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Abstract—In this work, a complete solution is provided for
detecting and identifying cylindrical shapes, which are commonly
found in household and industrial environments, using consumer-
grade RGB-D cameras. Most standard approaches to detect
and identify cylinders are not robust to outliers (e.g. points on
other objects in the scene), which limits their applicability in
realistic scenes. In addition, these methods fail to benefit from
environmental constraints, e.g. the fact that cylinders often lie or
stand on flat surfaces. To tackle the aforementioned limitations,
we introduce three main novelties: (i) a point cloud soft voting
scheme with curvature information that reduces the influence
of outliers and noise, (ii) a selective sampling of the orientation
space that favours orientations known a priori, and (iii) a deep-
learning based classifier to filter out objects with non-cylindrical
appearance in the 2D images, thus further improving robustness
to outliers.

A set of experiments with synthetically generated data are used
to assess the robustness of our fitting method to different levels
of outliers and noise. The results demonstrate that incorporating
the principal curvature direction within the orientation voting
process allows for large improvements on cylinders parameters
estimation. Furthermore, we demonstrate that combining the 2D
deep-learning cylinder classifier with the 3D orientation voting
scheme allows for large speed-up and accuracy improvements on
cylinder identification. The qualitative and quantitative results
with real data acquired from a consumer RGB-D camera, confirm
the advantages of the proposed framework.

I. INTRODUCTION

Due to recent technological advances in the field of 3D
sensing, range sensors have become financially affordable to
the average consumer, boosting the proliferation of robotics
applications requiring accurate 3D object recognition and pose
estimation capabilities. More specifically, in the tasks that
involve interaction with the surrounding environment, e.g.
manipulation, an artificial agent would require to accurately
recognise objects and estimate their pose. These tasks include
successful manipulation and grasping, obstacle avoidance and
self localization with respect to known landmarks, to name a
few.

Efficiency is another important requirement in robots with
power limitations [1], where fast and accurate perception is
required, e.g. for the manipulation of kitchenware objects [2].
Therefore, it is of the utmost importance to build efficient

Fig. 1: A snapshot of a RGB-D point cloud and overlaid
cylindrical (green) and non-cylindrical (red) shapes detected
with our methodology. Figure best seen in color.

perceptual systems that are not only robust to sensory noise,
but also to occlusion and outliers.

A key aspect behind the success of a grasping solution
resides in the choice of the object representation, which can
deal with incomplete and noisy perceptual data and is flexible
enough to cope with inter and intra-class variability, allowing
the generalization to never-seen objects. Furthermore, in order
to cope with transmission bandwidth and computational pro-
cessing capacity limitations, efficient and fast perception is an
essential requirement for real-time performance.

In this work, we propose a novel computationally efficient
attentional framework for the task of simultaneously detecting,
recognizing and identifying particular object shapes. We focus
on cylindrical shaped objects which are commonly found
in domestic (e.g. cups, bottles) and industrial environments
(e.g. pipes, pillars, scaffolds), and identifying them plays an
important role in many robotic grasping applications [2], [3].

The proposed framework relies on the tabletop assumption,
i.e., objects are placed on flat surfaces, which is another widely
adopted scenario in robotics [4], [5] (Fig. 1). In order to
deal with cluttered environments which are often populated
with multiple non-cylindrical shapes i.e. distractors, we take



advantage of the recent advances in deep learning architectures
to introduce an efficient recognition module that learns to
filter out irrelevant object candidates. More specifically, we
incorporate a pre-attentive shape-based selection mechanism,
that avoids the need of time-consuming, top-down cylin-
der parameter identification at an early stage, on irrelevant
salient candidate objects. Furthermore, the most successful
cylinder fitting approaches in the 3D shape fitting literature
are based on a computationally efficient 2-step Generalized
Hough Transform (GHT) [6]. We extend this method with a
set of improvements that allow coping with large levels of
outliers, mainly residing on bases of cylinders, which often
introduce problematic biases during the orientation estimation.
The cylinder fitting approach described in this paper was
originally proposed in [7], but the reviewed literature and
experimental evaluation here is significantly expanded.

Our main contribution is threefold: first, and unlike previous
approaches that are only based on 3D depth information, we
combine a state-of-the-art [6], [7] cylinder fitting approach
which is based on a robust and computationally efficient 2-step
GHT with a 2D image-based top-down Deep Convolutional
Neural Network proposal rejection mechanism to increase the
quality and speed of estimations. Since gathering a large
dataset, required for deep learning based recognition tech-
niques is laborious and time consuming, we provide a semi-
automatic data gathering procedure, using 3D information,
which greatly facilitates acquiring and labeling relatively large
amounts of data. Second, we propose a novel randomized
sampling scheme for the creation of orientation Hough ac-
cumulators. Our sampling method allows the incorporation
of prior structure knowledge which improves accuracy with
the same computational resources. And finally, as our third
contribution, we introduce a novel soft-voting scheme, which
considers surface curvature information, in order to cope with
points that exist on flat surfaces which vote for erroneous and
arbitrary tangential orientations.

