
The Impact of Domain Randomization on Object Detection: A Case
Study on Parametric Shapes and Synthetic Textures*

Atabak Dehban1,2, João Borrego1, Rui Figueiredo1,3, Plinio Moreno1,
Alexandre Bernardino1, and José Santos-Victor1

Abstract— Recent advances in deep learning–based object
detection techniques have revolutionized their applicability in
several fields. However, since these methods rely on unwieldy
and large amounts of data, a common practice is to download
models pre-trained on standard datasets and fine-tune them for
specific application domains with a small set of domain–relevant
images. In this work, we show that using synthetic datasets that
are not necessarily photo-realistic can be a better alternative to
simply fine-tune pre-trained networks. Specifically, our results
show an impressive 25% improvement in the mAP metric over
a fine-tuning baseline when only about 200 labelled images are
available to train. Finally, an ablation study of our results is
presented to delineate the individual contribution of different
components in the randomization pipeline.

I. INTRODUCTION
With the availability of advanced object detectors [1],

[2], [3], [4], these systems and their variations have found
many applications ranging from face detection [5], to medical
applications [6], and to robotics [7].

However, training these systems from scratch is still a
challenge as these methods rely on the availability of large,
annotated, and high quality datasets. One common approach
to circumvent this issue is to re-use detectors that were pre-
trained on large and available datasets such as Common
Objects in COntext (COCO) [8] and ImageNet [9] and
later, apply some form of domain adaptation technique [10]
for the particular task at hand using a smaller, domain
specific dataset [11], [12], [13]. This approach results in
varying degrees of success (refer to [14] for a study on
how knowledge can be transferred across different tasks).
This line of research has been accelerated, thanks to the
availability of high quality open source implementations of
state–of–the–art object detectors [15], [16].

These domain adaptation techniques usually assume, im-
plicitly, that the underlying data–structure is shared across
the domains. However, this premise does not strongly apply
to many applications, especially when the target domain does
not significantly overlap with the outdoor images that make
up a large portion of both ImageNet and COCO.

To overcome these challenges, in this work, we are inves-
tigating the usage of domain randomization [17] to facilitate

*This work is partially supported by the Portuguese Foundation for
Science and Technology (FCT) project [UID/EEA/50009/2019].

1Institute for Systems and Robotics, Instituto Superior Tećnico, Univer-
sidade de Lisboa, Lisbon, Portugal
{adehban,jborrego,ruifigueiredo,plinio,

alex,jasv}@isr.tecnico.ulisboa.pt
2 Champalimaud Centre for the Unknown, Lisbon, Portugal
3 Institute for Systems and Robotics, Universidade de Coimbra, Coimbra,

Portugal

Fig. 1: An example image from the test set, annotated by
the object detector. Annotations are red for boxes, blue for
cylinders and green for sphere.

the adaptation of an object detector, namely Single–Shot
Detector (SSD) [2], to detect three categories of objects:
cylinders, spheres, and boxes.

This task is accomplished based on our previous work
on an open source plugin [18] developed for Gazebo sim-
ulator [19]. This plugin was selected as it streamlines the
generation and rendering of different objects as long as their
mesh description is available. In addition, adding parametric
classes of objects using this plugin is quite straightforward.
Finally, Gazebo is the current de facto standard for robotics
which covers several physics engines, families of robots, and
different types of actuators1. These features may encourage
other researchers to develop domain randomization experi-
ments where multiple robots can interact with several objects
while learning new skills.

According to our experiments, domain randomization can
substantially increase the accuracy of object detectors at least
in situations where only a relatively small domain–specific
dataset of annotated images is available. More importantly,
the fact that the synthetic dataset does not necessarily need
to be photo-realistic helps to significantly lower the barrier
in applying this technique in different applications.

The aforementioned benefits notwithstanding, to the best
of our knowledge domain randomization has not been subject
to meticulous studies characterizing its impact on multi-
category object detection. Considering that domain random-
ization entails programming a desired task in a simulation
environment, this issue can stymie its adoption in practice.
Thus, the focal question we are trying to address here is the

1https://en.wikipedia.org/wiki/Robotics
simulator as of August 6, 2019

https://en.wikipedia.org/wiki/Robotics_simulator
https://en.wikipedia.org/wiki/Robotics_simulator


benefit one can expect from applying domain randomization
in real-world robotic tasks.

