located in a

fixed pose decided before training. In order to relax these

assumptions and make the system platform independent,

Cauli et al.93 applied a geometric transformation from the

robot camera plane to a canonical bird-view virtual camera

plane and augmented the acquired data set adding a Perlin

noise123 background to the images.

In addition, Pervez et al. proposed deep-DMP architec-

ture for sweeping tasks.92 Using this method, the authors

used the CNN by three processes, which consists of feature

extraction, soft-argmax (fully connected layer for acquiring

task parameters), and forcing term. Then, DMP was used to

generate the planner movement for the robot manipulator.

Moreover, a task level hierarchical system was developed

to clean up the table.96 The authors used a deep learning,

CNN-based shape completion method for detecting novel

objects given a partial view. The system uses GraspIt124 to

search for possible grasps and generates arm trajectory

using MoveIt.106

Additionally, Martius et al. developed an ANN with

differential extrinsic synaptic plasticity for wiping a table

using a tendon-driven soft robot arm94 The network con-

sists of sensor values (force data) as input and robot arm

actions as output. To train the network, they used tangent H

as the activation function; then, the network generates wip-

ing motion patterns. Stelter et al.95 also used force measure-

ment data for wiping with multidimensional time-series

shapelets. To learn detection and classification of force
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measurements, they collected force measurement and a list

of hand-labeled contacts with multidimensional time series.

Best match distance is used to extract the feature of the

data, and binary classifiers are used to classify the best

shapelets via Gaussian KDE. Attamimi et al. developed a

visual recognition system for tidying up the rubbish on the

table.89 For the classification of the object materials, SVM

classifiers were used to train multiple feature vectors using

the object database. Also, they implemented ungraspable

object detection based on GMM given the feature vector

I(H, S, LQ), which consists of the table’s color (H and S),

and near-infrared (NIR) reflection intensity LQ. In addi-

tion, support vector regression (SVR) is applied to generate

an internal model between perception, action, and effect

from nonlinear data for wiping movements76 (Figure

5(c)). The authors suggest learning cycle between object

properties and action parameters for the cleaning task and

build the model from sensor data resulting from wiping

experiments. Langsfeld et al. developed cleaning of

deformable objects using a bimanual robot.88,126 With the

method, force and deflection data from the tool are col-

lected to estimate the object stiffness between the grasper

and grasping object. For detection of the stain, k-means

classifier is used to find three clusters as clean, dirty, and

background on the pixels of the image. Also, GPR is used

to predict planner parameters, which are the normal forces

applied to the surface and going over the stain region using

the robotic cleaning tool. The same authors applied an

identical approach to different tasks such as cleaning an

object with a scrubbing motion.86,91 Eppner et al. general-

ized a whiteboard cleaning task using imitation learning.87

To perform the imitation learning, the user first demon-

strates the cleaning task to estimate the probability distri-

butions over joint configurations and positions of the

human arm. Then, they estimate the cleaning actions that

maximize the joint probability distribution represented by a

dynamic Bayesian network (DBN) training.

SL shows the possibility of generalizing cleaning tasks

for the new environment. However, data collected for train-

ing are still not easy to adapt to the new situation (due to

totally different position, shape, and illumination of the

environments), because the robot has never seen the data

during the training. Therefore, more time is needed to

acquire further data, so the robot can adjust to the new

conditions.

Reinforcement learning. RL is an area of machine learning

established by behavioral psychology where an agent takes

actions in an environment to find an optimal policy to

perform tasks using a reward function. The representatives

of RL are Q-learning, state-action-reward-state-action

(SARSA), deep Q network, asynchronous actor-critic algo-

rithm, and so on.