We perform a systematic and thorough quantitative assess-
ment of the influence of noise and outliers on detection and
pose estimation error of cylinder fitting methods, comparing
our proposed method with that of [6]. Our ROS [8] and
Caffe [9] C++ implementation can identify multiple cylin-
ders under a second, allowing an easy and straightforward
integration in general robotics systems, e.g. in grasping and
manipulation pipelines. The code1 and datasets 2 of our
experiments are publicly available online.

The remainder of this paper is structured as follows. In
section II we overview previous related work available in the
literature. In section III we describe in detail the various steps
involved in the proposed cylinder detection and identification
methodology, as well as the datasets used for training and eval-
uating the pipeline. In section IV we quantitatively evaluate
the benefits of the proposed contributions. Finally, in section V
we draw our conclusions and propose promising future work

1[code] https://github.com/ruipimentelfigueiredo/shape detection fitting
2[dataset] http://soma.isr.tecnico.ulisboa.pt/vislab data/facyl/facyl.zip

ideas.

II. RELATED WORK

As described in the previous section, successful identifica-
tion of objects in an environment requires not only the devel-
opment of robust and efficient object detection architectures,
but also the definition of flexible shape representations that
should facilitate generalization to never-seen-objects, via the
integration of different visual sensing modalities. Therefore,
we organize the present section in two distinct parts. First,
an overview of the state-of-the-art methods in visual atten-
tion, with an emphasis on shape-based models of selective
attention is presented. Afterward, we analyse various object
identification paradigms proposed in the literature, suitable
for applications that require identification and localization of
parametric shapes.

A. Shape-based Selective Attention

Visual attention plays a central role in biological and
artificial systems to control perceptual resources [10], [11].
The classic artificial visual attention systems use salient fea-
tures of the image, benefiting from the information provided
via hand-crafted filters. Recently, deep neural networks have
been developed for recognizing thousands of objects and au-
tonomously generate visual characteristics that are optimized
by training with large data sets. Besides their application in
object recognition, these features have been very successful
in other visual problems such as object segmentation [12],
tracking [13] and visual attention [14].

Evidence from neurophysiology studies [15] suggests that
people consider shape as an important feature dimension
among other low-level visual features (e.g. texture and color).
In [16] the authors found that subjects looking for a particular
shape (e.g. flowers or pillows) are more accurate in reporting
other features of that object (e.g. color) meaning that people
have attention mechanisms for shape features. Furthermore,
infants rely more on shape than on color when learning
new objects, which in turn allows them to generalize to
other objects with similar visual features while interacting
with them [17]. This fact motivates the need of developing
more sophisticated, shape-biased and bottom-up attentional
architectures [18].

B. Object identification in robotics

Object recognition and pose estimation with 3D depth
data is an important subject in computer vision with many
applications in robotics. There are two main approaches to this
problem that depend on the availability of 3D object models:
3D model based and learning based. If one has a description
of the 3D shape of the object, either given by a parametric
surface representation or by a CAD mesh representation, the
3D model-based methods are often used for simultaneous
object recognition and 3D pose estimation [19]. If such
representations are not available, the dominant approaches rely
on machine learning techniques that “learn a model” given
a set of image samples of the object, acquired by the robot



sensors [20]. Despite being flexible and capable of general-
izing to novel objects in detection and classification tasks,
these methods are often unsuitable for estimating some shape
properties, such as 3D pose or size of the object. In this work
we leverage the accuracy and generalization capabilities of
state-of-the-art deep learning techniques in recognition tasks,
with robust 3D model-based fitting approaches to develop a
multi-modal, fast, and robust cylinder identification pipeline.

One of the most successful approaches for model-based 3D
object recognition using point clouds are based on [21], [22]
where a global descriptor for a given object shape model is
created, using point pair features. The CAD model of the
object is used to create a large database of features. At run-
time, the matching process is done locally using an efficient
and robust voting scheme similar to the Generalized Hough
Transform [23]. Each point pair detected in the environment
casts a vote for a certain object and 3D pose. However
in unstructured environments, existing CAD based methods
tend to suffer from outliers and occlusion. In semi-structured
environments (e.g. industrial pipelines), strategies based on the
detection and estimation of parametric shapes are generally
more robust and flexible [24][25][26]. For the extraction
of simple geometric shape primitives like planes, cylinders,
cones and spheres, the two most common paradigms are
the Hough transform [23] and Random Sample Consensus
(RANSAC) [27], which are robust to outliers and noisy data.

RANSAC-based approaches are typically preferred over
the former since they are more general and do not require
the definition of complex transformations from 3D input to
parametric spaces. In the RANSAC paradigm, the data is
used directly to compute best-fit models. Despite their proven
applicability for the extraction of geometric primitives in noisy
3D data [28] [29], in particular in tabletop object segmentation,
RANSAC-based techniques have high memory requirements.
Being a non-deterministic iterative algorithm, computational
time is greatly dependent on the allowed iterations to produce
reasonable results, hence becoming impractical for scenarios
with large levels of outliers [30]. In other words, the large
number of random selections in large-scale point clouds may
compromise the method applicability in applications with real-
time constraints. Furthermore, their lack of flexibility hinders
the incorporation of model-specific heuristic knowledge, that
enables the creation of more effective and efficient specialized
methodologies.