The main contributions of this paper can be summarized
as following:
• Domain randomization is often used to apply the models

trained in simulation, directly to real tasks. Contrary
to this popular approach, we have shown substantial
improvements in the accuracy of SSD can be expected
when fine-tuning starts from models trained on synthetic
data, provided that at least a small, domain–specific
dataset is available;

• We conducted a comprehensive study in order to de-
termine the contribution of individual components of
the domain randomization pipeline and discuss the
importance of viewpoint variations, different types of
textures and number of available images for training;

• We have made significant contributions to our previ-
ously introduced open source Gazebo plugin, which
has resulted in doubling the speed of scene generation
pipeline, by effectively removing redundant object load
times. These modifications have greatly facilitated the
study of domain randomization in object category de-
tection.

The rest of this paper is organized as follows: in sec-
tion II we examine the related work on different domain
adaptation techniques relevant to object detection, that have
been studied in the literature. In section III we explain the
setup of the experiments, as well as our contributions to
the Gazebo plugin which has made this work possible. For
the sake of completeness, a brief overview of SSD is also
provided. Section IV discusses the results of using domain
randomization on object detection and the significance of
different components in the domain randomization pipeline.
It also benchmarks the importance of our contributions to
the Gazebo plugin for scene generation. Finally, we draw our
conclusions and discuss promising future research directions
in section V.

II. RELATED WORK

Recent advances on deep learning and parallel comput-
ing have boosted research and contributed to many break-
throughs in machine learning and computer vision. Being
capable of learning the underlying non-linear structure in
high dimensional data, they have achieved state–of–the–
art performance in image classification [20], detection [4]
and segmentation tasks [21]. However, supervised training
of deep neural networks relies on the availability of large
datasets, hand-labeled in a laborious and time consuming
manner.

In this section we overview the main concepts and related
work on automated, computer driven data augmentation
techniques for computer vision applications.

A. Reality Gap

The discrepancy between the real world and simulated,
computer generated environments is often referred to as the
reality gap. There are two common approaches to bridge this

disparity: either reducing the gap by attempting to increase
the resemblance between the two domains or explore meth-
ods that are trained in a more generic domain, representative
of both simulation and reality domains simultaneously. To
achieve the former, one may increase the accuracy of the
simulators in an attempt to obtain high-fidelity results [22],
[23]; or use Generative Adversarial Networks (GANs) to
produce photo-realistic images from simulated renders [24].
Both methods require great effort in the creation of systems
which model complex physical phenomena to attain realistic
simulations. Our work focuses mainly on the latter approach.
Instead of diminishing the reality gap in order to use tradi-
tional machine-learning methods, we analyze methods that
are aware of this disparity.

B. Data Augmentation

An alternative method to obtain large amounts of anno-
tated training data is to enrich a small dataset with new
labelled elements. In [25], the authors generate synthetic
composite images for training neural networks for object
detection. They propose methods in which 2D cropped
object images are superimposed into a real-world RGB-D
scene. Moreover, their proposal integrates scene contextual
information in the data generation process.

This work demonstrates that the performance of state-of-
the-art object detectors significantly improves when trained
with both synthetic and real data compared to training with
real data alone. The data generation method is tested with
two publicly available datasets, GMU-Kitchens [26] and
Washington RGB-D Scenes V2 [27].

Compositional Language and Elementary Visual Reason-
ing diagnostics (CLEVR) [28] can be considered an alter-
native domain randomization dataset with the same type of
categories to ours. It was initially proposed for the task of
visual question answering and Blender [29] is used as the
rendering engine. However, the high fidelity renders and low
texture variations in this dataset are orthogonal to domain
randomization spirit, and any obtained results could be either
attributed to the similarity of the objects to real examples or
to limited texture variations. Thus, we treat this dataset as
another test set and report the results of applying different
variations of our detectors on this dataset.