Typically, a Markov decision process (MDP) is used to

implement RL and it consists of a five-tuple <S,A,T,R,a>,

where S is a set of possible robot states, A is the set of robot

actions, T is the transition function, R is the reward func-

tion, and a 2 [0,1] is the discount factor. It is also used in

RL to utilize dynamic programming techniques, and it can

be determined for robot cleaning behavior based on robot

state and the environment. Hess et al. developed the state

transition model to wipe a table efficiently.104 The authors

proposed a model using MDP, which consists of a set of

table states, a set of cleaning actions, a transition function,

and a reward function. The transition function is modeled

by observing the outcomes of a robot’s actions to generate

paths for cleaning table surfaces. The best action is

achieved with a reward function based on table and robot

state with camera images. The MDP is also used for fully

observable problems with uncertainty for clearing objects

on the table.99 To solve the problem using MDP, the

authors used a symbolic representation, which consists of

action, preconditions, and outcomes (success probability)

with a set of noisy indeterministic deictic (NID) rules.125

With the information, the model of clearing task is learned

so that the robot repeats choosing actions (putPlateOn,

putCupOn, and putForkOn) to maximize the reward

according to the current policy. To speed up learning, the

authors used the relational exploration with demonstra-

tions126 algorithm that integrates active teaching demon-

stration. In addition, the same authors developed a method

to sweep lentils using the same approach.103 However, they

employed probabilistic relational action-sampling in DBNs

planning algorithm,127 which is a model-based planner for

action planning sequences with NID rules. For the learning

phase, they used learning heuristics, which obtains model-

ing of the rule with reduced computation time. Pajarinen

and Kyrki presented a partially observable MDP (POMDP)

for robot manipulation such as cleaning dishes in the dish-

washer.97 The POMDP is used to estimate different action

choices based on optimization reward function with the

probabilistic model in an uncertain world.

For solving more complex tasks, deep RL can be used

for cleaning tasks. For example, RL with the process from

observation to action using a deep network by Google

DeepMind128 could have several applications. Devin

et al. developed an object-level attentional mechanism to

acquire useful visual representations in the context of pol-

icy learning for sweeping oranges100 (Figure 6(c)). To

develop the mechanism, they proposed a two-level hierar-

chy of attention (high level, low level) over scenes for

policy learning. The high-level hierarchy presents meta-

attention, which is to indicate objects in the scene regard-

less of the task. The meta-attention consists of a semantic

component, which identities the object with a feature vec-

tor and position component, and the object is located on the

table from a camera image. The low-level component,

which is called task-specific attention, finds the possible

objects and is relevant to the task given during the perfor-

mance. It supports the robot to choose objects to perform a

task given using a trained CNN. For a generalization of the

task, the methods use both deep RL methods and trajectory-

12 International Journal of Advanced Robotic Systems



centric RL algorithms such as PI2129 or REPS.130 More-

over, Liu et al. proposed an imitation-from-observation

algorithm, which is based on learning a context translation

model from raw video for sweeping tasks.101 The algorithm

is performed by learning to translate a demonstration from

differences in viewpoint. The conversion of the different

viewpoint helps to collect a feature representation for train-

ing the model. The method uses deep RL to optimize for

sweeping actions that follow the demonstration translated

from a target context.

In addition, the interactive RL approach for the domestic

task of cleaning a table was studied by Cruz et al.102 They

used contextual affordances, which has relations between

state, objects, action, and effects to avoid the failed state.

With this method, first, in simulation, an agent is trained

using classic RL as an external trainer. Then, the trainer

delivers all possible cleaning actions to a second robot

trained with interactive RL. For the learning interactive

RL approach, they implement an on-policy method SARSA

to update every state action value for cleaning a table.

Moreover, Covallero et al. proposed manipulation plan-

ning, which merges manipulation skills and planning to

acquire the sequences of actions for table clearness.98 They

used a mixture of symbolic and geometric restrictions to

reduce computational costs and find the best sequence of

clearing action given a cost function. Furthermore, Nemec

et al. combined various adaptive iterative learning control

(AILC) methods with RL for wiping glass using a bimanual

KUKA LWR arm111 (Figure 5(e)). AILC is used to obtain

the desire force with an adaptation of the feedback in the

current iteration loop. Then, probabilistic policy improve-

ment RL algorithms129 can scale to complex learning sys-

tems and minimize the number of tuning parameters.