The problem of detecting and estimating the pose of cylin-
der structures using 3D range data and Hough transform is
naturally formulated on 5-dimensional parametric spaces (2
orientations, 2 locations plus the radius), but this results in
prohibitive computational complexity due to the curse of di-
mensionality (the size of the Hough accumulator is exponential
in the number of dimensions). The most efficient parametric
shape fitting methods are based on Hough transforms that esti-
mate cylinder parameters, i.e. orientation, position and radius,
in two sequential voting steps [6], [7]. More specifically, they
rely on a 2D Hough transform to estimate orientation, i.e.
the direction of the cylinder axis, followed by a 3D Hough

transform to simultaneously detect radius and position. Though
reducing the exponential complexity factor, this approach still
lacks speed in dense point cloud data. In [31] and [32]
the authors proposed a coarse-to-fine voting procedure that
speeds-up the former method by several orders of magnitude.
Another interesting idea is the incorporation of environment
structural constraints (e.g. cylinders are standing vertically or
horizontally on the floor) to reduce the search space [30] to a
small subset of possible orientations.

Despite the improvements on computational complexity of
the previous approaches, their lack of robustness to outliers
still sets the main drawback to their usage in real applications.
Palánz et. al. [33] introduces a method that finds the cylinder
that fits better in a point cloud, modeled as a mixture of two
Gaussians. One Gaussian models the data samples belonging
to the cylinder and the other Gaussian models the outliers.
The random variable of the model is the fitting error, which is
lower for the inliers and larger for the cylinder outliers. The
error considered in their work is the sum of the perpendicular
distance from the point to the estimated cylinder, and its
parameters are estimated using the Expectation Maximization
algorithm for the mixture of Gaussians. Although they show
a large robustness to outliers, the method is computationally
demanding and not parallelizable. Tran et. al. [24] propose
an algorithmic approach that starts from individual cylinder
detection, followed by a mean shift clustering in the cylinder
space parameters. The individual cylinder detection algorithm
finds promising cylinder hypotheses based on weighted point
cloud normal estimation and an inlier point selection. The
normals are utilized to find the cylinder axis orientation
by selecting the eigenvector corresponding to the smallest
eigenvalue of the covariance matrix C of normal vectors of
inliers. The inliers are selected by projecting the cylinder
points to a plane normal to the cylinder axis orientation and
fitting the projected points to a circle. This approach is robust
to outliers and finds multiple cylinders, but is computationally
more expensive than [6], which is the baseline of our approach.
Nurunnabi et. al. [25] propose an algorithmic approach that
relies on Robust Principal Component analysis (RPCA) to find
the cylinder orientation and Robust Least Trimmed Squares
(RTLS) regression to remove outliers from the RPCA cylinder
parameter estimation. The RTLS removes outliers that do not
fit the projected circle from the cylinder points. This approach
is limited to find just one cylinder in the point cloud.

In this paper we propose a novel fitting approach that lever-
ages an efficient implementation of the Hough-based method
of [6] with the increased robustness of using statistical models
to encode domain-specific knowledge. More specifically, the
focus and the main contributions of our work are: a novel
randomized sampling scheme for the creation of orientation
Hough accumulators which allows the incorporation of en-
vironment structural priors to improve orientation estimation
accuracy with the same computational resources; a voting
scheme that significantly improves the robustness of Hough
methods in cylinder detection and pose estimation.

Still, all the aforementioned fitting approaches are incapable



of filtering, at an early stage, different object shapes that act
as irrelevant visual distractors. The time consuming process
of fitting shapes to distractors, marks another limitation of
fitting approaches, which hinders their applicability in real
world scenarios. Kostavelis et al. [34] have incorporated
Graph-Based Visual Saliency algorithm (GBVS) as a pre-
processing step in training a biologically inspired Hierarchical
Temporal Memory (HTM) network. According to these results,
the introduction of a bottom-up attention mechanism signif-
icantly improves the efficiency and performance of down-
stream tasks, however, it is not clear how much their approach
can generalise to the detection of occluded objects. Similarly,
we incorporate a mediating shape-based pre-attention bottom-
up mechanism to reduce the space of possible cylindrical
shapes to a small subset of prominent objects in the field
of view, in a bottom-up manner. The 2D image patches,
coming from 3D segmentation are first classified using a Deep
Convolutional Neural Network (DCNN), which is robust to
occlusion. Object classes of interest (i.e. cylinder), are further
considered for parameter identification, which results in faster
and more accurate estimates.

III. METHODOLOGY

In this section we describe our framework for efficient
detection and identification of cylindrical shapes using mul-
tiple visual sensing modalities: color and depth. The proposed
architecture, depicted in Figure 2, is an integration of different
cognitive blocks which are responsible for object segmen-
tation and shape recognition, fitting and localization. In the
remainder of this section we describe in detail the multiple
components of our pipeline.