C. Domain Randomization

Rather than attempting to perfectly emulate reality, one
may create models that strive to achieve robustness to high
variability in the environment. Domain randomization [17]
is a simple yet powerful technique for generating training
data for machine-learning algorithms. The goal is to syn-
thetically generate or enhance the data, in order to introduce
random variances in the environment properties that are
not essential to the learning task. This idea dates back to
at least 1997 [30], with Jakobi’s observation that evolved
controllers exploit the unrealistic details of flawed simulators.
While working on evolutionary robotics, he concluded that
controllers can evolve to become more robust by introducing
random noise in all the aspects of simulation which do



not have a basis in reality, and only slightly randomizing
the remaining which do. It is expected that given enough
variability in the simulation, the transition between simulated
and real domains is perceived by the model as a mere
disturbance, to which it has became robust.

Different to our study, [17] has applied domain random-
ization for single object localization. Here, we have focused
on a different application, namely multi-category detection.
Additionally, we believe [17] has introduced a very powerful
idea, however, there are some extra add-ons and limitations
which should be peeled by the sort of ablation studies
presented here:

Relying on object’s mesh. The localizers of [17] require
the mesh of the object for simulation. Our experiments find
it an unnecessary complication for detection.

No ablation study on texture variations. [17] did not
study the influence of different synthetic textures. More im-
portantly, the most useful synthetic texture, Perlin noise (c.f.
Fig. 10) was absent from that work.

Training one localizer per object. In [17], the authors
have trained one object detector per target object. Thus, no
generalization across objects is achieved.

Concurrent to our work, [31] reports the effect of over-
laying real textures on the accuracy of multiple state-of-the-
art object detectors in a single-class outdoor car detection
scenario. In contrast, we report the impact of overlaying
synthetically generated patterns with different characteristics
and increasing complexity on the accuracy metrics in a
multiple category indoor detection of parametric shape
primitives scenario.

III. METHODS
In order to apply an object detector in a new domain, it

is often required to collect some training samples from the
domain at hand. Labelling data for object detection is harder
than labelling it for object classification, as bounding box
coordinates are needed in addition to target object’s identity,
which increases to the importance of optimally benefiting
from the available data.

After data collection, a detector is selected, commonly
based on a trade-off between speed and accuracy, and is fine-
tuned using the available “target domain” data. Our proposal
is to use a synthetic dataset, with algorithmic variations in
irrelevant aspects of simulation, instead of relying on pre-
trained networks on datasets which share little resemblance
to the task at hand. This approach is further detailed in this
section.

A. Single–Shot Detector
In all of our experiments, SSD was used as the base

detector as it is one of the few detectors that can be applied
in real-time while showing a decent accuracy. However, there
is nothing in SSD which makes it more or less susceptible to
benefits of domain randomization, thus, we expect our results
to directly generalize to other deep learning based detectors.

The inner workings of SSD is briefly described here,
however, readers should refer to the original publication [2]
for a comprehensive study of the detector.

At the root of all deep learning based object detec-
tors, there exists a base Convolutional Neural Network
(CNN) which is used as feature extractors for further
down-stream tasks, i.e. bounding box generation and fore-
ground/background recognition. Similar to YOLO architec-
ture [3], SSD takes advantage from the concept of priors or
default boxes2 where each cell identifies itself as including
an object or not, and where this object exists, relative to a
default location. However, unlike YOLO, SSD does this at
different layers of the base CNN. Since neurons in different
layers of CNNs have different receptive fields in terms of
size and aspect ratios, effectively, objects of various shapes
can be detected.

During training, if a ground truth bounding box matches a
default box, i.e. they have an Intersection over Union (IoU)
of more than 0.5, the parameters of how to move this box to
perfectly match the ground truth are learned by minimizing
an smooth L1 metric. Hard negative mining is used to create
a more balanced dataset between foreground and background
boxes. Finally, Non-Maximum Suppression (NMS) is used
to determine the final location of the objects.

