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aFaculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa
bINESC-ID Lisboa
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Abstract

The use of videos as an input for a rendering process (video-based rendering, VBR) has recently been started to be looked upon
with greater interest, and has added many other challenges and also solutions to classical image-based rendering (IBR). Although
the general goal of VBR is shared by different applications, approaches widely differ regarding methodology, setup, and data
representation. Previous attempts on classifying VBR techniques used external aspects as classification parameters, providing little
insight on the inner similarities between works, and not defining clear lines of research. We found that the chosen navigation
paradigm for a VBR application is ultimately the deciding factor on several details of a VBR technique. Based on this statement,
this article presents the state of art on video-based rendering and its relations and dependencies to the used data representation and
image processing techniques. We present a novel taxonomy for VBR applications with the navigation paradigm being the topmost
classification attribute, and methodological aspects further down in the hierarchy. Different view generation methodologies, capture
baselines and data representations found in the body of work are described, and their relation to the chosen classification scheme is
discussed.
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1. Introduction1

For a long time video has been used in our daily lives as the2

media that more closely recreates an event as we live it in the3

real world. The recent popularization of personal video cam-4

eras and video content distribution has been pushing the scien-5

tific community to expand the traditional video format beyond6

its classical restrictions such as reproduction speed, which gave7

birth to slow motion videos, and most recently the viewpoint8

restriction. The process that uses video as input in order to cre-9

ate novel rendered content is generally defined as video-based10

rendering. This field shares goals and challenges with image-11

based rendering, while having the extra time dimension that is12

non-existent in its counterpart. By analyzing the visual con-13

tent of these images, one tries to extract enough data to add14

processed information to the existing content or to create novel15

views that extrapolate the original experience.16

Video-based rendering is a topic that combines computer17

graphics and computer vision; competences from both areas of18

knowledge are needed. A great effort is made by each com-19

munity to build the bridge between the two areas. Video-based20

rendering is without a doubt a challenging field of work.21

Different paradigms of user interaction have been proposed22

for VBR applications, each one allowing users to navigate through23
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the content in a different manner. Thus, creating widely vary-24

ing lines of work and methodologies to be followed. Each25

group of applications face different problems, and apply differ-26

ent methodologies and steps on each level of the typical VBR27

pipeline. Previous classification schemes presented in the past28

focus either on external aspects to the techniques (e.g. type29

of input/output, level of automation). These, however, do not30

present clearly identifiable classes of techniques and method-31

ologies in which one can easily group and classify newly de-32

veloped work. Moreover, previous state-of-art reviews of VBR33

works have used a definition that was tied to specific method-34

ologies and data representations, which as research in this field35

progresses, ceases to be accurate.36

This article reviews and classifies VBR works in different37

groups with the most high level classification parameter being38

the navigation paradigm, while giving insight on the chosen39

methodologies, data representation, and techniques in the VBR40

pipeline. This document will start by defining video-based ren-41

dering, the taxonomy to be used in this article, and the VBR42

pipeline. Followed by a state of the art report on video-based43

rendering applications and data representation, comparing the44

most popular trends and grouping similar techniques in general45

categories. Finally, conclusions and insight will be given on46

what is the current trend of research, where research should be47

focused for the near future, and what is there to expect from48

future work.49
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1.1. Video-based rendering definition50

Video-based rendering is a term that has been applied to a51

wide range of techniques, sometimes in a more broad way than52

it usually is, and other times focused on only a specific type of53

application. So it is important to establish the definition that54

will be used on this survey. The term was firstly used on the55

article by Schödl et al. [1] referring to image-based render-56

ing techniques extrapolated to the temporal domain, using two-57

dimensional images of a scene to generate a three-dimensional58

model and render novel views of the scene.59

The book from Magnor [2] defines video-based rendering as60

the process of fusing image-based rendering with motion cap-61

ture in order to generate a novel view. Borgo et al. [3] on their62

more broad survey classifies at a top level the techniques under63

the definition of video-based graphics (a more generalist defi-64

nition for VBR), focused on creating new content (other videos65

or 3D reconstructions) based on video input, and video visual-66

ization that would encompass the attempts of allowing the user67

to see video from new/synthetic points of view not previously68

recorded.69

The survey from Stoykova et. al [4] focused only on 3D70

time-varying reconstruction, more in line with the classical defi-71

nition of Magnor [2], and would be only a subset of the previous72

classification, as also Szeliski [5] who stays with the classical73

definition.74

The common ground among all different definitions made at75

different points in time is the shared goal of creating novel view-76

points of a certain scene, not necessarily sharing a methodology77

as suggested by Magnor, or a specific type of input, as sug-78

gested by Borgo et al. We also consider scenarios where depth79

information or three-dimensional models are used combined80

with videos, since the goal of view synthesis is still shared.81

Considering this, we define VBR as the process generating82

novel views of a recorded event on video.83

1.2. Navigation paradigm driven classification84

The chosen definition accommodates a large group of works85

which have considerable differences among them. Not only86

different devices are used for input, but also processing tech-87

niques, and type of data representation will differ considerably88

from one work to another. Due to this fact, defining clear groups89

of applications considering every applied technique is not vi-90

able. Few attempts of classifying VBR techniques as a whole91

have been made, with surveys commonly focusing on classify-92

ing each type of application or lower level techniques.93

Authors have classified techniques according to taxonomies94

based on external aspects of the application such as level of au-95

tomation, type of output and input information [3], or had to96

focus on a more specific domain of applications where classifi-97

cation is simpler [4].98

We found that the chosen navigation paradigm for a VBR99

application is ultimately the deciding factor on three key aspects100

of a VBR technique: View generation methodology, capture101

setup, and data representation. The amount of freedom that is102

given to the user, and the type of navigation through the novel103

views (which we refer to as the navigation paradigm), guides104

(a) Head-face parallax (b) Navigation through time

(c) Navigation through view-
points

(d) Free virtual camera

Figure 1: Different user interaction paradigms for VBR, which are the basis for
our classification.