A. System Overview
We start by detecting tabletop objects using 3D point

cloud information, since points above tables are considered
to belong to potentially graspable objects. Therefore, the first
component of our cylinder detection and identification pipeline
is a bottom-up segmentation module that is triggered by salient
objects laying on flat surfaces [35]. First, we use a RANSAC-
based fitting approach, which efficiently operates on organized
point cloud data [36], in order to detect planes on the scene
and segment objects above these planes. We rely on Euclidean
clustering [36] to identify individual objects. Afterwards, these
objects are projected on the 2D camera plane to extract bound-
ing boxed 2D focused images from a stream of monocular
images, which are used to recognize cylindrical shapes via
a deep artificial neuronal network classifier. The proposed
Convolutional Neural Network (CNN) is trained offline via
transfer learning, and acts as a shape-based mediating pre-
attentive selective mechanism that filters out non-cylindrical
shapes. Finally, the parameters of the identified cylindrical
shapes are estimated in 3D Cartesian space, using an efficient
and robust top-down depth-based Hough transform.

B. Transfer learning for early shape-based attention
In order to reject region proposals and avoid parametric

identification of non-cylindrical objects, we propose to use

deep neural networks. Inspired by recent advances of deep
learning in achieving state of the art performance in recogni-
tion tasks, we use a deep CNN as a binary classifier to decide
if a particular object is a cylinder or not.

However, using a deep neural network for the task at hand
can pose several challenges. Firstly, most deep neural network
architectures are notoriously data-hungry, usually trained on
millions of labeled images. Secondly, designing a neural
network architecture for a new task is time consuming and
involves a large amount of trial and errors. And last, storing
and using them on most embedded systems is impractical due
to the substantial size and the computations they require.

1) Data acquisition and training: To solve the first prob-
lem, we propose a fast and convenient procedure for semi-
automatic gathering of labeled data, which does away with the
need of manual labeling. The procedure relies on the 3D table-
top segmentation method and the 3D bounding box projection
to 2D approach described in the previous subsection. For the
creation of positive samples, we first place many different
cylindrical shaped objects on tabletops and acquire data, from
multiple views, using an hand-held RGB-D camera. Then for
the creation of the negative examples data set, we repeat the
same procedure with all the non-cylindrical objects, commonly
found in the testing environment.

2) Cylindrical-shapes recognition: For the second problem,
i.e. architecture design, we propose to use transfer learning
[37]. More specifically, we have used a network previously
trained on imagenet data set [38] and fine-tuned it as a cylinder
classifier. This way, the architecture of the network is pre-
defined and it is only necessary to change the last layer such
that instead of predicting probability classes of 1000 objects, it
only outputs the probability that an input image is a cylinder
or not. Moreover, it is generally assumed that if a network
performs well on a recognition task, it means it has learned
informative features which are useful for different tasks. As
a result, it is possible to train the network on significantly
smaller data sets and only slightly change the previously
learned features.

3) Performance speed-ups: In order to have a small net-
work which performs reasonably fast even in the absence of
powerful GPUs, we used a neural network called SqueezeNet
[39]. This network achieves AlexNet accuracy score on ima-
genet while being 50 times smaller. Taking advantage of this
reduction in parameters of the network, it is possible to have a
fast and reliable classifier which is more suited towards real-
time applications.

C. Cylinder Parametric Fitting

Our approach is based on the former work of Rabbani et
al. [6] that splits the cylinder detection and pose estimation
problem in two independent Hough transform stages. In the
first stage, 3D point normals cast votes for possible cylinder
orientations, in a 2D orientation accumulator. In the second
stage, the point cloud is rotated according to the determined
orientation and each point votes for a position and radius of
the cylinder in a 3D Hough accumulator. In that work the



Fig. 2: General overview of our shape-based attention framework.

unit sphere of orientations is uniformly and deterministically
sampled at a predefined number of points [40], to generate
a discrete Hough accumulator space, in which voting is
subsequently performed. A larger number of cells on the unit
sphere improves the accuracy of the orientation estimate, at the
cost of increased computational effort. In the present work, we
propose several improvements to the orientation voting stage
of [6].

In this section we describe in detail our methodology for
improved orientation estimation during cylinder detection.
First, we introduce a novel randomized sampling scheme
which enables the creation of non-uniform, problem-specific
orientation Hough accumulators. Then we present a novel and
more efficient Hough voting scheme that relies on simple
inner products. As opposed to [6], we avoid the computational
burden of explicitly voting in spherical coordinates, which
requires the computation of rotation matrices and, conse-
quently, of inefficient trigonometric functions. Furthermore,
our voting scheme is richer than the one of [6] since it allows
incorporating curvature information. When compared with the
work of [6], the proposed methodology is able to cope with
higher levels of outliers, including flat surfaces such as ground
planes, hence avoiding the need of prior plane detection and
removal.

1) Randomized Orientation Hough Accumulator: The pro-
posed orientation Hough accumulator space is composed of a
set of cells D lying on a unit sphere. The center of each cell
corresponds to a unique absolute orientation. The accumulator
is analogous to a Voronoi diagram defined on a spherical
2-manifold S2 in 3D space, as depicted in Fig. 3, and is
represented by a set of Nd 3D Cartesian sample points with
unit norm, centered in the reference frame origin (center of
the sphere)

D = {di ∈ R3, i, ..., Nd : ‖di‖ = 1} (1)

(a) Unbiased. (b) Polar biased (M = 1).

