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Abstract—In this paper, we study the effectiveness of learning
temporal features to improve detection performance in videos
captured by small aircraft. To implement this learning process,
we use a convolutional Long Short-Term Memory (LSTM) asso-
ciated with a pre-trained Convolutional Neural Network (CNN).
To improve the training process, we incorporate domain-specific
knowledge about the expected size and number of boats. We
carry out three tests. The first searches the best sequence length
and sub-sampling rate for training and the second compares the
proposed method with a traditional CNN, a traditional LSTM
and a Gated Recurrent Unit (GRU). The final test, evaluates our
method with already published detectors, in two datasets. Results
show that in favorable conditions, our method’s performance
is comparable to other detectors but, on more challenging
environments, it stands out from other techniques.

Index Terms—Object Detection, Remote Monitoring, Recur-
rent Neural Networks

I. INTRODUCTION

W ITH 70 percent of our planet covered with water, 90

percent of global trade done by sea [1] and 40 per

cent of the world population living near the coast [2], there

are strong ecological, economic and social motivations to try

to guarantee the safety of people, ecosystems and goods on

these regions. Nonetheless, there have been many mishaps over

the last decade. Piracy has affected the routes near Nigeria,

Somalia and Southeast Asia [3], many migrants have lost their

lives on the Mediterranean Sea [4] and ecological disasters af-

fect marine environments [5]. Despite its importance, maritime

monitoring remains a challenging task.

The usual approach to maritime surveillance implies the

use of satellites, vessels and aircraft (either helicopters or

airplanes). Satellites are costly, do not have the flexibility to

monitor an arbitrary area at a given time and are not adequate

to capture an object of interest in detail. Manned vessels

and aircraft usually have radars [6] that allow long-range

detection, although some types of ships (especially relevant in

smuggling and in search and rescue scenarios) are not easily

detected by radar as they are made of wood or plastic [7].

Furthermore, radar cannot be used on-board small size vehicles

like Unmanned Aerial Vehicles (UAVs) due to power, weight

and space requirements.
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Fig. 1. Example of a demanding situation, with the boat crossing an area
with severe glare. Nevertheless, our method is able to detect the boat in all
frames. The top left image also shows a detection of a small size life raft,
which is not detected in the other three images due to glare.

The automatic detection based on passive electro-optical

sensors, like Sentient’s detection system aboard ScanEagle

UAV, answers some mentioned difficulties. In particular, it

does not depend on the radio wave reflective properties of

the objects to detect, and already enabled authorities to detect

and intercept smuggling vessels with small radar signature

[8] [9]. Detection is one central task in computer vision

and has achieved a significant success in general-purpose

datasets like COCO [10], where typically the object to detect is

predominant on the image. It has also achieved some success

in more constrained scenarios, like cameras mounted onshore

[11] or on ships [12].

The information extraction from images captured by aerial

platforms is more challenging since it is affected by factors like

scale, perspective and illumination variations. These images

can even change dramatically, depending on the type of UAV

that is used. If a small quad-rotor is used [13], the object of

interest will appear closer than if we use a fixed-wing aircraft

[14]. In this work, we use images captured by a small size

fixed wing UAV. On one hand, these aircraft survey an area

larger than what is typical for quadcopters but offer a smaller

spatial resolution. On the other hand, these images are captured

by platforms and sensors much cheaper than satellites or high

flying aircraft [15] but are not orthorectified and corrected.

As seen on Fig. 1, the images that we use are affected

by phenomena like glare that makes detection difficult for
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common detectors. In our previous works, we have already

considered this problem. In the first approach, we have de-

signed features useful for this case [16]. The second method

used CNNs to learn visual features from similar images [17]

and on the third method, we have associated a CNN with a

tracker to verify consistency between consecutive frames [18].

Despite achieving interesting results on SEAGULL dataset

[14], there are some conditions where these methods fail.

Consequently, in this work we introduce a method to robustly

detect objects in airborne maritime surveillance images, which

are affected by glare, wakes and waves’ crests.

A. Contributions

The main contributions of our work can be summarized as

follows:

• Characterize the applicability of convolutional LSTM to

learn visual and temporal features relevant for detection

of maritime objects in airborne video sequences.

• Incorporate Domain Specific Knowledge about maritime

objects’ size and the number of visible objects at a given

time to improve training and the detection performance.

In particular, we penalize predictions with large areas

labeled as containing a boat.

• Effect analysis of the time scale considered by the neural

network on the detection robustness.

• Compare the proposed methodology, in multiple maritime

monitoring scenarios, with a mainstream detection net-

work, YOLO [19], and also with one of our previously

published methods, that uses visual features and a Mul-

tiple Hypothesis Tracker (MHT) to associate detections

[18].

B. Outline of the paper

The paper is organized as follows. The next section reviews

the literature about object detection and the Section III presents

the network’s architecture and provides detail about the Conv-

LSTM layer and the loss function. In Section IV, we describe

the dataset that was used to train and test our method, present

the evaluation metrics and the results. In the last section, we

conclude this work.

II. RELATED WORK

Some of the first applications of vehicle detection from

aerial images assumed moving vehicles over land, with some

authors using techniques like background subtraction [20].

Background subtraction is effective when there are static

objects with features that allow the registration and alignment

of consecutive images. In scenarios over the ocean, usually

the most distinctive visible features (other than the objects of

interest) are glare, waves and wakes, all of which are dynamic

phenomena, that change rapidly and hinder image alignment.

Other authors assume that an objects’ position is limited to

areas like roads [21], which is not applicable in maritime

surveillance scenarios as vessels can move virtually anywhere.