Figure 2: Diagram showing the used classification scheme for this survey. User
interaction paradigm defines what capture setup is needed, which relates closely
to view generation methodologies and data representations.

the decisions made regarding how to capture and generate the105

content. Four navigation paradigms were found in the reviewed106

literature. 1)Head-face parallax, where the user can navigate107

a plane parallel to the visualization plane. (Figure 1a), 2)Nav-108

igation through time, where the novel views are generated in109

a fixed timeline that the user can control (Figure 1b), 3)Nav-110

igation through viewpoints, where one is allowed to navigate111

between predefined viewpoints (Figure 1c), and 4)Free Virtual112

camera, where there are no positional restrictions to navigation113

(Figure 1d). These will be analyzed in depth in section 6.114

Figure 2 shows the choices for each one of these aspects ac-115

cording to the user interaction paradigm of the application. By116

classifying the techniques according to the five possible com-117

binations of choices that can be made, we have clear different118

classes of works that one can easily identify and apply to differ-119

ent real world problems. Each one of the described aspects and120

grouping of applications will be described in Section 2.121
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2. Video-based rendering applications122

As stated in Section 1.1, the main objective of VBR appli-123

cations is the generation of novel views. We selected sixty-one124

articles from over the last 15 years which share this objective,125

yet use different approaches. We sought to answer a group of126

questions for each one of them:127

1. What capture device was used?128

2. Which lower level techniques were applied?129

3. Which higher level techniques were applied?130

4. What view generation methodology was used?131

5. What was the data representation used for that applica-132

tion?133

6. What was the capture setup used?134

7. What is the navigation paradigm applied to it?135

Questions 1-3 give us insight on individual decisions each136

one of the works make, but did not reveal clear groups of appli-137

cations, or informed us about high level methodologies. This is138

due to the fact that these decisions are relatively low level, and139

techniques are applied with different purposes and in different140

combinations, not necessarily defining an approach or applica-141

tion.142

Questions 4-6 are higher level decisions which clearly re-143

late to each other and allow us to classify different works into144

categories. Methodologies for view generation (4) were iden-145

tified in our review, which have strong relations to other of the146

raised questions, and also allow different types of application147

for each one of them. Data representation (5) will decide what148

data is stored, and what can be generated in these novel views.149

Finally, the capture setup (6) is directly related to the naviga-150

tion paradigm (7) of the application, since it decides the spatial151

limits of the interaction. We considered these four aspects to be152

the most relevant on defining a VBR application. Nevertheless153

the navigation paradigm (7) was found to be the key deciding154

factor on what approach is used, as discussed in section 6.155

We will start by describing the different capture devices156

used in the reviewed VBR works, since this decision trans-157

versely influences methodology, setup and representation. The158

following sections (4 5 and 6) will describe the answers to the159

last four questions listed before, giving insight on each one of160

the reviewed works, explaining its relevancy in a VBR applica-161

tion and the navigation paradigm in hand (Section 6).162

3. Data capture163

The data capture step in a VBR process will define what164

type of input information we have available for all the follow-165

ing steps. The presence of either depth information, a 3D co-166

ordinate system or skeletal information, will directly affect the167

used data representation, and also influence the chosen view168

generation methodology. Also, different types of devices are169

better suited for specific types of setup baselines and naviga-170

tion paradigms. This aspect will be discussed in Section 6171

Besides conventional color cameras, color-depth, laser scan-172

ners, and mixed inputs have been used on VBR and IBR appli-173

cations.174

3.1. Color cameras175

Main efforts in image and video-based applications are fo-176

cused on capturing images with conventional color cameras [6]177

[7] [8] [9] [10], not only due to the lower cost of the devices,178

but the popularity of the developed methodologies (code pub-179

licly available) and the amount of data already available that180

could be used for applications such as shown in the work of181

Ballan et al. [11]. Although being a bigger challenge than us-182

ing more complex and informative data, it is of great interest to183

be able to use raw images for a VBR process, specially from184

mainstream media outlets.185

Regarding the type of cameras suited for the VBR, there186

are some core requirements that should be met for the data to187

be useful. Data acquisition using all the cameras must be pos-188

sible to trigger from an external switch so the several different189

sources can be synchronized, and the camera should be able to190

record in progressive scan mode, not interlaced half-images [2]191

which should be common in modern cameras. Camera resolu-192

tion and recording speed are up to the application objectives,193

not being a general and essential parameter as the previous two.194

Other useful features are the ability to record raw pixel data,195

in order not to deal with images preprocessed by the camera196

internal hardware, flexible to high f-stop numbers, high dy-197

namic range, good color properties, and other features. The198

book from Magnor [2] gives useful insight on some of the is-199

sues that should be considered for both image and video-based200

rendering.201

3.2. Color depth cameras202

Another input device that has been recently popularized on203

VBR applications is the color depth camera. It enables depth204

estimation to be performed reliably with a single device. Asus205

Xtion Pro, ZED, Intel RealSense, and most popularly The Mi-206

crosoft Kinect Sensor have been used due to their real time na-207

ture and low-cost. Depth sensors were already an option on the208

past [12] but recently they were made more accessible and com-209

plete with other built-in functions, such as body tracking, which210

can be used as secondary information in some VBR scenarios.211

Differently from traditional laser scanners, these devices try to212

operate in real time, making them suited for VBR, unlike tradi-213

tional scanners [13] [14] [15] which deliver high quality results,214

but have long capture times.215

Different depth estimation techniques have been used in the216

commercialized devices. Infrared disparity matching [16] was217

used in the first Kinect sensor, where a pattern is projected to218