(c) Equator biased (M = 1) (d) Non-trivial (M ≥ 1)

Fig. 3: Different sampled unitary spheres, where each point on
the unit sphere represents the center of a candidate Voronoi
cell orientation.

which are i.i.d. and randomly generated from a three dimen-
sional Gaussian Mixture Model (GMM) distribution

di =
vi

‖vi‖
where vi ∼ p (θ) =

M∑
m=1

φmN (µm
d ,Σ

m
d ) (2)

where M is the number of mixture components and each di ∈
D represents an orientation, allowing for efficient voting with
observed surface normals, using inner products (equation 3).

The parameters of the GMM components are chosen ac-
cording to task at hand (e.g. find vertically aligned cylinders)
or prior knowledge on how likely specific orientations are (e.g.
cylinders are unlikely to be in relative diagonal orientations).
On one hand, in order to produce uniform and unbiased



accumulator structures, the surface should be sampled from a
rotationally symmetric distribution, i.e., from a single Gaussian
with zero mean and variance equal in all dimensions [41]
(Fig. 3a). On the other hand, non-uniform, task-dependent
sampling biasing can be achieved by manipulating the GMM
parameters (see Fig. 3).

Hypothetical accumulator spaces that may be suitable for
different priors are depicted in Fig. 3. In the absence of prior
information or task definition, one should sample from a single
component Gaussian, with zero mean and standard deviation
equal in all dimensions (Fig. 3a). If for instance the task is
to find cylinders that are vertically aligned with the reference
frame (e.g. table reference plane), one should privilege orien-
tations at the pole (Fig. 3b) rather than the equator (Fig. 3c).
In the latter case, varying the Gaussian mean is not sufficient.
One could sample from a single-component zero mean GMM
with larger variance in the horizontal directions. Finally, prior
knowledge or more complex detection tasks (e.g. locating
diagonal pipes or machine handles) can benefit from GMMs
with many components (Fig. 3d).

Our randomized sampling scheme offers several advantages
over the one of [6], namely:
• it is easier to implement than its deterministic coun-

terpart [40] and allows for the fast creation of biased
orientation voting spaces.

• the non-deterministic nature of the representation offers a
convenient mechanism for encoding task-related biases or
probabilistic prior knowledge about possible orientations,
depending on the environment (e.g. cups are typically
oriented vertically on tables). Biasing the orientation
Hough accumulator space leads to more efficient, flexible
and adaptable resource allocation and to more accurate
orientation estimation, for the same memory and compu-
tational resources.

2) Fast Robust Orientation Voting Scheme: At run-time
time, the input of our algorithm is a scene input point cloud
which comprises a finite set of 3D Cartesian points P ⊂ R3 ,
where P = {ps, s = 1, ..., Ns}.

First, we estimate the surface normals at each scene point
ps ∈ P using the Principal Component Analysis (PCA) [42]
of the covariance matrix created from its k-nearest neighbors.
Let N = {ns, s = 1, ..., Ns} denote the set of surface
normals. Then, we proceed with the computation of the
principal curvatures as follows. For each scene point ps, we
compute a projection matrix for the tangent plane given by the
associated normal ns. After, we project all normals from the
k-neighborhood onto the tangent plane. Finally, we compute
the centroid and covariance matrix in the projected space. We
finally employ eigenvalue decomposition of this covariance
matrix to obtain the principal curvature directions csmax ∈ R3

and csmin ∈ R3 and the corresponding eigenvalues kmax ∈ R
and kmin ∈ R (see Fig. 4). Let Cmax = {csmax, s = 1, ..., Ns},
Cmin = {csmin, s = 1, ..., Ns} denote the sets of principal
curvature directions and Kmax = {ksmax, s = 1, ..., Ns},
Kmin = {ksmin, s = 1, ..., Ns} the sets of the corresponding
eigenvalues.

n

cmax

cmin

Fig. 4: Normal (n) and principal curvatures’ directions (cmax
and cmin) for a cylinder surface point.

The orientation voting procedure goes as follows: For each
direction cell di in the orientation Hough accumulator A,
we compute the inner product with all the scene surface
normals ns ∈ N and their associated larger principal curvature
directions csmax ∈ C to cast continuous votes in the accumulator
according to the function

A(i) =

Ns∑
s=1

ksmax − ksmin

ksmax + ksmin

∣∣(1− dicsmax

)∣∣ ∣∣(1− dins
)∣∣ (3)

This soft voting function gives more weight to directions
that are simultaneously orthogonal to the the normal and
the principal curvature directions. The term ks

max−k
s
min

ks
max+ks

min
benefits

surface points with large and low curvature along directions
vmax and vmin, respectively.

After determining the cylinder orientation we proceed with
the estimation of the cylinder position and radius, as detailed
in [6]. First, we align the estimated cylinder axis with the
camera z-axis. Then, we project the inlier points on the camera
xy plane and use a Circular Hough Transform (CHT) [43] to
estimate the cylinder position and radius.