As the capability of computers has grown, cleaning tasks

using the RL approach have expanded. In particular, deep

RL can apply not only to cleaning tasks, but also to other

applications such as assembling toys, hanging clothes, and

so on. Nevertheless, to reduce completion time for cleaning

tasks with the learning approach, robots still need the

human as a teacher to converge to the goal point rapidly.

Classical control can apply cleaning tasks in a highly

controlled environment with low computation time. How-

ever, the learning-based control approach has the possibil-

ity to generalize the task in the new environment with high

computation time. Therefore, if we developed the cleaning

application, we can consider combining the two control

approaches properly, based on the tasks and environments,

so that the robot will achieve better performance than that

resulting from applying only one control approach to the

robot.

Discussion and conclusion

The objective of writing this survey article is to summarize

the work related to control approaches for the cleaning

robots. As we discussed in the introduction, the use of

service robots will expand tremendously in the near future

due to the rise in population of elderly people around the

world. In this work, we primarily focus on cleaning tasks

and the control approach using robotic manipulators or

human-like robots. However, current cleaning robots dedi-

cated to specific applications cannot handle the variability

of the domestic environment.131,132 Specifically, these

robots are designed to perform a specific task, such as

cleaning a floor or window. They do not have the capability

to accomplish a combination of tasks.133 In fact, the tasks

they perform are simple and do not require human inter-

vention. To undertake more complex tasks such as dish

washing, washroom cleaning, kitchen cleaning, sweeping,

and wiping, more human-like robots that can mimic human

movements and are more adaptable to task variability are

Figure 7. Survey report on control methods for cleaning robots:
(a) detailed year-to-year report and the trend on control methods
used for different cleaning tasks; (b) Venn diagram for different
control approaches, algorithms, and their share in the cleaning
robotic field. PC: position control; FC: force control; IC: impe-
dance control; LfD: learning from demonstration; SL: supervised
learning; AILC: adaptive iterative learning control; RL: reinforce-
ment learning; MDP: Markov decision process; SARSA: state-
action-reward-state-action; DMPs: dynamic movement primitives;
GMM: Gaussian mixture model; GMR: Gaussian mixture regres-
sion; HMM: hidden Markov model; DBN: dynamic Bayesian net-
work; SVM: support vector machine; CNN: convolutional neural
network.
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needed. In conclusion, to have universal domestic cleaning

robots, at least a several-DoF (more than four) robotic

manipulator with anthropomorphic hand or three-point

gripper, or a humanoid robot, is required.

Apart from the design architecture of the robot, one of

the most challenging factors is determining how to control

the robots to accomplish domestic cleaning tasks. For

example, to clean a washroom basin or wash dishes, we

need to have robots that can see the object, detect the dirt,

understand the object material types, generate the cleaning

movement, detect if the object is cleaned or not, and place

the object at the cleaned place. Imagining tasks done by

robots are still far from the current state of the art.

Researchers continue to develop more sophisticated control

strategies to solve these challenges. Here, our work mainly

seeks to assess the latest control strategies used for cleaning

robots and categorize them into classical control and

learning-based approaches (see Table 1). Moreover, our

categorization data suggests that sensors used for cleaning

generally consist of two types—camera or F/T sensor—or a

combination of these. In addition, the robotic platform that

is used for different cleaning tasks is important. For exam-

ple, the KUKA robot can perform cleaning, scrubbing,

sweeping using the camera, and wiping using the F/T sen-

sor, in the case of humanoid robots such as Nao or iCub,

systems that rely only on camera inputs are more common.

The detailed description is provided in Table 1. Based on

our survey, we observed that these control strategies have

been developed for cleaning purposes since 2004; the

related work for this is covered and reported in Figure 7(a).