the scene and recognized by a infrared camera so the distance219

between recognizable features can be estimated. This was sub-220

stituted by time-of-flight laser scanning in the newest sensor221

which has considerably higher precision. Both approaches are222

not set back by textureless regions as image-based stereo meth-223

ods [17], but might suffer from interference from sunlight in224

outdoor scenarios. The ZED sensor uses stereo matching be-225

tween two color cameras, which combined with spatial local-226

ization of the sensor, is able to reconstruct the environment227

at a higher distance, but lower precision. This approach suf-228

fers from lighting variations and low-fidelity reconstruction at229
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textureless regions. Lightfield cameras, or plenoptic cameras230

have also been recently made commercially accessible, and ap-231

plied to VBR in different contexts. These devices are essentially232

composed by an array of micro-lenses and sensors, and allow233

one to obtain precise information about the captured scene in-234

cluding depth [18]. A strong comparison can be made between235

them, and a grid disposition of cameras [19, 20], and they have236

both been used in similar VBR scenarios.237

3.3. Hybrid input238

Duan et al. [21] showed that is possible to perform fusion239

between depth maps from stereo cameras and Kinect sensors240

in real time, having an overall better result than using a single241

device. The work from Goesele et al. [22] is an example of242

another type mixed input that combines the raw images with an243

estimated bounding box for the object to be scanned. Also Bal-244

lan et. al [11] take other information as input such as available245

3D models for a prior reconstruction of the scenery and better246

positioning of the cameras, since the input videos are not cali-247

brated by default. The 3D model input does not always guaran-248

tee a better result, but having an initial geometry estimate does249

improve with the efficiency of the technique, as shown by the250

image-based rendering review from Shum and Kang [23].251

4. Novel view generation method252

Having captured an event from one or more viewpoints, un-253

recorded visualizations can be generated through different pro-254

cesses. The chosen methodology will depend on the available255

data (3D information, images, depth values, etc) and the desired256

navigation paradigm (navigate freely vs. recorded viewpoints).257

Older definitions of VBR mentioned on Section 1.1 defined258

VBR through the used methodology. Schödl et. al [1] and Mag-259

nor [2] defined it as processes that necessarily required recon-260

struction. The fact that the field evolved in different directions261

and newer processes and applications were created, we decided262

to use a definition based on goal only, and use the methodology263

as one of the classification parameters of a certain work.264

4.1. 3D Reconstruction and rendering265

The classical definition of VBR was grounded on 3D recon-266

struction and rendering procedures to generate views [1] since267

this resembled the traditional process to generate novel views in268

Computer Graphics (CG). Rendering 3D models into 2D photo-269

realistic images accordingly to the position and orientation of a270

virtual camera is a straightforward task that has been well doc-271

umented and investigated by the CG community. When 3D in-272

formation about the scene is available, any desired viewpoint273

can be rendered through this process. The outline of this pro-274

cess can be seen in Figure 3275

In the VBR context, the 3D reconstruction step poses a chal-276

lenge because the initial input of the process does not com-277

monly provide three-dimensional information. The inclusion278

of the recent depth sensors in the capture process could fix the279

problem but as mentioned in Section 3, using such sensors is280

Figure 3: Outline of the 3D Reconstruction and rendering view generation
method. Captured data is used to create different types of representations (3D
Reconstruction), which are then used differently to create a 3D visualization
(rendering).

not always viable, so we must still consider 3D reconstruction281

without direct 3D information from the input video streams.282

As we are going to see next, despite of different approaches283

to provide 3D information for performing the 3D reconstruc-284

tion, the novel view creation is accomplished by executing af-285

terwards the classical rendering process with the available 3D286

models or structures that were estimated from the input.287

When the focus of the application are human performers288

(e.g. sports and dance applications), very simplistic 3D infor-289

mation such as an estimated skeleton can be sufficient for novel290

view generation. Players are segmented from the background,291

and their skeletons are recognized from the poses captured in292

video. On the works of Gall et al. [24] and Li et al. [25], a293

mesh is estimated using a visual hull for the performer so it can294

be applied to the tracked skeleton. Stoll et al. [26] and Wu et al.295

[27] move this task to a pre-processing step where depth sen-296

sors are used to create an animated model of the performer. The297

drawback is that changes in the outfit or hair of the performer298

will not be supported.299

Germann et al.[28] has a similar but unique approach, where300

the same process for estimating the skeleton is used, but instead301

of applying a 3D mesh to it, segmented billboards of each body302

part of the performer are applied to the tracked skeleton, this303

approach is not a pure 3D reconstruction case since the applied304

textures are view interpolated. We chose to describe it here due305

to the similarities to the previous approaches.306

Volino et al. [29] and Imber et al.[30] use a initial capture of307

the performer to construct a texture map, which will be applied308

to the estimated visual hulls in each frame. A skeleton is not309

estimated on these works, instead a sequence of visual hulls is310

calculated.311

Finally, the most straightforward approach to 3D reconstruc-312

tion relies on directly estimating depth information from cam-313

era inputs, or depth sensors, creating complex three-dimensional314

structures that will be used for rendering. Zeng et al. [31] and315

Kuster et al. [32] use directly the input from the Microsoft316

Kinect for that task. Google Tango [33] and the work from317

Liu et al. [34] use multiview stereo to estimate depth informa-318

tion, and on the latter, a visual hull is used to define the limits of319

the human performer that is being captured, refining the MVS320

process.321

The most recent work using this methodology was from322

Pagés et al. [35], which uses different sources of information323
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Figure 4: Outline of the View interpolation method. Optical flow between ad-
jacent viewpoints is estimated, and interpolation is performed to create an in-
termediate point of view.