3) Goodness-of-fitting criterion: Finally, the goodness of
the fitting of a cylinder is evaluated using the following
conditional confidence measure:

p(cylinder|object) =
Nmodel

Ncluster
(4)

where Nmodel represents the number of points that fit the
estimated cylinder parametric model (i.e. inliers) and Ncluster
the total number of 3D points belonging to the object. Esti-
mations below a user-defined quality threshold are discarded
and considered as non-cylindrical shapes. We have used this
criterion as a baseline for cylinder detection.

D. Datasets Description

In this subsection we introduce the details of the datasets
created for assessing the proposed pipeline, as well as their
generation and gathering procedures.



(a) cylindrical samples (b) non-cylindrical samples

Fig. 5: Object image crop examples from the created classifier training (top row) and testing (bottom row) datasets .

Fig. 6: Scene samples from the collected 200 frame RGB-D benchmark dataset.

1) Simulation Environment: To be able to quantitatively
measure the robustness of the proposed cylinder fitting ap-
proach, when dealing with variable levels of outliers, noise
and occlusion, we created a simulation environment, to syn-
thetically generate cylindrical point clouds with user-specified
characteristics, namely:
• cylinder parameters: radius, orientation, position and

height;
• outlier levels: the percentage of points belonging to

cylinder bases, compared with points belonging to the
cylinder surface (Fig. 7);

• noise levels: the standard deviation of additive Gaussian
noise (Fig. 8);

• occlusion levels: partial cut length along the axial direc-
tion of the complete cylinder surface (Fig. 9)

By using synthetically generated scenes, one is able to assess
the robustness of 3D cylinder fitting algorithms, in the face of
noise, outliers, and occlusion, with known ground truth.

2) Real data: In order to assess the proposed CNN classi-
fier impact on the fitting pipeline, we created multiple tabletop
scenarios, containing cylindrical and other object shapes, that
were recorded from various view points, with a hand-held
Asus Xtion RGB-D sensing device. This dataset was parti-
tioned in the following two sets:

a) Classifier dataset: this set was collected with the
purpose of training, validating and testing the performance
of the classifier. Each scene contained either cylinders or non-
cylindrical shapes, which facilitates automatic generation of
labeled datasets (see Fig. 5).



training/validation test run-time benchmark
cylinders distractors Total cylinders distractors Total cylinder distractor Total

#scenes 1387 669 2056 694 679 1373 200 200
#objects 5657 3725 9382 2300 2219 4519 480 900 1380

TABLE I: Real dataset statistics.

b) Run-time benchmark dataset: the goal of gathering
this set is to benchmark the whole framework performance
improvements in the presence of salient visual distractors,
which differentiates from the previous set, as each scene
contains both cylindrical and distracting shapes (see Fig. 6).

Tab. I contains the statistics of the two sets.

IV. EXPERIMENTS AND RESULTS

In this section we describe the experiments carried to
evaluate the components of our fast cylinder identification
framework. First, we evaluate individually the proposed clas-
sification and fitting approaches, and then we report the
performance of the whole methodology, with an emphasis on
the computational benefits introduced by the proposed cylinder
classifier.

A. Cylinder fitting performance

Several experiments were conducted in order to quantita-
tively evaluate the quality of the cylinder parameters recovered
by our method and the one of Rabbani et al. [6] , when dealing
with increasing levels of outliers, noise and occlusion. The
fitting performance comparison was assessed using the simu-
lation environment outlined in III-D1. By using synthetically
generated scenes, we were able to compare the algorithm pose
results with a known ground truth.

In all fitting experiments, we generated 1000 scenes, each
containing a single instance of a cylinder. The selected cylin-
der parameters were the following: The radius was fixed to
r = 0.3m and the height was uniformly sampled from the
interval [0.05, 2.0]m. The number of cylinder surface points
was fixed and set to |P| = 900 and the number of orientation
sample points in the Hough accumulator space was set to
Nd = 450. To validate the advantages of our randomized
sampling scheme for the creation of the orientation Hough
accumulator, in all generated scenes the orientation of the
cylinder was fixed and aligned with the z-axis of the frame
of reference. We considered and compared the following
different sampling distributions for creating the orientation
Hough accumulator space (see Table II):

• an unbiased distribution reflecting the absence of prior
knowledge about the cylinder orientation.

• a mildly and a strongly biased distribution that favours
vertical orientations.

Finally, for each scene we generated 30 Hough accumulators
to reduce estimation error bias and variance.

1) Robustness to outliers: In order to assess the perfor-
mance gains of the proposed strategies in the presence of flat
surfaces (i.e. outliers)

outliers =
total scene points

|P|
− 1 (5)

we added synthetically generated planar extremities to cylin-
ders, that simulate realistic cylindrical shapes such as contain-
ers/cans with lids. Surface points on cylinder tops are problem-
atic for orientation estimation since they vote for orthogonal
directions, and in this experiment were considered as planar
clutter (i.e. statistical outliers). The surfaces were generated
with a total of 10, increasing point density levels, to each
previously generated cylinders’ bottom and top extremities
(see Fig. 7). The quantitative results illustrated in Fig. 10
(center column) demonstrate the advantage of considering both
the surface curvature and the surface normal in the orientation
voting step. When dealing with flat surfaces that belong to
cylinders, our method estimates better the cylinder orientation,
as shown by the absolute orientation errors in Fig. 10a and Fig.
10b.