Another traditional approach to vehicle detection from aerial

images was to extract relevant features, from image regions

with potential targets, and then classify them with some

machine learning technique. The features could be either

general purpose like Haar features [22] and features based

on Discrete Cosine Transform [23] or specialized ones like

color and textures [24] [25]. These approaches are useful for

applications with well-defined conditions, however, airborne

images captured by small aircraft in maritime scenarios have

objects with a large range of sizes, orientations and shapes. To

face this challenge, some works have used saliency methods,

i.e. algorithms that try to emulate the human visual attention

mechanism [26] [27]. The mentioned approaches highlight

areas that are distinct from the background but that may

not correspond to the object of interest. These undesired

detections are usually suppressed by using either a heuristic,

like checking if a given detection persists on a given number

of frames [16] or a more formal framework like the usage of

a Hidden Markov Model [28].

Following the advances in computer vision and pattern

recognition, maritime detection has also adopted deep learn-

ing. Maire et al. [29] have proposed the application of CNNs

in a sliding window fashion, for the detection of marine

mammals. Their relatively shallow network architecture led

to limited results. Bousetouane and Morris [30] have also

used CNNs for the detection in a maritime scenario. Their

pipeline includes several weak detectors to compute candidate

regions, extracts features learned by a neural network and

then classifies them with a support vector machine. The main

downside of this approach is that the first set of weak detec-

tors relies on hand engineered features. While this approach

performs well on their case, in our scenario the targets have

significant appearance variability which makes the features’

manual selection intractable.

There are other approaches, like detection on wide area

imagery, which rely on networks like Fast R-CNN [31]. Wide

area imagery is especially suited for this kind of networks

because it is usually orthorectified and the ground distance cor-

responding to a pixel is well characterized. This allows to more

easily define anchors, which are very relevant for this family

of methods. In addition to adaptations of canonical networks

there have been inovative approaches for the case of satellite

images. For instance, Wang et al. have designed a network

for change detection, exploring with different weights spectral

and subpixel information [32]. Like the previous example, this

approach also needs image pre-processing steps. In the present

work, the aircraft’s movement and the perspective variations

hinder the applicability of these preprocessing steps.

There have been some advances using the exploitation of

information contained in videos sequences. By consecutively

observing a given object in several frames, phenomena like

glare and waves are discarded because their persistence is lim-

ited in time. Consequently, the correct object can be detected

even if, in some frames, it gets occluded or its appearance

changes dramatically. Historically, approaches like Markov

Chain Monte Carlo data association [33] and MHT [34], have

been used to successfully associate detections in consecutive

time instants, achieving highly robust detection results. In [18],

we have also used MHT to improve the results obtained with

a CNN. The downside of this approach is that the movement
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model is tuned by the designer and not learned from data.

Additionally, the visual features and temporal features are

handled separately, which means that if there is a given object

which is persistent on the image but the visual cues are not

recognized by the neural network, it is not detected.

More recently, some approaches have explored data-driven

learning methods, for sequential data, like recurrent neural

networks, in particular, the LSTM layer [35]. The core of

the LSTM layer is a memory cell that encodes knowledge

about the features seen up to a given moment. This cell is able

to keep or discard this knowledge due to three gates (input,

output and forget) that control the amount of information that

enters, exits and is kept on the layer. One interesting LSTM

usage was suggested by Wang et al. [36], in which the LSTM,

associated with a CNN, implements an attention mechanism

for scene classification. The recurrent module obtains high

level features from the CNN, sequentially generates attention

masks and incrementaly classifies the images. Despite being

a different task, this indicates that recurrent processing might

improve the performance of the considered task.

An interesting approach for image-like data, presented in

[37] is the use of LSTM with convolutional structure. Convolu-

tional LSTM (ConvLSTM), as named by its authors, removes

the spatial redundancy present in the application of traditional

LSTMs to image-like data, much in the same way convo-

lutional neural networks remove spatial redundancy present

in fully connected neural networks. Nonetheless, ConvLSTM

retains the internal structure (with memory cells, and forget,

input and output gates) that allows the common LSTM to keep

memory during long periods and using it when relevant. The

main difference is that the gates in LSTM are applied multi-

plicatively and in ConvLSTM are applied in a convolutional

fashion.

In our work, our objective is to use ConvLSTM to learn tem-

poral and visual features that improve the detection of boats

in video sequences captured by a RGB camera installed on a

small size aircraft, in maritime environment. The videos are

part of SEAGULL dataset [14] and illustrate realistic maritime

monitoring missions. The observed boats have variable sizes

and shapes, ranging from small life rafts to high-speed boats

to cargo ships. Additionally, the variation in observation per-

spective also changes the appearance of these boats as shown

in Fig. 1. Due to the aircraft’s characteristics and its flight

pattern, the video contains significant apparent movement.

The sequences include large amplitude and low-frequency

movements as well as small amplitude and high-frequency

components. Additionally, the movement is caused by both

linear motion and rotations. Furthermore, the sequences were

captured during sunny days, over the Atlantic Ocean. This

means that, as exhibited in Fig. 1, the detector has to deal

with glare and waves’ white caps.

III. CONVOLUTIONAL LSTM NETWORK

A. Problem Description

The present section formally describes the problem con-

sidered in this work. We have used videos from SEAGULL

dataset (which are detailed in Subsection IV-A) to both train

time
span

time

stride

(a) (b) (c)

Fig. 2. Example of (a) input Xt, (b) ground truth Yt and (c) prediction Ŷt

in case the sequence has a time span corresponding to 7 frames but only 3
frames are processed. Images are represented in a lighter tone to indicate that
they are discarded.

and test our method as they are representative of maritime

monitoring missions. In either stage, we extract short video

sequences from the full-length videos and we use them as

our samples. Since the observed scene does not change sig-

nificantly between two frames, we pick one image every rth

frame, as displayed in Fig. 2. In the rest of the work, we will

designate this separation of r frames as time stride. Each of

these samples Xt is a 4D tensor, composed of K images, i.e.