to create a full high quality 3D reconstruction of a recorded324

scene. Multiview stereo is used to estimate rough 3D coor-325

dinates of each pixel, which is combined with silhouette and326

skeletal detection to refine the performers mesh. The advantage327

over similar work [24, 25] is that there is no pre-processing step328

to estimate a mesh, as it is performed in real time. This allows329

deformable tissues and hair to be correctly reconstructed.330

4.2. View interpolation331

When the required novel views are close to a previously332

recorded video stream, 3D reconstruction step may not be nec-333

essary to perform the rendering operation. Chen and Williams334

[36] described this process on their pioneer work. This ap-335

proach introduced in 1993 allowed very complex scenes to be336

rendered through this process, since it is not reliant on the com-337

plexity of the objects to be rendered. Szeliski presents this338

methodology in his survey [5] and also in his own research as339

one of the basic building blocks for VBR applications.340

The scene is captured with an array of aligned cameras, and341

the relative position between pixels from different viewpoints342

is estimated through the optical flow from one point to another.343

These vectors are stored in a ”morph map”, a disparity matrix,344

which will be used to interpolate the values between each one of345

the viewpoints and generate the new images on the unrecorded346

viewpoints, as seen on Figure 4. If the changes are parallel347

to the viewing plane, the interpolated result is perfect. Also,348

as mentioned before, the closest the images are to the original349

viewpoints, the better the estimated results.350

One relevant reference is the work from Kanade [37] about351

the coverage of the Super Bowl XXXV, where the broadcast-352

ing team, instead of individual users, was able to cycle seam-353

lessly through the several cameras in the stadium to give more354

insightful replays. View interpolation and a rough reconstruc-355

tion which is possible due to the playing field being known, are356

used to create transition frames between cameras. A similar357

recent product by Vizrt [38] has been extending the function-358

ality to allow not only transition between cameras but also to359

generate other points of view. This and similar approaches that360

combine traditional view interpolation with specialized infor-361

mation have been referred to as ”view interpolation*” in Figure362

2.363

Goorts et al. [6] uses a similar methodology, but uses multiview-364

stereo to estimate depths for each point, and render better in-365

terpolated images. Similarly, Taguchi et al.[20] , Wang et al.366

[39], and specially Tanimoto et al. [40] have used MVS, but in367

order to represent the scene in the Ray-space using the plenop-368

tic function. This representation allows an easier generation369

of views given the accurate estimation of this space. Ng et370

al. [41] uses the same methodology but with a more object371

focused approach, improving the results in object boundary re-372

gions. Tanimoto et al. [40] introduced specialized devices to373

quickly create such representation for small scale object Simi-374

larly, recent work from Domanski et al. [42] uses this approach375

the chosen view generation technique when neighboring cam-376

eras are placed in an arc, not in a line (where DIBR is used).377

For synthetic views that are not the originally captured, an au-378

dio interpolation technique is also discussed.379

One particular interpolation use case is video stitching, where380

closely captured sequences are used to generate a wider video.381

Image-stitching is a classical problem of computer vision and382

has been widely discussed by the community [43]. When adding383

a temporal dimension camera stabilization, new challenges have384

to be considered in the performed interpolation. Efficiency [44],385

color correction [45], wider baselines [46], ghosting artifacts386

[47], video stabilization [48] among others. These have been387

the main focus points in recent research, with each different al-388

gorithm and proposed technique being more suited to different389

type of content. Regarding our VBR definition, they can be390

considered borderline VBR, as most of the times no completely391

novel views are being created, but through distortion and inter-392

polation of part of the data, views with wider fovs are generated.393

One interesting view interpolation work that must be men-394

tioned is the one from Ballan et al. [11] which applies this395

methodology for a different purpose: to navigate between ca-396

sual uncalibrated captures of the same performance. A rough397

three-dimensional reconstruction of the background is performed398

using SfM to estimate each camera position. Then view inter-399

polation is used to create transition frames between one view-400

point to the other. The performer is represented as a billboard401

naturally changes during transitions, and the background infor-402

mation is interpolated between viewpoints. This work extends403

the work from Kanade [37] and [38] to a more casual scenario,404

where the capture is performed in an uncontrolled scenario.405

Similarly, Lipski et al.[49] presented a similar approach where406

the user could navigate in time and space on interpolated views407

of neighboring videos.408

4.2.1. Temporal interpolation409

Interpolation within a single input video has been used in410

different VBR works as a methodology for generating novel411

content. The two main techniques in this category found in412

the revised papers are the hyperlapse, and video summarization.413

These methods have been referred to as ”View Interpolation*”414

in Figure 2.415

The hyperlapse appeared as an adaptation of the time-lapse416

videos to scenarios where the camera is moving. Time-lapse417

videos will typically record one frame every x seconds and418
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combine everything in a single video. If the camera is mov-419