Unlike the original SSD architecture, we used Mo-
bileNet [32] as the base CNN for feature extraction in
all experiments. MobileNet changes the connections in a
conventional CNN to drastically reduce its number of param-
eters, without having a notable toll on performance, relative
to a comparable conventional CNN.

B. Contributions to Gazebo Plugin

Our contribution to the open-source Gazebo plugin for
domain randomization [18] consists of an optimization in
the scene composition, which almost doubled performance.
Originally, each scene required parametric objects to be gen-
erated from a Simulation Description Files (SDF)3 formatted
string, which was altered during run-time in order to allow
for different object dimensions and visuals. Furthermore,
objects were created and destroyed in between scenes.

Instead, we first spawn the maximum number of objects on
scene of each type. Then, in each scene we alter their visual
properties from within the Gazebo engine, by for instance
changing their scale and pose, which results in a substantial
performance boost.

In addition, we improved the existing auxiliary pattern
generation module in order to exploit parallelism in batch
generation of Perlin noise textures, using OpenMP4 frame-
work.

C. Experiment Design and Setup

We have conducted various experiments and tests to quan-
tify the results of different scenarios. Initially, two sets of
30k synthetic images are generated. The modifications we
mentioned in the previous subsection have greatly facilitated
this process. These two sets differed from one another by
the degree in which the virtual camera in the scene has

2Called anchor box in YOLO.
3http://sdformat.org/ as of August 6, 2019
4https://www.openmp.org/ as of August 6, 2019

http://sdformat.org/
https://www.openmp.org/


changed its location. In the first set, the viewpoint was fixed,
whereas in the other set, its location varied largely across the
scene (Fig. 5). More details will be provided in section IV.

Four types of textures were used in the generation of syn-
thetic images, which have been employed in recent research
applying domain randomization [17], [33]. Specifically, these
include flat colors, gradients of colors, chess patterns, and
Perlin noise [34], which can be seen in Fig. 2. The textures
are randomly attached to either objects or to the background.

Fig. 2: Example synthetic scene employing all 4 texture
patterns, labelled by the plug-in. The ground has a flat color,
box has gradient, cylinder has chess, and sphere has Perlin
noise. Any texture type can be applied to any object.

In addition, we have collected 250 real images in the lab,
out of which 49 contain objects unseen in training, for the
sole purpose of reporting final performance (Fig. 1). The
train, validation and test partitions of our real image dataset
is specified in table I.

TABLE I: Count of real images in train, validation and test
partitions.

Training Validation Test Total

175 26 49 250

In this dataset, there was no consideration to explicitly
keep the percentage of different classes balanced (table II),
as such, we have also reported precision-recall curves for
each class. Finally, all our reported metrics are calculated
with an IoU of 0.5.

TABLE II: Amount of different classes in the real dataset.

Partition # Box # Cylinder # Sphere Total

Train set 502 (63%) 209 (26%) 86 (11%) 797
Test set 106 (40%) 104 (40%) 53 (20%) 263

For baseline calculations, we have used SSD, trained on
COCO, and fine-tuned it on the train set until the perfor-
mance on validation set stopped improving.

In other experiments, we have used MobileNet which
was trained on ImageNet as the CNN classifier of SSD
and first fine-tuned the detector on synthetic datasets with
bigger learning rates and later, in some experiments, fine-
tuned again with smaller learning rates on the real dataset.

Finally, smaller synthetic datasets of 6k images were
generated, each with a type of texture missing, and an addi-
tional baseline for comparison, which includes every pattern

type. These datasets allowed us to study the contribution of
each individual texture in the final performance, as well as
performance comparison of the smaller synthetic datasets.

IV. EXPERIMENTS AND RESULTS

All synthetic images have Full-HD (1920 × 1080) res-
olution and are encoded in JPEG lossy format, to match
the training images taken by Kinect v2.0 that were used in
our experiments. For training and testing, images are down-
scaled to half these dimensions (960 × 540) which is the
resolution employed for all test scenarios in our pipeline.
Examples of the real datasets can be seen in Fig. 3.