Xt =
[

xt−(K×r), . . . , xt

]

, where xt is the image captured at

instant t. In Fig. 2 (a), we show an example where the number

of processed frames is K = 3 and the separation between

them (time stride) is r = 3. In this case, only images xt, xt−3

and xt−6, represented in a darker tone, are considered and the

lighter images are discarded.

All videos were manually labeled, marking the location

(bounding box) of all objects of interest, and therefore each

sequence Xt has a corresponding ground truth Yt. Analogously

to the video sequences, each ground truth Yt incorporates

K ground truth maps, separated r frames between them,

Yt =
[

yt−(K×r), . . . , yt
]

. As shown in Fig. 2(b), a ground

truth map yt consists of a binary image where pixels with

ones indicate locations with objects of interest. Similarly to

videos sequences, in the presented example, we only consider

the ground truths yt, yt−3 and yt−6. All images x and labels

y were resized to a resolution of 720 × 720 and 300 × 300,

respectively. The neural network’s goal is to obtain an estimate

Ŷt similar to the ground truth, as displayed on Fig.2(c).

B. Convolutional LSTM

The neural network that is used on the present work has

different types of layers but we will focus on the impact of

one particular type for the detection task. This type of layer is

the Convolutional Long Short-Term Memory (ConvLSTM).

We have followed an approach similar to Wingjian et al.

[37], using a modified version of traditional LSTM, where the

input-to-state and state-to-state multiplications are replaced by

convolutions. Similarly to traditional LSTM, its convolutional

alternative contains mechanisms that control the amount of

information that is received and outputted by the network.

These mechanisms are the input gate it and output gate ot
and its equations are

it = σ(WZI ∗ zt +WHI ∗ ŷt−1 +WCI ◦ ct−1 + bI) (1)
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Fig. 3. Diagram of the ConvLSTM layer. Matrices W and bias b are omitted
to improve clarity.

and

ot = σ(WZO ∗ zt +WHO ∗ ŷt−1 +WCO ◦ ct−1 + bO) . (2)

There are another two important tools in this layer: the cell

state and the forget gate. The former keeps track of the

information processed in previous time instants and the latter

controls how the cell state is updated. The cell state is

computed as

ct = ft ◦ ct−1+ it ◦ tanh(WZC ∗ zt+WHC ∗ ŷt−1+ bC) (3)

and the forget gate as

ft = σ(WZF ∗ zt +WHF ∗ ŷt−1 +WCF ◦ ct−1 + bF ) . (4)

In these equations, σ symbolizes the sigmoid function and

bI , bO and bF represent a bias term for the respective state.

The W terms represent the weight matrices, e.g. WZi is the

weight matrix that connects the input feature map zt to the

input gate.

Finally, the output of this layer ŷt is computed as

ŷt = ot ◦ tanh(ct−1) . (5)

In these expressions, ∗ represents the convolution operator

and ◦ is the element-wise multiplication. Fig. 3 illustrates the

operations that are described in equations 1 to 5.

Both the input and output of this layer are 4D tensors,

where two dimensions represent space, a third corresponds

to time and the forth represents the number of channels. In

our proposed network, we use the output of the ConvLSTM

directly as our estimate ŷt. As depicted on Fig. 4, the input zt
of the ConvLSTM layer at instant t, has the same resolution

and number of frames of the output ŷt, differing only in

the number of channels. This input of the ConvLSTM layer

is composed of features computed by purely convolutional

layers at different depths, as presented on the next subsection,

resulting in a sequence of images with four channels. The

output is a sequence of single-channel images, one in each

time instant.

TABLE I
DETAILS OF THE LAYERS THAT WERE NOT IMPORTED FROM VGG16. THE

MENTIONED CONV2D LAYERS CORRESPOND ONLY TO THOSE THAT WERE

NOT IMPORTED FROM VGG16 (OUTSIDE YELLOW RECTANGLES IN

FIGURE 4).

Layer type Kernel size Stride

ConvLSTM 3× 3 1× 1

Conv2D 1× 1 1× 1

C. Overall Architecture

The network’s architecture1 was chosen to easily assess the

impact of learning temporal features in detection. With this

goal in mind, we decided to use a popular neural network

(VGG16 [38]) as a feature extractor. This choice intents

to make performance comparison easier by using the feature

extractor pre-trained on ImageNet thus accelerating training

times. We have used features computed at different levels of

the network, in a similar fashion to works like Ronneberger et

al. [39]. In order to use features from the different levels, we

need to adjust their resolution, which is done using an upsam-

pling layer that performs nearest neighbour interpolation. We

also reduce their number of channels before concatenation, us-

ing 2D convolutional layers. The details of these convolutional

layers as well as the ConvLSTM are presented in Table I. In

our case, the ConvLSTM is the last layer in the pipeline. Due

to this fact, the output of ConvLSTM that in many works is

usually denoted as hidden state happens to be the output and

therefore is the predicted map Ŷt.

As already mentioned, this network’s purpose was to evalu-

ate the influence of temporal features, therefore it is intention-

ally simple. While we use only one ConvLSTM layer, more

could be added. In particular, the feature extraction section,

which now is carried out by pre-trained VGG16, might be

replaced by recurrent layers. In [37], the authors obtained

better results using deeper neural networks, composed only

of ConvLSTM layers but, in practice, we found those config-

urations harder to train due to memory limitations and training

speed.