ing during the video capture process, it will generate unstable420

videos that are unsuitable for watching. Hyperlapses will try to421

temporally stabilize such videos.422

The groundbreaking work of Kopf et al. [50] uses SfM423

to create a rough reconstruction from the environment based424

on different frames. A stable path is calculated through the425

3D estimate of the environment, and new frames are rendered426

through that path at the new camera positions. Using interpola-427

tion between different frames, texture information is projected428

to the extrapolated proxy geometry, creating novel views of un-429

recorded data, based on existing frames.430

The work from Joshi et al [51] uses purely image informa-431

tion to create a hyperlapse. By dropping frames that destabilize432

the camera flow, a smooth video is created. In this particu-433

lar work, new information is not created by any interpolation434

method, putting it in the border line between VBR and video435

editing. A similar approach by Halperin et al .[52] also selects436

the best frames, but creates novel information by using such437

dropped frames to increase the field of view of the recorded438

video, creating unrecorded information for visualization. A439

similar case is the work of Lai et al. [53] which does hyper-440

lapses for 360 degrees videos, creating a smooth path for the441

camera by focusing on certain points of interest throughout the442

video. While no unrecorded information is created, all the re-443

sulting frames are created through an automatic process, and the444

camera path is created through interpolation between different445

positions of subsequent 360 degrees frames.446

Video summarization is another area where temporal inter-447

polation is applied and also has borderline VBR work. Differ-448

ent methods have been applied where frames are also selected449

in order to only keep only the most relevant information. De-450

Menthon et al. [54] does it through curve simplification, while451

the work of Ma et al. [55] uses a user attention model to detect452

which instants in the video are relevant and should be visualized453

as a whole, and which can be summarized. While a new video454

is created, no unrecorded information and visual information is455

produced.456

On the other hand, the ”Video Summagator” from Nguyen457

et al. [56] can create complete novel views while summarizing458

the video. It uses the complete video information to create a459

3D representation of the video as a whole. The authors demon-460

strate scenarios where a panning camera could be used to stitch461

a wider background through temporal interpolation, so fore-462

ground elements could be visualized over a complete overview463

of the camera’s trajectory.464

One notable video stitching example that can be placed slightly465

off the curve, and more in the line of other VBR applications466

is the work from Agarwala et al. [57], where a single mov-467

ing video is used to create a panoramic texture. Both time and468

content are manipulated to transform a sweeping motion of a469

camera into a wider video, manipulating the content in each470

different time frame to match the past, and create a seamless471

animation.472

Figure 5: Depth Image Based Rendering. A set of 2.5D depth images is warped
to create a 3D render that can be visualized from a set of positions.

4.3. Depth image-based rendering473

Depth image-based rendering as a view generation method-474

ology has been acquiring popularity in the recent years since475

depth data is easier to be captured or estimated with modern476

cameras or specified sensors. In their quality assessment work477

on FVV [58] Sandić-Stanković et al. consider DIBR to be the478

main view generation methodology applied in the field. Novel479

views are rendered through warping the Color Depth data into480

three-dimensional information, which then can be viewed through481

chosen viewpoints. This process, shortly named ”3D warping”,482

was introduced by McMillan [59] in his 1997 work, and is sum-483

marized in Figure 5. The work from Zitnick et. al [60] can484

be considered one of the recent precursors of this line of re-485

search. In this work depth is estimated through MVS and used486

for DIBR. The resulting dancers data set has been used as a487

standard benchmark in the majority of work described below.488

The novel view generation methodology is the same but489

each group of works has focused on different aspects of the pro-490

cess.491

Yoon et. al [61] and Muller et. al [62] have presented spe-492

cific data representation for this field (5), focusing on compres-493

sion of data. This line has been followed by several authors [63]494

[64] [65] [66] al [67] and will be discussed in Section 5.495

Due to the fact that the estimated depth values might not496

create a complete scene due to occlusions, or depth disconti-497

nuities might exist due to differences in estimation from one498

viewpoint to the other, other works have focused on in-painting499

and hole filling. Zhu and Li’s approach [68] performed hole500

filling through background segmentation where missing infor-501

mation can be recovered from other views or frames, only inter-502

polating between neighboring pixels when necessary. Rahaman503

and Paul more recent work introduces Gaussian mixture models504

so when the 3D warped views are created and holes are filled505

with information from a different perspective, boundaries are506

less perceivable due to low correspondence between the views.507

Daribo and Saito [63] and Yang et. al [69] techniques have508

worked towards this goal using different data representations,509

and fitting the hole filling task in the process of representing the510

data.511

With the recent advances in rendering capabilities of mobile512

devices, several works have been published in adapting DIBR513

to mobile platforms. The work from Shi et al. [70] from 2009514

talks about rendering data in a remote location, and just request515

the result, since processing power on the device could be not516

enough for interactive view synthesis. Miao et al. [71] has517
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a different approach to minimize interaction delay, since the518