According to our implementation, the original method of
Rabbani et al. can deal with cases where up to 50% of
the points are outliers, without failing. When the number of
outliers exceed 150% of the relative number of candidate
points belonging to the cylinder surface, the method exhibits
an orientation error of 90 degrees, since points belonging to
flat surfaces (i.e. outliers) vote for orthogonal directions to the
ground truth cylinder orientation. Our method is able to cope
with up to 200% of planar outliers, with minimal impact in
orientation estimation. The linear transition in between can be
justified by the fact that the error increases linearly with the
number of outliers voting for orthogonal, wrong orientations.
This is an artifact of the soft-voting scheme, resulting in
consistent response to small and large amount of outliers. In
between, the response exhibits a linear decrease in the pose
estimation accuracy.

As expected, these improvements have a direct and positive
impact in the quality of the position and radius estimations,
depicted through the absolute radius and position errors plots
in Fig. 10e and Fig. 10d.

2) Robustness to noise: In pursuance of quantifying the
behavior of the Rabbani et al. algorithm [6] and our proposed
extensions in the presence of noisy visual sensors, each of the
1000 generated scenes was corrupted by 10 different levels of
additive Gaussian noise, with standard deviation proportional
to the cylinder radius (see Fig. 8).

Figure 10 (left column) depicts the cylinder parameters
estimation errors for both methodologies in the presence of



(a) Ours (b) Rabanni et al.

Fig. 7: Our method against Rabbani et al. when dealing with
flat surfaces.

(a) σnoise = 1% (b) σnoise = 10%

Fig. 8: Estimated cylinder parameters with our method, from
a synthetically generated point cloud with increasing levels of
noise.

noise. The results show that both methodologies have similar
robustness to noise, hence, demonstrating the benefit of our
approach when considering the superior performance of our
method in cluttered scenes. Additionally, biasing the orien-
tation accumulator in the face of prior structural knowledge
significantly improves the estimation accuracy. Overall, our ex-
tensions result in dramatic improvements regarding robustness
to clutter, without sacrificing robustness to noise. Furthermore,
a simple qualitative assessment of our method with data
acquired from a RGB-D camera demonstrates its applicability
to real-scenarios, as exemplified in Fig. 1 and Fig. 12, and its
superior robustness to outliers.

3) Robustness to Occlusion: To evaluate the robustness of
our methodology to occlusion we simulated cylinder partial
views by cutting the original cylinder along the axial directions
by different amounts (see Fig. 9). The amount of occlusion

Bias µp Σp

x y z xx yy zz
Unbiased 0 0 0 0.5 0.5 0.5
Mildly Top-biased 0 0 1.0 0.5 0.5 0.5
Strongly Top-biased 0 0 1.0 0.05 0.05 0.05

TABLE II: Orientation Hough accumulator biasing parameters
used for the creation of the orientation Hough accumulators
in the experiments with synthetic data.

(a) σocc = 100% (b) σocc = 40%

Fig. 9: Estimated cylinder parameters with our method, for
different levels of occlusion.

is given by the ratio of points in the original and occluded
cylinders |P|, according to:

occlusion = 1− |P
′|
|P|

(6)

where P ′ is the set of points of the occluded cylinder.
Fig. 10 (right column) demonstrates that the performance of
our soft voting scheme sightly improves on the method of [6].
Including the sampling bias in the direction of the cylinder
orientation, the improvement becomes significant for large
levels of missing data.

B. Shape-Based Attention

To train and evaluate the performance of the CNN classifier
we have used the dataset outlined in paragraph III-D2a. As
explained in the previous section, we fine-tune the final layer
of SqueezeNet with our which contains 9382 train samples
(out of which, we used 10% for validation) and 4519 test
samples of unseen objects. Fig. 5 shows a few samples that
were used to train and test the network. The original training
dataset contained less than 10000 samples and, in order to gain
more robustness to different orientations, they were mirrored
in vertical and horizontal directions, effectively quadrupling
the amount of available data. The learning rate for fine-tuning
the network was empirically selected as 0.0005 and we kept
other parameters as their proposed values by [39]. Fig. 11a
shows the performance of the classifier at various points during
training.

Our experiments with the neural network classifier demon-
strates generalization to unseen cylindrical and non-cylindrical
objects. In order to quantitatively evaluate the performance
of the 2D image-based deep neural network classifier, it is
compared with a baseline indicator of the fit quality criteria
defined in section III-C3. Fig. 11b compares the precision–
recall curves of the two classifiers on the test set, demonstrat-
ing the superior performance of the proposed classifier.