D. Introducing Domain-Specific Knowledge

In maritime monitoring missions, we know the flight altitude

and the camera parameters, therefore we have estimates of the

area being observed. Additionally, we also have estimates of

the maximum size of boats and the number of boats in the

image at a given time. In our method, we use this information

to guide the training process by incorporating this domain-

specific knowledge into the loss function. The loss function is

composed of two parts; we name the domain-specific part as

area loss and depends on the average area labeled as containing

a boat. The average area is written as

Āboat(Ŷt) =
1

K

K
∑

k=0

M
∑

m=1

ŷmt−(k×r) (6)

where ymt is the mth pixel of prediction map yt, M is the

number of pixels in each image and K is the number of images

1The implementation of the architecture described in this section is included
in the following repository: https://bitbucket.org/gccruz/convlstm detection.git
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Fig. 4. Full network architecture. Enclosed in yellow rectangles are the pre-
trained VGG layers. The features computed at different levels of VGG layers
are then resized to match ConvLSTM’s input size. As presented in Subsection
III-B, the ConvLSTM not only receives the features computed in a given time
instant but also the cell and hidden state from the previous time instant (best
viewed in color).

in each sequence. The area loss, that depends on the average

area, is written as

Larea(Ŷt) =











0, if Āboat(Ŷt) < s

Āboat(Ŷt), otherwise

. (7)

The behavior of area loss, shown in Fig. 5, favors the network

to predict Ŷt with a limited amount of pixels labeled as one.

This prevents the network from considering large areas as

boats, which normally is caused by the presence of glare.

In our application, when computing the area loss Larea, we

considered s = 5000, which is a very permissive value. If we

consider an unfavorable case, like depicted on Fig. 6, using

our camera with smallest field of view (approximately 90◦)

pointing directly downwards, mounted on an aircraft flying at

100 meters above the sea (lower than usual), the predicted

map will have a maximum spatial resolution of approximately

0.66m/px. With this spatial resolution, one vessel with length

of 120m and beam of 20m will occupy at most 4000 pixels

Āboat(Ŷt)

Larea

s

Fig. 5. Loss function Larea.

sensor

h=

100 (m)

45◦

surface

Fig. 6. Diagram of one unfavorable condition for the loss area, where a given
boat might be closer to the sensor mounted on the aircraft.

in the map yt. If each of those pixels is correctly labeled

with value one and assuming the boat is visible throughout the

sequence, then Āboat(Ŷt) = 4000 and there is no penalization.

The second part of the loss is the binary cross-entropy and

is defined as

(8)
Lc.e.(Yt, Ŷt) = −

1

MK

K
∑

k=0

M
∑

m=1

[

ymt−(k×r) log(ŷ
m
t−(k×r))

+ (1− ymt−(k×r)) log(1− ŷmt−(k×r))
]

.

With the two presented losses, area loss and binary cross-

entropy, we compose the total loss as a weighted sum, as

follows

Ltotal = Lc.e.(Yt, Ŷt) + λ Larea(Ŷt) (9)

with λ = 0.01.

IV. EXPERIMENTS

In the current section, we will present the experimental

procedures, exhibit the obtained results and discuss them. In

the next subsection, we will detail the characteristics of the

dataset that was used to train and to test the detection methods.

In the second subsection, we will study the configuration of

time parameters (time span and time stride) that produced

best results. On the third subsection, we will compare that

configuration with four variations of the network: a network

that did not used domain-specific knowledge for training, two

with ConvLSTM replaced by a traditional LSTM and by a

GRU and another with ConvLSTM replaced by a convolutional
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layer. The goal of that test is to show the advantages of

convolutional LSTM in this problem. The fourth subsection,

will compare our approach with other detectors, in particular

YOLO, a general purpose detector, and detectnet+MHT, which

is a detector developed for maritime surveillance scenarios. In

the last subsection, we expand our experiments, by using a dif-

ferent dataset and by studying the computational performance

of our detector.

A. Dataset Description

We have used a subset of SEAGULL dataset [14]. The

choice of this dataset is directly connected to the envisioned

application of the detectors on board small fixed-wing UAVs.

This type of application allows a good compromise of cost

and complexity of sensors and the area that is surveyed.

SEAGULL dataset contains data from different spectra,

namely visible light (RGB), Near Infrared, Long Wave In-

frared and hyperspectral. We have chosen to consider only

RGB videos since these are challenging and also because there

is more data to train and test the different algorithms. From

the RGB videos, we have selected sequences with different

characteristics among them, to be more representative of a

real-world application.

For training, we have used seq07, seq08, seq09, seq12,

seq14 and seq15. The first reason to choose these videos was

the presence of challenging conditions. The second reason

was their diversity, with different altitudes, different types of

vessels and backgrounds.

For the test videos, we wanted to keep the same sequences

(seq02, seq06, seq13 and seq16) as presented in [18] for com-

parison purposes and we have included a highly demanding

sequence: seq17. Because each of the sequences selected for

testing depicts a different scenario, we will identify them using

labels to have an easier correspondence (these were already

used in [18]). The first video was named SUSP as two boats

approach in a suspicious way; the second was designated SAR

since a search and rescue raft was deployed; the third and

fourth were labeled WIDE and NEAR, with a wide area being

covered and with a boat being followed closely, respectively.

The additional video sequence, seq17, contains a fast moving

rigid hull inflatable boat with a long wake, thus we designated

it as WAKE.

In Table II, we summarize some of the most relevant

characteristics of the sequences, present the labels for the test

videos and the main attributes of the videos for the training

stage.