transmission might be slower than the generating the view lo-519

cally. Their approach performs local rendering that is halted520

in case the result comes through the network. Most recently,521

Malia and Debono [72] divide frames into smaller tiles so they522

can be processed in different threads, since more recent devices523

have better processors.524

Huszák [73] focused on less bandwidth use. His work de-525

scribes a specialized network structure for FVV where each526

node can who both render and cache rendered views, so view527

synthesis results can be re-used by other clients, since they are528

stored in the network nodes. Li et al.[74] proposed a standard529

for LTE networks, which reduces the bandwidth in 30%, opti-530

mizing the routing of the transmitted data.531

5. Data representation532

After going through the lower steps of the VBR pipeline,533

information about the captured scene is encoded in a suitable534

format for the chosen rendering process. We found three groups535

of representation in the surveyed works. Geometry based rep-536

resentations, where the scene was modeled as a group of three-537

dimensional objects along the time. Mixed representations, where538

part of the scene is modeled through images, and part through539

geometry. And image based representations, where the scene540

is stored in bi-dimensional matrices with color and optionally541

depth.542

Although it might usually be considered just an implemen-543

tation detail, the data representation on a VBR process is tightly544

related to the chosen methodology for novel view generation,545

and also to the desired type of application. Different represen-546

tations enable the development of alternative methodologies for547

view generation. As seen on Section 4, reconstruction was per-548

formed in different ways, all creating different types of data.549

5.1. Geometry-based representation550

The most straightforward way to represent a scene is through551

geometric primitives. It has been the go-to approach in most552

rendering scenarios. On VBR, they result from a 3D reconstruc-553

tion process, and employed in traditional rendering to generate554

novel views.555

Animated meshes were used in several works [24] [26] [25]556

[27] where the target of the visualization is one or more human557

performers which can be segmented properly in order to esti-558

mate the skeletons. Scenarios with large groups, occlusions,559

and close interactions pose challenging issues. When a static560

mesh has been captured in a previous step for that single per-561

former [26], this representation is very efficient. The recent562

work from Pagés et al. [35] performs 3D mesh reconstruction563

using different sources of information (MVS, pose information,564

visual hull), creating complex geometric information.565

When a skeleton can not be reliably tracked, surfaces [34]566

[32], point clouds [33] and octrees [31] can be used. These are567

classically used for static reconstructions, but can be applied in568

dynamic scenarios. Although more flexible and being complete569

representations (contain full and precise information about the570

(a) Layered Depth Image

(b) Multiview plus Depth

Figure 6: Two different image-based representations based on depth.

objects in the scene), they are less efficient for VBR. Apply-571

ing temporal compression requires specialized algorithms [75],572

while image-based representations can apply video compres-573

sion, which is always evolving. Geometry-based representa-574

tions are usually applied in real-time applications where storage575

and compression is not an issue.576

5.2. Image-based representation577

Image-based representations are independent of scene com-578

plexity, being well suited for these scenarios. On the other hand,579

they are typically discrete, and do not allow certain rendering580

effects that require precise geometric information. Specifically581

for VBR, they have the advantage of enabling ordinary video582

compression techniques to be applied to them, which is not pos-583

sible with geometry-based representations.584

On several view interpolation scenarios [37] [5] [20], or-585

dinary video streams for each recorded viewpoint are the only586

information about the scene in hand. Although effective, fur-587

ther work has shown that depth information is important not588

only for view-interpolation and DIBR when pursuing accurate589

results. Color plus depth video streams have been used for this590

matter [60] [69], where depth information is estimated through591

MVS or captured with specialized sensors.592

Two other image-based representations have been presented593

as alternatives to RGBD streams. Multiview plus depth (MVD)594

by Merkle et. al [62] , and the Layered depth video (LDV) by595

Yoon et. al[61].596
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Multiview plus depth coding is performed by encoding each597

separate RGBD viewpoint as a different stream, and compres-598

sion is applied separately to each stream as illustrated on figure599

6b. The Layered depth image format introduced by Shade et. al600

[76] (the basis for LDV) is one of the most efficient on render-601

ing 3-D objects with complex geometries. It represents a scene602

as viewed from a chosen point of view, but storing not only603

color values for each pixel but also depth information and other604

features that can be used for the rendering process. One of their605

key characteristics is the fact that they store more than one point606

for each pixel. Figure 6a shows an example of an LDI formed607

from a three-dimensional object. Rays are emanated from a cer-608

tain viewpoint and intersections with an object are stored with609

depth and color information. When the same ray goes through610

more than one point of the object, the subsequent intersections611

are added to the back layers. Typically the front layers are more612

populated, with only residual information on the last layers.613

Layered depth videos [61] extend this representation to a614

video format, and their authors argue that is a more efficient615

than the multiview plus depth approach on this type of setups.616

Both use this image-based representation to apply video com-617

pression algorithms to the stream, with the difference of the618

former (MVD) keeping every stream separate, and using them619

to generate a new viewpoint on the viewer side, and the latter620

(LDV) warping the scene to a single point of view, eliminat-621

ing some redundancy, but possibly losing some information due622

to thresholding. One recently introduced alternative was the623

Multiview layered depth image (MVLDI) [77], which applies624

a similar process than the LDI one, but uses a global thresh-625

olding approach, not image-based. Also, each layer is encoded626

according to a different viewpoint. By doing this, the advan-627

tages of the LDI can be extended to wider baseline scenarios628

and more flexible navigation paradigms.629

Finally, Plenoptic videos [40] [39] have been successfully630

employed on view-interpolation. They capture color and depth631

information from different viewpoints and represent it as the632

Plenoptic function (7D) [78], or the Lumigraph [79], its 4D633

simplification. With θ and φ being the azimuth and elevation634

angle of the rays, and λ the wavelength, it is calculated at a po-635

sition (vx,Vy,Vz) in space, and on the VBR scenario, the func-636

tion is 7D due to the time component. So we have the following637

form to the function, which can be considered a complete scene638

description:639

p = P(θ, φ, λ,Vx,Vy,Vz, t) (1)640

Although it is a complete scene description, on a real sce-641

nario we cannot capture the scene from every possible view-642

point. In practice, data is captured with a narrow grid with643

several cameras, or cameras based on arrays of micro-lenses644

(plenoptic or light field cameras). This representation is used by645

sampling this function at the eye positions (vx,Vy,Vz) represent-646

ing the capture viewpoints, and interpolating the values given647

by each one of them to generate intermediate views. Such rep-648

resentation is promising for 3D television, but is still far from649

being accessible for research.650

(a) Articulated billboards

(b) Proxy geometry + Billboard

(c) Visual hull + Texture-maps

Figure 7: Mixed representations with part represented by a geometric recon-
struction, and part by sequences of images.