(a) Training Set Examples;

(b) Test Set Examples;

Fig. 3: Example images from real (a) training and (b) test
sets, annotated with ground truth and detector outputs, re-
spectively.

Networks were trained with mini-batches of size 8, on a
machine with two Nvidia Titan Xp GPUs, for a duration
depending on the performance in a real image validation
set. We have only used horizontal flips and random crops,
with parameters reported in original SSD paper, as the pre-
processing step, since we are interested in studying the
effects of synthetic data and not different pre-processings.
Finally, in compliance with the findings in [31], all the
weights of the network are being updated in our experiments.

Our code and dataset are currently hosted on GitHub5

and our Laboratory’s webpage6. Accordingly, some training
hyper parameters are omitted from the current report.

A. Benchmarking Contributions to Gazebo Plugin

In [18], we reported that a dataset of 9.000 Full-HD
(1920 × 1080) images took roughly 3 hours to generate.

5https://github.com/jsbruglie/
tf-shape-detection, as of August 6, 2019

6http://vislab.isr.ist.utl.pt/datasets/
#shapes2018, as of August 6, 2019

https://github.com/jsbruglie/tf-shape-detection
https://github.com/jsbruglie/tf-shape-detection
http://vislab.isr.ist.utl.pt/datasets/#shapes2018
http://vislab.isr.ist.utl.pt/datasets/#shapes2018


(a) Sphere; (b) Cylinder; (c) Box;

Fig. 4: Precision-recall curves of different variants of the detectors after fine-tuning on the real dataset.

In a similar computer, we tested the updated plugin with
our modifications and obtained almost double of the speed
performance, generating 9.000 synthetic images in little over
1h30min, while benefiting from a larger set of available
random textures (a total of 60.000 textures, compared to the
reported 20.000), which expectedly should have increased
run-time.

Our novel approach allows us to alter the properties of the
objects directly through the rendering engine API, which is
much more efficient than spawning and removing objects
with different features. Specifically, objects are spawned
below the ground plane and moved to desired location in the
new scene. By changing its scale vector we can effectively
morph the object shape. Finally, we load the random textures
as Gazebo resources on launch, and can apply them directly,
although they are only loaded into memory once they are
required by the rendering engine.

B. Effects of Domain Randomization on Object Detection

In this subsection, we wish to quantify how much an object
detector performance would improve due to the usage of
synthetic data. To this purpose, initially, we fine-tuned a SSD,
pre-trained on COCO dataset with our real image dataset. In
the subsequent sections we refer to this network as baseline.

Afterwards, we trained a SSD with only its classifier pre-
trained on ImageNet, using our two synthetic datasets of 30k
images each, as described in section III-C.

Both of these datasets contain simulated tabletop scenarios
with a random number of objects N ∈ [2,7], each in one
of three classes: box, cylinder or sphere. These objects are
placed randomly on the ground plane in a 3×3 grid, to avoid
overlap.

In the first dataset, the camera pose is randomly generated
for each scene, such that it points to the center of the
object grid. This generally results in high variability in the
output, which may improve generalization capabilities of the
network at the expense of added difficulty to the learning
task, as, for instance, it exhibits higher levels of occlusion.
In the second dataset, the camera is fixed overlooking the
scene at a downward angle, which is closer to the scenario
we considered in the real dataset. Example scenes with
viewpoint candidates for each dataset are shown in Fig. 5.

(a) Moving Viewpoint; (b) Fixed Viewpoint;

Fig. 5: Viewpoint candidates in synthetic scene generation.
(a) Viewpoint changes both position and rotation in between
scenes. Subfigure represents four possible camera poses. (b)
Viewpoint is static.

In addition to the camera, the scene light source is always
allowed to move in a manner akin to the camera, in the first
dataset.

The networks were trained on these datasets for over 90
epochs, based on their performance on the validation set,
similar to the baseline. These networks were then directly
applied to the test set (which has real images) without any
fine-tuning on our dataset of real object data, in order to
quantify how much knowledge can be directly transferred
from synthetic to real domain.

Finally, these two detectors were fine-tuned on the real
dataset. The result of this analysis is depicted in Fig. 6.