C. Overall Framework Assessment

The complete framework was evaluated using the dataset
described in paragraph III-D2b, where each scene contains
on average 7 objects (see Tab. IIIa ). Figure 12 depicts an
example of the cylinder parameters estimation quality for the
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Fig. 10: Robustness of our method against the method of Rabbani et al. Left: different levels of noise. Center: different levels
of flat surface outliers. Right: different levels of occlusion.

proposed methodology in the presence of noisy 3D point
cloud data. The use of prior classification, results not only in
temporal gains, but also on early filtering of non-cylindrical
distractors, hence improving the reliability of the 3D cylinder
fitting approach (see Table III). Overall, improvements on
detection speed and robustness to visual distractors can be
achieved by incorporating the shape-based pre-attention mech-
anism, which results in improvements on detection speed and
robustness to visual distractors without sacrificing robustness
to noise. Furthermore, the evaluation of our method with data
acquired from a consumer RGB-D camera demonstrates our
method applicability to real-scenarios and its advantages in
scenes populated with salient visual distractors. In order to
better ground the time complexity of this pipeline, we have
also experimented with an off-the-shelf state-of-the-art object
detector (Faster-RCNN) [44], which similar to SqueezeNet

was also fine-tuned to detect cylinders in RGB images. This
detector uses ResNet101 as the classifier. Using the detector,
one can achieve a constant run-time with respect to the
number of objects in a scene, however, according to Table III,
only the segmentation and classification provided by Faster-
RCNN takes more time than our complete pipeline, even
with an average of 7 visible objects. Furthermore, unlike off-
the-shelf object detectors, 3D tabletop segmentation allows
the definition of a table coordinate frame and, hence, the
incorporation of prior knowledge in the fitting process.

V. CONCLUSIONS

In this paper, we have proposed a complete, robust and,
efficient cylinder detection and parameter identification frame-
work. Unlike previous approaches that are only based on
3D depth information, our methodology incorporates RGB
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Fig. 11: Evaluation of the performance of the binary classifier. (a) Loss and accuracy evolution of the classifier on training
and validation data. (b) Precision-Recall curves of the cylinder class for baseline and SqueezeNet classifier on the test data.
AUC: Area Under the Curve.

Cylinders Distractors Total
ground truth 2.4± 0.68 4.5± 1.50 6.9± 1.8
no classifier 4.00± 0.77 4.00± 0.77 8.00± 0.00

with classifier 1.90± 0.70 6.10± 0.70 8.00± 0.00

(a) Detected objects per scene
Segmentation Classification Identification Total

no classifier 37.38± 9.29 - 97.89± 44.46 135.27± 48.27
with classifier 37.38± 9.23 14.52± 5.21 28.71± 23.29 80.61± 28.53

F-RCNN 142.12± 6.61 - -

(b) Processing times (ms)

TABLE III: Quantitative analysis of the time performance of the proposed pipeline in a set of 200 RGB-D frames acquired
with an Asus Xtion camera.

information by means of a novel shape-based pre-attentive top-
down attentional mechanism that filters out visual distractors at
an early stage. Furthermore, we have developed a robust soft-
voting scheme based on the Generalized Hough Transform
for the detection and pose estimation of arbitrary cylindrical
structures from 3D point clouds. The proposed method in-
corporates curvature information in the voting scheme, that
improves the rejection of outliers, mainly those arising from
planar surfaces that pollute the orientation voting space and
introduce erroneous biases in cylinder orientation estimation.
The results demonstrate significant detection accuracy and
time speed-ups as well as major improvements on the detection
rates and pose estimations with respect to previous schemes.
A systematic quantitative analysis of robustness to outliers and
noise validates our approach and sets a benchmark for future
research.

For future work, we note that robustness to noise could be
further enhanced by sequentially integrating cylinder detec-
tions through sequential Bayesian filtering [45]. In addition,

the current classifier is trained with a limited number of
cylinders, however, it is expected to improve the generalization
to unseen cylinders if the training set contains multiple cylin-
drical objects of various shapes and colors. On the other hand,
even finetuning such methods commonly require training with
large amounts of data which is time consuming and sometimes
unfeasible. We have circumvented this issue by devising an
automated data collection and annotation scheme, however,
recent advances in using simulated data for finetuning is
another promising approach to overcome this challenge [46],
[47].

In this paper we have focused on cylindrical shapes but
the proposed core ideas can be easily extended to other shape
types, depending on training data availability. Combining a
generic multi-label classifier with the proposed randomized
Hough accumulator and the soft voting scheme, paves the way
to extend the current cylinder identification pipeline to various
shapes (e.g. cuboids, ellipsoids, cones). As a final remark, we
emphasise that the computational complexity of the proposed



Fig. 12: Qualitative assessment of our framework with data acquired with an Asus Xtion 3D camera. Cylinder identification
for an example scene. . Detection: Good and bad classifications in green and red, respectively. Parameter identification: green
represents correct parameter estimation; blue represents correct non-cylindrical shape objects identified by the baseline quality
of fitting criterion; red represents wrong estimations without the classifier.

solution scales linearly with the number of objects in the
scene, which may become problematic in environments with
many distractors. However, all components of the pipeline are
parallelizable and, depending on the application requirements,
one can benefit from an increase in the available hardware
resources to further improve run-time performance. Finally,
complex objects such as cylindrical containers require more
elaborate representations such as semantic or relational. In the
case of cylindrical containers one can consider that containers
have two object primitives: planes and cylinders. Future work
should consider these type of representations through the use
of Probabilistic Graphical Models [48] to further improve the
pipeline performance.
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