5.3. Mixed representation651

Although MVD and LDI contain geometric information in652

the form of depth values, we still consider them as image-based653

representations due to the fact that they are stored as images,654

and warping needs to be performed during rendering to obtain655

the three-dimensional values. Examples in this category are656

partly represented by sequences of images, and partly by ge-657

ometry.658

As mentioned in section 4.1 Germann et. al [28] uses artic-659

ulated billboards (Figure 7a) . Skeleton information (geometry)660

is stored alongside images which are interpolated and applied to661

each skeleton. Also the approaches from Volino et al. [29] and662

Imber et al.[30], which use a simplified mesh through a visual663

hull (geometry) combined with sequences of textures (images)664

that are mapped into it (Figure 7c). Ballan et. al [11] has a sim-665

ilar approach but keeping the background geometry static since666

it is only used to track positions of each viewpoint in order to667

generate the transitions (Figure 7b).668

Finally Ng et. al [41] use the Plenoptic function represen-669

tation, but segmented to individual objects in the scene, which670

can be considered a mixed representation, due to the fact that671

individual objects in the scene are separated from each other,672

making the representation more tied to the content of the scene673

than other image-based representations.674

All of these representations aim to combine advantages from675

both worlds. Having three-dimensional representation allow676

one to generate novel viewpoints further away from the orig-677

inal recording points, and using image-based representations,678
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data compression is considerably easier to be applied, and the679