B. Effect of the image sequence’s characteristics

One of the main aspects that we want to explore in our

work, is how using temporal features can improve detection

on maritime monitoring scenarios, by using a convolutional

LSTM layer. Due to implementation details, during training,

the full network which includes a recurrent layer has to be

unrolled to perform forward and backward passes. Because

of this fact, we have to specify the length of the sequence,

that we designate as time span. Additionally, because changes

from frame to frame are relatively slow, we choose to save

TABLE II
VIDEO SEQUENCES’ CHARACTERISTICS.

Stage Name Resolution Annotations Objects
Label /

Attributes

Test

seq02
1024

×768
19621 2 SUSP

seq06
1920

×1080
8426 2 SAR

seq13
1920

×1080
2044 2 WIDE

seq16
1920

×1080
1237 1 NEAR

seq17
1920

×1080
504 1 WAKE

Train

seq07
1920

×1080
739 3

yacht;

shoreline

seq08
1920

×1080
236 3

strong glare;

shoreline;

strong wake

seq09
1920

×1080
358 1

patrol boat

occluded by glare

seq12
1920

×1080
1276 1 high altitude

seq14
1920

×1080
1008 2

low altitude;

patrol boat

seq15
1920

×1080
941 1

low altitude;

strong glare

some computation and sample frames contained in a given

time span, skipping some in each processed sequence. We

denote the spacing for sub-sampling as time stride. These

two parameters are represented in Fig. 2.

To explore the impact of these configurations, we will

present results evaluating each trained model on the test

dataset. We have decided to separate the evaluation in two.

The first part is carried out on four video sequences that offer

challenges like glare and waves but the boats are visible in

most cases. The second part is done on a sequence affected

by a very strong wake that changes the boat’s appearance and

even occludes it.

For each condition, we evaluate the pixel Error Rate (ER)

between the predicted map and the ground truth map, to get

the combination that produces best results for ConvLSTM.

The metric, ER, is computed as the ratio of incorrectly labeled

pixels - False Positives (TP) and False Negatives (TN) - over

their total number (Positives and Negatives), i.e.,

ER =
(#FP +#FN)

(#P +#N)
. (10)

This metric expresses the number of pixels from the predicted

map that were incorrectly classified (either false positives or

false negatives).

Table III presents the ER for the four video sequences,

while Table IV presents the results in the WAKE sequence.

For an easier comparability of the parameters’ effects and

since the frame rate is constant in the video sequences, we

express time durations as number of frames. For instance,

considering that the frame rate is 25 frames per second,

a time stride of 5 frames, corresponds to sampling frames

separated by 0.2 seconds. While many other configurations

have a comparable performance, there are a few cases with a

severely degraded performance. The worst cases occur when

the time stride is half of the time span. This means that the
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TABLE III
ERROR RATE RESULTS OBTAINED IN SUSP, SAR, WIDE AND NEAR

VIDEOS FOR DIFFERENT TIME SPAN AND TIME STRIDE CONFIGURATIONS.
The results are presented in percentage and the top score is highlighted in

bold (smaller is better).

Time Span (frames)2

Test A 10 20 40 60

Time
Stride

(frames)2

2 0.17 0.14 - 3 - 3

4 - 4 0.16 0.24 0.17
5 0.23 0.15 0.13 0.18

10 - 5 0.19 0.15 0.14

20 - 5 - 5 0.26 0.15

TABLE IV
ERROR RATE RESULTS OBTAINED IN WAKE VIDEO FOR DIFFERENT TIME

SPAN AND TIME STRIDE CONFIGURATIONS. The results are presented in
percentage and the top score is highlighted in bold (smaller is better).

Time Span (frames)2

Test B 10 20 40 60

Time
Stride

(frames) 2

2 0.14 0.14 - 3 - 3

4 - 4 0.14 0.25 0.14
5 0.14 0.14 0.13 0.16

10 - 5 0.19 0.14 0.16

20 - 5 - 5 0.78 0.15

number of processed frames is very small and the recurrent

part of the network does not effectively use the mechanisms

to keep/discard information over time.

In both cases, the optimal configuration was using a time

stride of 5 and a time span of 40 frames (which corresponds

to 1.6s). While one might think that the longer the time span,

the better the results, it appears that there is a compromise

between the length of the sequence and the frames spacing

(time stride).

2These values are presented in number of frames for better interpretability.
Since the frame rate is constant, each amount of frames has an equivalent
amount of time, measured in seconds.

3 This configuration resulted in using a significant amount of time instants,
consequently it was very computationally demanding during training and
therefore we decided not to use it.

4 Since the Time Span is not divisible by the Time Stride, this configuration
was discarded.

5 This configuration resulted in too few time instants, thus we decided not
to use it.

TABLE V
ERROR RATE RESULTS OBTAINED FOR OUR PROPOSED METHOD

(CONVLSTM), A TRADITIONAL LSTM AND A PURELY CONVOLUTIONAL

NETWORK. The first set of results was obtained using videos SUSP, SAR,
WIDE and NEAR, and the second set was using video WAKE. The results
are presented in percentage and the top score for each test is highlighted in

bold (smaller is better)

Method

SUSP, SAR,
WIDE and NEAR

(% )

WAKE
(%)