Fig. 6: Per class AP and mAP of different detectors.
MV: Moving Viewpoint; FV: Fixed Viewpoint; Real: fine-
tuned on the real dataset

The network trained on the dataset with no camera pose



variation and fine-tuned on real data exhibits the best perfor-
mance at 0.83 mAP, which corresponds to an improvement
of 26% over baseline.

Perhaps unintuitively, variations in camera position have
slightly decreased the mAP score. We re-emphasize that
the goal of this work was to generalize detections across
unseen instances of the categories, given only a small real
dataset and inevitably, data artifacts always leak in such small
datasets. However, as noted by Jakobi (refer to Sec. II-C), for
domain randomization to optimally work, one should only
randomize aspects of the environment that are expected to
vary in the real scenario e.g. moving viewpoint is useful for
a robot with moving eyes but detrimental for fix-installed
cameras. This result holds, even though we did not put any
effort in aligning the simulated camera to the real one and
the fixed pose of the camera is different in train and test sets.

However, it is expected that the network trained on the
moving viewpoint dataset is more robust and would perform
better if it is tested against a test set with varying camera/light
positions.

Fig. 7 shows the precision-recall curves of different net-
works for each class. Consistently, the networks trained on
the fixed viewpoint dataset and fine-tuned on the real dataset
out-perform other variations. This trend is only less promi-
nent in the case of sphere class, where, seemingly, due to the
smaller examples of this class in the real dataset (table II)
the training benefits less from fine-tuning on the real dataset
for some values of iso-f1 surfaces. We hypothesize that more
real sphere examples could help the detector in improving
the Average Precision (AP) score for spheres.

C. Performance Evaluation on CLEVR
Our real dataset which is used throughout this paper was

collected in house and thus, it has a limited size. Even though
our number of available real samples is representative of
many robotic scenarios, it still may cause sample bias and
limit the generalization of our results. To investigate further,
we have used CLEVR as another real dataset to test the effect
of domain randomization. Fig. 8 shows some examples from
this dataset.

Despite the high fidelity of these samples, there are not
many variations in the dataset in terms of size and texture
of objects. We have tested the variations of the detector
described in the previous section against CLEVR validation
set and report the results in Fig. 9.

According to our experiments, it seems the rendering
artefact even in CLEVR is very prominent and only using the
fixed view-point version of our dataset is enough to achieve
the highest performance, i.e. any fine-tuning on real images
hinders performance on CLEVR detection task.

In other experiments, due to low variations of textures
in CLEVR, we managed to achieve almost perfect detec-
tion (mAP> 0.98%) on the entire validation set by training
a detector only on a small sample of 200 images.

D. Individual Contribution of Texture Patterns
A valid question in domain randomization research is the

contribution of including various textures as well as the

importance of sample sizes. To study this question, we have
created smaller synthetic datasets with only 6k images, where
in each of them one specific texture is missing. Similar to
previous subsection, MobileNet pre-trained on ImageNet was
selected as the classifier CNN, but the detectors were instead
trained on these smaller synthetic datasets and then, in some
cases, fine-tuned on the real dataset.

The training of all networks on synthetic datasets lasted
for 130 epochs, where the mAP stopped improving over the
validation set. Finally, these networks were fine-tuned with
the real-image dataset.

The results of these experiments are reported in Fig. 10. By
comparing figures 10a and 10b it is clear that all variations
have benefited from fine-tuning with the real dataset.

About the individual performances, generally speaking,
by removing more and more complex textures before fine-
tuning (flat to be the least complex and Perlin to be the
most complex), the performance hurts, and we found Perlin
noise to be a vital texture for object detection, while the flat
texture has the least significance. Even after fine-tuning, flat
texture seems to be the most detrimental and removing it
improves performance on the real test set. Consistent with
this observation, according to Fig. 10b, the small dataset
with all the textures cannot always compete with some of
the datasets where a texture is missing.