representation complexity is scene independent. It is impor-680

tant to notice though, that in all of the reviewed works, strong681

assumptions about the storing content needed to be made. Typ-682

ically these were used to represent human performers in con-683

trolled conditions, such as a studio capture setup, or a sports684

event where the layout and the captured elements are known.685

6. Baseline of the data acquisition setup, and navigation686

paradigm687

Multi input setups are the typical scenario for VBR. Only688

a small portion of the surveyed works have used a single in-689

put camera, and could be classified as VBR. Devices can be690

placed in a narrow, wide, or semi wide-baseline setup as seen691

on Figure 8. In a narrow set up, the cameras are placed closer to692

each other with little disparity between adjacent views, usually693

with each device parallel to each other. A wide setup typically694

aims to capture a scene or object from all different perspectives,695

having the cameras placed further away from each other, where696

disparity between views is now desired, not avoided. The semi-697

wide scenario would be a step in between where disparity is698

avoided but different viewpoints are desired.699

On multi-streams approaches there is also the need of ex-700

trinsic calibration for the cameras, i.e. know the relative po-701

sitions between them. In controlled environments this can be702

done by using markers detected by the camera [80] [9], but on703

dynamic environments the most common approach is to track704

features using structure from motion [11, 81, 82], providing a705

reliable position calibration for the camera. When depth cam-706

eras are used, specific systems that take advantage of higher707

level information have been proposed, as in the work of Sousa708

et al. [83] where skeleton information is used to quickly cal-709

ibrate a group of Kinect sensors, and point cloud information710

is used to fine-tune the resulting calibration. A parallel prob-711

lem to this is the stream synchronization problem, which can be712

solved by an external centralized trigger on controlled scenar-713

ios [9] [6]. Audio stream aligned can be used on uncontrolled714

scenarios [21] [11].715

Although the general goal of VBR is the same across appli-716

cations, each one of them have different specific goals depend-717

ing on the desired navigation paradigm, as seen on Figure 1.718

On all reviewed works, we found that navigation paradigm is719

tightly connected to the capture setup. According to the objec-720

tive of the application, the setup will be adapted, and all other721

factors mentioned previously are then a consequence of this de-722

cision. Due to this fact, this section groups each work by the723

camera setup, and explain the typical application for each setup,724

and how it relates to the previously raised questions.725

6.1. Narrow baseline applications: Head-face parallax726

One navigation paradigm associated to a free viewpoint videos727

consists of a moving user in front of a screen while having the728

perception of depth through parallax. By adjusting the view-729

point to the position of the user’s eyes, this effect is possible.730

Since the user performs movements in a parallel plane to the731

captured scene, novel views only need to be generated in this732

domain. For this purpose, a narrow capture setup parallel to the733

captured scenario will suffice for the desired results. Figure 9734

summarizes this application group.735

When a narrow capture setup is used, cameras and/or depth736

sensors are arranged in a line [60] or in a grid [20, 19], accord-737

ing to the freedom of choice of views provided by the appli-738

cation. Here we also consider lightfield capture and plenoptic739

cameras. A close comparison can be made between them and740

a grid narrow-baseline disposition, as mentioned in Section 3,741

and they have been successfully used to generate novel views742

in a head-face parallax scenario [84]. This setup is ideal for a743

performance type of recording, where the audience is supposed744

to be facing a stage from a certain direction.745

Methodologies such as view interpolation (VI) and DIBR746

have good performance in this scenario due to the small dis-747

parity between adjacent viewpoints. Applications that perform748

video stitching also fall in this category, where the user either749

visualizes the whole stitched video, or has a head-face parallax750

experience. 3D reconstruction will create incomplete results,751

since only one side of the object is being captured. VI has been752

used when depth estimation is not reliable enough for render-753

ing, but used sometimes as an aid to the interpolation process.It754

was also applied when lightfield reconstruction is performed,755

as mentioned in Section 4.2. DIBR have been used in all other756

works reviewed in this survey.757

All strategies for this setup have used image-based repre-758

sentations because they are meant to work on any kind of data759

with no expected restrictions, and as mentioned previously, image-760

based representations are independent of the complexity of the761

scene.762

6.2. Semi-wide baseline applications: Navigation through view-763

points764

A small subset of works reviewed in this survey aims a sim-765

ilar experience to wider setups, where the user can navigate in a766

full circle around a scene, but the content of the visualization is767

more complex than having a single performer. Similarly to wide768

setups with mixed representations, strong assumptions can be769

made about the content, but the type of result desired is closer770

to narrow baseline applications. Either navigating through cam-771

era viewpoints, or generating intermediate viewpoints but not772

widely far from the defined grid of visualization. For this sense,773

a ”less narrow”, or ”semi-wide” setup is used (Figure 10).774

Instead of performing 3D reconstruction with view interpo-775

lation in some components such as the work from Volino et. al776

with articulated billboards [29], the preferred approach is view777

interpolation supported by three-dimensional information about778

the scene (marked with a * in Figure 2). On sports scenarios779

[37] [11] [38], this information has been used to generate tran-780

sition frames between viewpoints. Given the fact that the re-781

construction is rough, the user never gets to properly visualize782

intermediate frames. The remaining works in this category [41]783

[6] create intermediate viewpoints, but use background geome-784

try information to support this view generation process.785
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(a) Narrow setup with color cameras for stereo
matching

(b) Wide baseline of a low-cost setup for a 360
degrees capture of a subject.

(c) Semi-Wide baseline setup for Sports

Figure 8: Different capturing setups for VBR with different input devices.

Figure 9: Head-face parallax application classes

Figure 10: Navigation through viewpoints applications

6.3. Single camera capture applications: Navigation through786

time787

Figure 11: Navigation through time applications

In the works where only a single viewpoint is captured,788

novel views can only be generated by temporal interpolation,789

extrapolating the data captured by that single viewpoint [50, 56]790

In this case, the user experience is similar to watching a nor-791

mal video, albeit seeing novel rendered images or modified792

perspectives. Some of the works in this category are difficult793

to compare to other VBR works, due to the fact that a true794

novel view is sometimes not created, but merely chosen from795

a group of available views. Also due to the fact that the naviga-796

tion paradigm does not change much from a traditional video.797

However, since novel content is created and such works are tra-798

ditionally considered to be VBR works, we include them in our799

classification as their own category (Figure 11).800

The data representation applied in these works is typically801

image-based, with certain works [50, 53] using it to estimate a802

proxy geometry, making their data representation mixed. Mixed803

representation will typically support more complex systems which804

is able to generate more novel content.805

6.4. Wide baseline applications: Free virtual camera806

Figure 12: Free-camera navigation applications

When the created application aims to generate novel views807

all around the subject of visualization, and not only on a paral-808

lel plane in front of it, a wide setup must be used (Figure 12).809

Interaction with the video is usually done indirectly, moving a810

virtual camera freely around the point of interest.811

This type of setup has been used on scenarios where the812

focus of the video are human performers in a controlled envi-813

ronment [24] [26] [25] [85].814

A wide-baseline setup can be comparable to a single depth815

sensor moving widely around a scene for static reconstruction816

purposes [34] [33], since the camera will end up assuming po-817

sitions equivalent to a wide-baseline setup.818

Because the viewpoint disparity is too high for view inter-819

polation and DIBR, 3D reconstruction was the methodology820

applied in all of the surveyed works. Regarding data repre-821

sentation, when stronger assumptions about the content of the822

scenes could be made such as in sports scenarios, or controlled823

environments, mixed representations could be used [28] [29]824

[30]. All the remaining papers in this category used different825

geometry-based representations. Figure 9 shows the different826

choices that can be made in this application group.827

7. Conclusion and future trends828

Figure 13: Classes of applications (setup, representation, view generation
methodology) placed on a straight line according to the similarities between
their approaches regarding to geometry used in their data representation.
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As explained in Section 1.2 and seen on Figure 2 the dif-829

ferent works can be separated in a hierarchy according to the830

aspects reviewed above. Each navigation paradigm is closely831

tied to a camera setup, and to one or two methodologies or data832

representations. These two aspects are chosen according to the833

type of data to be captured.834

Summarizing the reviewed aspects, DIBR and View inter-835

polation have been used in uncontrolled scenarios, where image-836

based representations can be applied. When strong assumptions837

can be made about the scene in hand, mixed representations838

have been used for view interpolation or 3D reconstruction.839

Geometry based representations have been applied on generic840

scenarios with low requirements regarding quantity of data, or841

when the subject of the free viewpoint video was a human per-842

former in a controlled environment. Finally, view interpolation843

in the form of timely interpolation has been used primarily for844

single camera setups.845

The presented classification for VBR groups different ap-846

proaches not only into clearly identifiable classes that share847

methodologies and problems, but also gives meaningful insight848

on how they operate on the traditional VBR pipeline. Figure849

13 organizes the reviewed classes in a straight line according to850

similarity between each approach.851

With our navigation paradigm driven taxonomy, four dif-852

ferent classes which have their own line of research were iden-853

tified. Despite of the fact that they share similar techniques,854

each one aims to solve different application requirements. We855

have noticed that geometrical information, including depth val-856

ues, plays an increasingly important role in the three classes.857

This is justified by the hardware advances, namely, more pow-858

erful graphic cards and low-cost depth sensors availability. Ap-859

proaches such as view-interpolation were initially a solution to860

complex scenes in VBR since full geometry could not be pro-861

cessed in real time to generate views. We believe 3D recon-862

struction will increase even more their relevance in this field as863

a methodology.864

DIBR has been a good example of an approach that inte-865

grates well the geometric component because it is able to apply866

image-based representations which can be easily compressed in867

the temporal domain for transmission. With the continuously868

increasing requirements regarding viewing resolution, these as-869

pects will become more significant. Successful data representa-870

tions for future VBR applications have to include compression871

mechanisms, as has been seen in the growing body of work872

which adapts DIBR to mobile phones and networks.873
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