ConvLSTM with
domain-specific knowledge

0.13 0.13

ConvLSTM without
domain-specific knowledge

0.13 0.14

LSTM 0.22 0.22
GRU 0.17 0.17

ConvNet 0.15 0.20

C. Comparison with LSTM, GRU and convolutional network

After finding the best setting using a ConvLSTM trained

with domain-specific knowledge, we will then compare our

method with a ConvLSTM trained without domain-specific

knowledge, a ConvNet, a GRU and traditional LSTM. The

results presented in Table V highlight the benefit of using

domain-specific knowledge at training time, the benefit of

learning temporal features over processing each frame inde-

pendently and also the benefit of using a ConvLSTM layer

over the traditional LSTM and the GRU. The first comparison

was obtained by training the network presented in Fig. 4

using the loss presented in Eq. 9 (using domain-specific

knowledge) and by training using only binary cross-entropy

(without using domain-specific knwoledge). The second ben-

efit is demonstrated by using the architecture presented in

Fig. 4 but replacing the ConvLSTM with a 2D convolutional

(Conv2D) layer. This replacement makes the processing of

each image independent of previous time instants, i.e. removes

the connection between time instants. The third advantage

is demonstrated by replacing the ConvLSTM layer, in Fig.

4, with a traditional LSTM and with GRU layer. When

comparing with the LSTM and with GRU, we could not

keep exactly the same network configuration due to the very

large number of parameters. The output’s size was changed

to 30 × 30 pixels and the recurrent layers’ input size had

a resolution of 75 × 75 (which was transformed into a one

column vector). Even with these adaptations, the networks

using LSTM and GRU had approximately 98 and 77 million

trainable parameters, respectively, opposed to ConvLSTM that

had 14 million parameters (with an input and output size of

600× 600 and 300× 300 pixels).

In Table V, we present a test with two sets of images.

In the first, we used videos SUSP, SAR, WIDE and NEAR,

and on the second, we used video WAKE. Despite different

resources’ demand, the approach that produced worst results

was LSTM. This was probably caused by the very large

number of parameters to tune and the small resolution of

both input Xt and output Ŷt. In particular, the low resolution

forced us to approximate the ground truth Yt when training

and causing significant approximation errors.

The methods with intermediate performance were Con-

vNet and GRU. ConvNet obtained a score similar to the

best approach in the test with four videos but had a worse

performance on WAKE. This is caused primarily by the

predominance of the wake. While on the test with four videos

there are some challenges, like glare and different scale of

the objects, the approach which is based solely on visual

features can still produce interesting results. On the test with

WAKE, because the appearance is so heavily affected by the

wake, the visual features alone are not enough to achieve a

good performance. GRU had a slightly worst performance than

ConvNet on the set of four videos but, by learning temporal

feautures, performed better on WAKE. It is also worth noting

that GRU performed better than LSTM, which is consistent

with previous results like presented by Jozefowicz et al. [40].

If the training data was more abundant, the LSTM could be

abble to generalize better and the difference between the two
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become smaller. When comparing GRU with ConvLSTM, the

latter performed better in both tests. One of the main causes

is the relatively reduced number of parameters allowed by the

convolutional structure, which makes training easier.

Our method, the network with a ConvLSTM layer, trained

on sequences with a time span of 40 frames and time stride

of 5 frames, uses learned visual and temporal features, which

have allowed it to obtain the best performance in both tests.

It is important to note that the network that was trained

using domain-specific knowledge achieved a slightly better

result in the case of the video with strong wake. Despite

being a small gain, it is valuable to verify that using a loss

penalizing the prediction of large areas led better performance

on discarding persistant phenomena like wakes. The network

configuration using ConvLSTM and trained using domain-

specific knowledge is used on the next subsection to com-

pare with other already published detectors and demonstrate

that learning temporal features produces benefits over those

approaches.

D. Comparison with other detectors in SEAGULL dataset

The benchmarks that we used were a standard detection

neural network (YOLO 9000 [19]) and a neural network asso-

ciated with a Multiple Hypothesis Tracker - detectnet+MHT

[18]. Both alternatives were retrained on the same dataset as

our method.

YOLO, the standard neural network is not the top scoring

detector in the literature but presents one of the best com-

promises between speed and performance, therefore becomes

an adequate candidate to process a stream in real time. This

network is composed of convolutional layers that predict a

grid, where each cell may have multiple bounding boxes, each

with its coordinates, confidence score and class probability.

The second method uses a detection neural network simpler

than YOLO but explores time coherence among detections in

consecutive instants. The network creates a grid that indicates

if an object of interest is present on each cell and computes a

regression for the location of a bounding box. The bounding

boxes created at each time instant are then used to create a

level of a graph, where each node corresponds to a detec-

tion, weighted by the detection score. Nodes of consecutive

levels are connected by edges, which are weighted based on

the Euclidean distance between bounding boxes. MHT then

computes the probability of a given tracklet to correspond to

a correct detection by searching combinations of nodes and

corresponding edges with high scores.

The output of both compared methods is bounding boxes,

therefore we adapted our method to get the same type of

output. Starting with the prediction map, Yt, that was al-

ready mentioned, we obtain binary maps by thresholding Yt.

Afterwards, we compute the bounding box for each of the

blobs presented in the binary image. This technique is not

as advanced as the regression layers used in the compared

methods but allows us to evaluate the performance without

adding layers that needed to be trained with the rest of the

network and might conceal the behavior of the ConvLSTM

layer.

Unlike the previous evaluation, to compare the method

presented in this work with other detectors, we did not use

binary cross-entropy but used an evaluation more common for

detectors. We have used the evaluation metric that was adopted

in [18], to keep the same scoring process. This metric itself

was adapted from Dollár et al. [41]. To validate a detection, the

mentioned authors required an intersection over union (IoU)

bigger than 50% and defined it as

IOU =
area{D̄t ∩Gt}

area{D̄t ∪Gt}
, (11)

where Dt and Gt denoted the detections and the ground truth.