According to figures 10a and 11, the detector trained
on the small dataset with all texture classes, performed
comparably to other variations on the validation set during
training, however, presumably due to smaller number of
samples and simultaneously, so many texture classes, over-
fitted to the objects in the train set and failed to generalize
as well as others to the objects in the test set.

Regarding the number of samples, our in house study
with 200k synthetic images (unreported) in line with the
findings in [31], suggests that more is not always better. The
network trained on our smaller dataset of only 6k images
without the “flat” texture has even slightly out-performed
the network that was trained on 30k synthetic images. This
result seems to be consistent for detectors with classifiers
trained on real images, trained on synthetic data and then
again fine-tuned with real samples. After a certain limit on
number of synthetic images, the mAP performance oscillates
for one or two percent.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we have shown that multi-category object
detection pipelines can significantly benefit from pre-training
on synthetic non-photo-realistic datasets. Our modifications
to an open-source plugin have enabled us to rapidly test
different variations in the synthetic data and assess the im-
portance of various components such as texture complexity
and sample size.

According to our experiments, increasing texture complex-
ity in the synthetic data should be compensated by larger
number of samples, however, big gains in detector accuracy
can be obtained with synthetic datasets that are orders of



(a) Sphere; (b) Cylinder; (c) Box;

Fig. 7: Precision-recall curves of different variants of the detectors. For abbreviations refer to Fig. 6.

Fig. 8: samples from CLEVR dataset

Fig. 9: Per class AP and mAP of different detectors on
CLEVR dataset. For abbreviations refer to Fig. 6.

(a) Before fine-tuning; (b) After fine-tuning;

Fig. 10: Performance of SSD on test set during training on
smaller datasets of 6k images, each missing a type of texture,
with the exception of the baseline, (a) prior and (b) after fine-
tuning on real image dataset.

(a) Before fine-tuning; (b) After fine-tuning;

Fig. 11: Performance of SSD on validation set during training
on smaller datasets of 6k images, each missing a type of
texture, with the exception of the baseline, prior and after
fine-tuning on real image dataset ((a), (b) respectively).

magnitude smaller than COCO or ImageNet as long as a
classifier trained on real datasets is being used.

Our modifications to the plugin for the synthetic data
generation will facilitate the creation of scenes for other types
of studies in domain randomization, such as the impact of
clutter and the increasing number of new object classes. The
choice of Gazebo will stimulate the creation of scenes for
deep learning experiments in robotics, such as object tracking
and mobile manipulation.

In real scenarios where final performance metric is usually
the most pertinent consideration, various data augmentation
techniques such as color intensity distortions, random crops,
etc. should be added to the training pipeline of domain
randomization to improve the generalization capabilities of
the detector at test time.

We believe enriching the plugin with more texture cat-
egories and combinations of categories can significantly
improve the synthetic data quality for domain randomization
studies. More specifically, currently no synthetic object can
have more than one texture, where as in reality, e.g. a box
can have different textures on each side.

Finally, in this work we have studied the simplest form
of domain adaptation, namely fine-tuning, as it is by far
the most popular approach due to its simplicity, and we
didn’t want to dilute the effect of domain randomization with
advanced adaptation techniques. However, there are other
adaptation methods, e.g. adversarial adaptation [35], that are
suitable when the cost of collecting real data is even more



significant, such as instance segmentation tasks, because they
allow the transfer knowledge to “target domain” without
supervised signal.

ACKNOWLEDGMENT

The Titan Xp GPUs used for this research were donated
by the NVIDIA Corporation.

REFERENCES

[1] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via
region-based fully convolutional networks,” in Advances in neural
information processing systems, 2016, pp. 379–387.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in ECCV. Springer,
2016, pp. 21–37.

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
2018.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[5] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “Sˆ 3fd:
Single shot scale-invariant face detector,” in ICCV, 2017, pp. 192–201.

[6] W. Zhu, C. Liu, W. Fan, and X. Xie, “Deeplung: Deep 3d dual path
nets for automated pulmonary nodule detection and classification,” in
WACV, 2018, pp. 673–681.