This article covers the majority of work related to clas-

sical control used for cleaning and sorted it into PC, FC,

and IC. Of that work, we observed that most robots are

controlled using PC (covers 21% of all research based on

cleaning; see Figure 7(b)). An obvious reason for this could

be its well-established models and simplicity. Technically

speaking, PC is one of the basic methods to control the

robot using proportional (P), proportional integral (PI), and

proportional integral and derivatives .134,135 These control

methods can be easily implemented using positional feed-

back in any robotic manipulator with trajectory planning

algorithms. It can be used easily for cleaning of dirt, but

only for fixed trajectory tasks that do not require informa-

tion such as force feedback on the object.51 However, PC

can be used for repetitive tasks, but it cannot handle deli-

cate objects such as glass and plates because it can break

objects easily.51,56 Similarly, with FC, we can have force

feedback with fixed trajectory, but the robot cannot per-

form any undefined tasks.51,59 FC for cleaning also poses

similar risks for breaking delicate objects, as with PC. For

example, the robot can perceive delicacy of the object but

cannot control the motion according to the object stiffness;

this field contributed only 7% (see Figure 7(b)) in the

cleaning robotics research.57,58,59,64

Apart from the FC and PC method, IC has also been

applied to different cleaning tasks, which cover 11.3% of

the body of robotics research on manipulator-based clean-

ing. IC is one of the most advanced methods in the classical

approach to control any robots. It has capabilities to handle

very delicate and fragile objects, which makes it more suit-

able to apply for cleaning.64 Control of robots based on IC

allows dynamic control or dependency on force input to

motion output and allows the robot to produce variable

stiffness movement using joint torque.61,63 This variability

enables the use of cleaning robots for multipurpose appli-

cations such as dishes, windows, tables, basins, and so on.

However, performing complex motions based on trajectory

is still challenging for IC. Considering trajectory planning

using perception, all classical control approaches are highly

computational and have less flexibility for handling

clutteredness.

Another approach that is highly exploited for cleaning

purposes is learning, which can be called an implementa-

tion of artificial intelligence in the robots to perform com-

plex cleaning tasks.100 Moreover, this method covers 52%
of the research of cleaning tasks compared to the classical

approach (39%) (see Figure 7(b)). Based on our results, we

observed that there is a sudden surge in learning-based

research from 2015. We found through our work that the

learning-based approach is much simpler to implement for

the generation of complex trajectories.75,92 Based on our

literature survey, we considered the three basic learning

control approaches: RL, SL, and LfD.

The learning-based control approach, LfD, is generally

used to generate new cleaning trajectories from human

demonstration.136 It contributes 31% in the cleaning

robotics tasks. As discussed in “Learning-based control

approach” section, we have examined LfD and its different

types of models such as DMP, GMM, GMR, and so on.

Specifically, these models carry some advantages over oth-

ers: DMP has differential equations for creating a smooth

trajectory and is used to model each demonstrated trajec-

tory. However, DMPs have a limitation of flexibility for the

new environment and can reproduce noise from the demon-

stration.137 To overcome these issues, the CC-DMP and

TP-DMP approaches were developed for wiping and

sweeping tasks.71,74 Another approach of LfD, GMM/

GMR, is used to compute an average trajectory from a set

of human demonstrations and then reproduce new trajec-

tories for cleaning tasks. However, GMM is not able to

generate all cleaning trajectories.138 Therefore, TP-GMM

was developed to generalize cleaning trajectories with task

parameters. This LfD approach is a beneficial control

approach for mimicking and generating cleaning motion

similar to human behaviors using robot manipulators138

and is used for different cleaning tasks. However, the per-

ception and detection system for cleaning the new environ-

ment are weak points and challenges using the TP-GMM

approach.70

To overcome the weak points of the LfD, the SL

approach was developed. SL is used to predict dirt regions

or robot cleaning motions based on the network learned
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with a set of labeled training examples. ANN is the basic

idea of SL and is used to predict robot cleaning actions

based on input data.139 For combining image processing

with ANN, CNN was developed to predict cleaning

motions based on image data examples. Also, LSTM is

used to generate the robot joint command for cleaning with

CNN. DBN, which estimates the maximized joint probabil-

ity distribution, is used to estimate cleaning actions. For the

regression problem, GPR, which is modeled with a non-

parametric Bayesian approach, is used to predict tool para-

meters for cleaning deformable objects; and SVR, which

can build a model based on data, generates wiping motions.