While this is adequate for many applications, just as in [18],

we believe that in the present scenario, 10% is enough. Given

this matching criterion, two quantities are computed: Precision

and Recall. These are respectively defined as Precision =
# true positive (TP)/ ( # TP + # false positive (FP) ) and

Recall = # TP/ ( # TP + # false negative (FN) )6. With

Precision and Recall, we have obtained the results presented

in Fig. 7. These plots show the behavior of detectors through

their operating range but it is useful to have a quantity to

summarize and compare the complete range. We selected

Area Under the Curve (AUC), which is computed as the sum

of Precision p(n), at every possible threshold with the index

n, times Recall’s variation ∆r(n) between these points, i.e.,

AUC =

N
∑

n=1

p(n)∆r(n). (12)

The AUC obtained with each method in each video is pre-

sented in the corresponding legend.

When inspecting the results, it is worth noting that, indepen-

dently of the method, there is a substantial difference in perfor-

mance between NEAR, WIDE and the rest of the sequences.

In the mentioned sequences there are some challenges but the

appearance of the boats is more or less constant. The three

other sequences have much more challenging conditions, like

two boats close to each other that are detected as one, a very

small life raft and a wake that cloaks the boat

From the first four plots, we can verify that the behavior

of the three methods is similar. Typically detectnet+MHT has

a high precision but achieves a smaller recall. This is caused

by the MHT which discards many false positives but when

more demanding conditions occur (like abrupt movement), it

also discards true positives. YOLO has a smoother decrease

in Precision as Recall increases. Our proposed method shows

a comparable performance and the AUC is similar in the first

three videos. In the fourth video (NEAR), ConvLSTM falls

short of the other two approaches. This inferior performance

of the proposed method, on the third video, is not caused by

lack of sensitivity of the detector but rather by inadequate

size of the bounding boxes. In several instants, the size’s

difference of the ConvLSTM detection box, shown in red in

Fig. 8(d) and the object, leads to false negatives, i.e. the IoU

6 False positives and false negatives in this paragraph refers to incorrect
bounding boxes and to missing bounding boxes, respectively. This differs from
the false positives and false negatives that were used to compute the Error
Rate mentioned before.
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Fig. 7. Results of evaluation using a traditional detection metric [41], with
an overlap threshold of 10%. Results were obtained for sequence (a) SUSP,
(b) SAR, (c) WIDE, (d) NEAR and (e) WAKE.

is lower than required and no detection matches the ground

truth. Another relevant factor is that the boat enters and leaves

the field of view frequently. Since ConvLSTM learns temporal

features, it tends to mark persistent objects as detections and

to discard objects with limited duration (like waves) which

tipically correspond to noise. Thus, when the boat enters the

field of view, our method does not imediatly marks it as a

detection, it requires some time instants to do so. The decrease

in Recall, caused by the boat leaving and entering the image,

also affects detectnet+MHT, which also needs several time

instants with the object of interest in the field of view, to

consider a valid detection.

On the last video sequence, the boat is moving at high

speed causing a wake several times bigger than the vessel.

This condition affects the performance dramatically with both

detectnet+MHT and YOLO having a very small AUC. Our

method is also affected significantly but still manages to have

an AUC order of magnitude higher than the other methods.

This happens because other methods rely heavily on learning

the appearance of boats from the training dataset. Even detect-

net+MHT, which verifies time consistency, does not use this

information to create detections but only to validate detections

based on appearance. Our method, on the other hand, learns

not only the appearance but also the motion model and uses

these two features to create detections.

E. Additional experiments

In order to have a more comprehensive evaluation of our

approach, we performed tests on a different dataset and

also measured the computational performance of the different

methods. The goal of the experiment in a different dataset

is to verify if the detectors are able to generalize or if they

overfit to SEAGULL dataset. The evaluation of the detectors’

computational performance, assesses if it is possible to use

them in a real world application.

1) Testing on MARDCT dataset: The dataset that was

chosen for these additional tests was MARDCT [11]. This

dataset was gathered by the ARGOS system that monitors

the Venice Grand Canal. ARGOS’ cameras are installed in

buildings, consequently most objects of interest are very close

to the camera and some urban elements, like walls, are present.

Due to this fact, we had to carefully select videos with some

similarity to our scenario. The elected videos were wake-1,

wake-2 and wake-3. The properties of the three videos differ

from SEAGULL dataset: the resolution is smaller, the line of

sight from the camera to the objects of interest was almost

paralel to the water surface and the type of boats is also

different. The apparent movement of the image is also distinct,

with long periods with movement caused only by the boats and

short periods with pan movement, causing severe blur.

It is important to note that, in this case, there is no distance’s

information from the camera to the boats, hence there is

no guarantee that the Domain-Specific Knowledge included

at training time is beneficial. Despite this shortcoming, we

applied the same three detectors that were already used in

the previous subsection without retraining. For brevity, we

condensed the results as AUC in Table VI.
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Examples of the bounding boxes obtained with the three methods
in each of the sequences. The bounding boxes are colored according to the
method: YOLO is represented in green, detectnet+MHT in blue and the
proposed method (based on ConvLSTM) is represented in red. Images on
the left correspond to original images from video sequences: (a) SUSP, (b)
SAR, (c) WIDE, (d) NEAR and (e) WAKE. Images on the right present the
detections in greater detail.

TABLE VI
AREA UNDER THE CURVE (INDICATED IN %) OBTAINED WITH

detectnet+MHT, YOLO AND CONVLSTM, IN VIDEO SEQUENCES FROM

MARDCT DATASET. THE EVALUATION METHODOLOGY [41] WAS THE

SAME AS IN FIG. 7.