[7] E. Maiettini, G. Pasquale, L. Rosasco, and L. Natale, “Interactive data
collection for deep learning object detectors on humanoid robots,” in
Humanoids, 2017, pp. 862–868.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in ECCV. Springer, 2014, pp. 740–755.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[10] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE signal processing
magazine, vol. 32, no. 3, pp. 53–69, 2015.

[11] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Automatic
localization of casting defects with convolutional neural networks,”
in IEEE International Conference on Big Data, 2017, pp. 1726–1735.

[12] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road
damage detection using deep neural networks with images captured
through a smartphone,” arXiv preprint arXiv:1801.09454, 2018.

[13] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classi-
fication and detection dataset,” 2018.

[14] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in CVPR, 2018,
pp. 3712–3722.

[15] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He,
“Detectron,” https://github.com/facebookresearch/detectron/, 2018.

[16] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy
trade-offs for modern convolutional object detectors,” in CVPR, 2017,
pp. 3296–3297.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
ICCV. IEEE, 2017, pp. 2980–2988.

[17] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IROS, 2017, pp. 23–30.

[18] J. Borrego, R. Figueiredo, A. Dehban, P. Moreno, A. Bernardino, and
J. Santos-Victor, “A generic visual perception domain randomisation
framework for gazebo,” in ICARSC. IEEE, 2018, pp. 237–242.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS, vol. 3, 2004, pp. 2149–
2154.

[20] W. Rawat and Z. Wang, “Deep convolutional neural networks for
image classification: A comprehensive review,” Neural computation,
vol. 29, no. 9, pp. 2352–2449, 2017.

[22] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks?” in ICRA. IEEE,
2017, pp. 746–753.

[23] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in ICRA. IEEE, 2017, pp. 3357–3364.

[24] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images through
adversarial training,” in CVPR, vol. 3, no. 4, 2017, p. 6.

[25] G. Georgakis, M. A. Reza, A. Mousavian, P.-H. Le, and J. Košecká,
“Multiview RGB-D dataset for object instance detection,” in Interna-
tional Conference on 3D Vision (3DV). IEEE, 2016, pp. 426–434.

[26] G. Georgakis, M. A. Reza, A. Mousavian, P. Le, and J. Kosecka,
“Multiview RGB-D dataset for object instance detection,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1609.07826

[27] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3d
scene labeling,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), May 2014, pp. 3050–3057.

[28] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick,
and R. Girshick, “Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning,” in CVPR. IEEE, 2017,
pp. 1988–1997.

[29] Blender Online Community, Blender - a 3D modelling and rendering
package, Blender Foundation, Blender Institute, Amsterdam. [Online].
Available: http://www.blender.org

[30] N. Jakobi, “Evolutionary robotics and the radical envelope-of-noise
hypothesis,” Adaptive Behavior, vol. 6, no. 2, pp. 325–368, 1997.
[Online]. Available: https://doi.org/10.1177/105971239700600205

[31] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 969–977.

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[33] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in CoRL, 2017, pp. 334–343.

[34] K. Perlin, “Improving noise,” ACM Trans. Graph., vol. 21, no. 3, pp.
681–682, Jul. 2002. [Online]. Available: http://doi.acm.org/10.1145/
566654.566636

[35] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial dis-
criminative domain adaptation,” in CVPR, vol. 1, no. 2, 2017, p. 4.

https://github.com/facebookresearch/detectron/
http://arxiv.org/abs/1609.07826
http://www.blender.org
https://doi.org/10.1177/105971239700600205
http://doi.acm.org/10.1145/566654.566636
http://doi.acm.org/10.1145/566654.566636

	INTRODUCTION
	RELATED WORK
	Reality Gap
	Data Augmentation
	Domain Randomization

	METHODS
	Single–Shot Detector
	Contributions to Gazebo Plugin
	Experiment Design and Setup

	EXPERIMENTS AND RESULTS
	Benchmarking Contributions to Gazebo Plugin
	Effects of Domain Randomization on Object Detection
	Performance Evaluation on CLEVR
	Individual Contribution of Texture Patterns

	CONCLUSIONS AND FUTURE DIRECTIONS
	References