SL usually generate a model trained with a given data set

first. Then, based on the data, SL can predict a dirt area or

cleaning motion. The strong point of SL is that it can adapt

to the trained environment with disturbance and noise

because data augmentation techniques123 are used to

increase the performance of cleaning tasks. However, the

problem with the SL is that the performance of cleaning

depends on the given data. For example, if the robot per-

forms the cleaning tasks in a totally new environment, the

robot cannot achieve success with the tasks.75 Therefore,

RL is used to train the robot to learn cleaning motion and

interact with the new environment. To develop this

approach, MDP is commonly used to set the robot state,

actions, environment, and so on. Also, reward plays an

important role to achieve a goal. The original RL has lim-

itations to apply various application because the action and

state space are not easy to design for complex tasks.104

To overcome the different learning shortcomings,

researchers have proposed different solutions by combing

the best features of each learning method (RL, LfD, and

SL). For example, deep RL, combining the features of SL

and RL,100 such as PI2 and REPS, was developed to work

the entire process from observation to cleaning action using

a deep network. RL is a good control approach because the

robot (agent) can handle its own tasks without human inter-

vention.104,140 However, after leaning, sometimes robot

shows strange movements that the human never did140 and

also it is computational expensive.

Still, learning-based control approaches have issues, so

learning control approaches that combine two methods

have been developed for cleaning tasks. Especially, LfD

combined with SL can increase the performance of the

perception system and reproduce reasonable cleaning tra-

jectories. Furthermore, D-DMP92 and GMM combined

with CNN75 have been developed for wiping and sweeping

movements.

After discussing several control aspects for cleaning, we

observed a paradigm shift for control strategies in cleaning

tasks from a classical to learning-based approach. This

means that there is an increasing use of classical control

strategies, which today are combined with the use of arti-

ficial intelligence techniques to easily address effectiveness

and robustness in control design.

However, a huge amount of research work is still

required to develop an efficient and universal control

method for cleaning tasks. Because it is a complex, vari-

able, and unstructured environment, a highly efficient

design and control strategy is required. In the authors’

vision, we see that learning could be the most promising

solution by removing its flaws. Specifically, we see that

many possibilities are coming or need to come. For exam-

ple, LfD is the most utilized learning-based control for

cleaning due to its ease in generating a complex and versa-

tile trajectory, and it can handle the unstructured environ-

ment with different tasks. Moreover, dynamic movements,

deep learning, and LfD could advance the performance

significantly. Of course, many challenges remain. They

should be addressed on a timely basis to bring highly intel-

ligent robots to the household to help people as soon as

possible.

We also would like to note that development of smart

human-like robots is needed by considering the importance

of mechanical design. We observed that the field of service

robotics still has not considered the bio-inspired design to

utilize most optimized solutions. That are mainly based on

the traditional robotic design using hard and rigid compo-

nents.141,142 But looking at nature, they are not completely

hard; the design is mostly compliant, hybrid (hard and soft),

or completely soft. Here, we would like to propose that

utilizing the soft robotics technologies could help to solve

several domestic cleaning challenges. Soft robotic depicts

several fascinating features such as stiffness that is similar

to real tissue, inherent compliance, adaptability, and con-

formability143–146 These features could be most suitable for

cleaning with ease of control. Moreover, with the classical

robots, we have not yet considered the safety issue in the

domestic environment, which we believe would be a cru-

cial issue to address in the near future. Here, the author

would like to propose that the design of a highly compliant

robotic manipulator, soft arm, modular soft arm,147,148 with

reconfigurable grippers149 and with dynamic deep-

learning-based cleaning robot, could be the most promising

solution for future robotics. Moreover, to improve the gen-

eralization of cleaning tasks, transfer learning150 can be

useful. In principle, transfer learning makes it possible to

transfer the learned model to a different robot platform. In

this sense, transfer learning provides opportunities to make

a general model for cleaning tasks that can operate the same

performances of tasks in different robotic platforms in the

future.
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