Detector
Video sequences

wakes-1 wakes-2 wakes-3

detectnet+MHT 0 58 34
YOLO 8 97 4
ConvLSTM 11 77 62

As shown in the Table VI, the video in which the detectors

performed worst was wakes-1. The main causes are the very

low resolution (240 × 320) of the original video making

objects pixelated and also the presence of haze, as shown

in the right side of Fig. 9(a), which hinders the visibility of

some boats. In this video, detectnet+MHT does not generate

any valid detection. On the other two videos, detectnet+MHT

achieves modest scores, which are caused by the low resolution

(704 × 576) and also by the boats repeatedly entering and

leaving the image. Many parts of the third video are unfocused

and detectnet+MHT tipically fails to detect on those ocasions.

YOLO, on the other hand, obtains a very high score on wakes-

2 and a low score on wakes-3. This occurrence is strongly

influenced not only by unfocused images but also by the

presence of mountains on the horizon, leading to many false

detections on that area, as presented on Fig. 9(c). Our method

also struggles with the conditions present in the first video,

scoring just slightly above YOLO. On the other two videos, it

obtains higher Areas Under the Curves and the phenomena

that degrades its performance the most, is the presence of

wake detached from the boat. As mentioned before, the three

methods were applied to MARDCT without retraining, so the

disparity in performance of YOLO might indicate that it has

overfitted to a given appearance of boats. The ConvLSTM

method, on the other hand, had more consistent results, which

show a greater generalization capability.

2) Computational performance: To understand the appli-

cability of our method to a real world scenario, we gauged

the execution speed of the different methods and the number

of parameters used by the neural networks in each method.

For the considered application (maritime monitoring using

aerial vehicles), the execution speed strongly conditions the

applicability, however, it depends immensely on the hard-

ware, libraries and optimizations that are used. Thus, our

goal is primarily to compare our method with YOLO, one

of the approaches with best compromises between accuracy

and speed, and not to have an absolute measurement. The

execution times, presented in Table VII, were obtained using a

Keras [42] implementation with Tensorflow backend, running

on Nvidia Titan XP GPU. The number of parameters also

affects the applicability, in particular if embedded applications

are considered. Embedded applications tipically use hardware

with less memory, which may inhibit the use of models with

a large number of parameters.

As shown in Table VII, YOLO is almost ten times faster

than the other approaches. This difference is easily explained

by the fact that the method based on ConvLSTM needs to ex-
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(a) (b) (c)

Fig. 9. Examples of the bounding boxes obtained with the three methods in: (a) wakes-1, (b) wakes-2 and (c) wakes-3. The bounding boxes are colored
according to the method: YOLO is represented in green, detectnet+MHT in blue and ConvLSTM in red.

TABLE VII
ASSESSMENT OF COMPUTATIONAL PERFORMANCE OF THE DIFFERENT

METHODS.

Method

Average
execution
time (s)

Number of
Parameters
(Approx.)

detectnet+MHT 0.25 6× 106

YOLO 0.03 50× 106

ConvLSTM 0.19 14× 106

tract features from several images before feeding the informa-

tion into the recurrent layer (since we have used, respectively, a

time span and a time stride of 40 and 5, we process 8 images).

When considering the number of parameters, YOLO is the

most demanding option and detectnet+MTH is the lightest

alternative. Our method obtains an intermediate value, with

three times less parameters than YOLO. Since nowadays there

are several embeded applications of YOLO, even in FPGAs

[43], there are also good prospects to sucessfully implement

our method on the same type of platforms.

V. CONCLUSIONS

This paper presents a method to learn not only spatial

features but also temporal features present in video sequences.

The usage of temporal features attempts to improve the detec-

tion of maritime objects in video sequences, which contain

strong distractors like glare and wakes. This method is com-

posed of two main parts, one spatial feature extractor based

on VGG network and one recurrent layer, the Convolutional

LSTM. The latter is the key component to learn temporal

features since it has a memory cell that keeps or forgets infor-

mation, according to the situation. Unlike traditional LSTMs,

some operations in this layer are applied convolutionally which

removes a significant spatial redundancy.

This method is evaluated with two kinds of tests. The

first test investigates what is the configuration (number of

frames, length and time stride) that produces best binary

maps representing the position of boats and then compares the

proposed approach with traditional LSTM and with the purely

convolutional network (ConvNet). The comparison shows that

there is a performance gain of the proposed approach over the

other two. The second test evaluates the quality of generated

bounding boxes against two detectors. The performance of the

three methods is comparable in four videos out of five. The

fifth video, however, is very challenging and our proposed

method achieves a score several times higher.

Given the obtained results (especially with the second test),

we conclude that learning temporal features is useful for

maritime detection in videos captured by small aircraft. In

the future, we would like to explore more configurations,

in particular stack more recurrent layers and also extend

the time span considered by ConvLSTM. As shown in the

SEAGULL dataset, some videos contain objects of interest

with faint visual features and the temporal features learned

by ConvLSTM can improve the knowledge about a given

scenario. However, for conditions where the object of interest

is clearly visible and especially when its size is larger, other

detectors can generate better detections.

With these considerations in mind, a real-world application

could benefit from using a combination of detectors that might

be selected according to the mission or scenario. Another

path that we would like to investigate in the future is the

use of contextual information available on-board like alti-

tude, aircraft’s attittude and sensor’s parameters to improve

detection. One possibility, is the use of these parameters to

create an additional input channel, where each pixel contains

the slant range from the sensor to the observed area. The

range information would prevent detections with large areas

in regions that are very far or detections with very small areas

in regions that are very close.
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