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Abstract

Plenoptic cameras image a 3D point by discriminating light rays contri-
butions towards various viewpoints. They allow developing depth esti-
mation methods, such as depth from focus as found in the deep neural
network DDFFNet by Hazirbas et al. The training of the DDFFNet has
implicit a specific camera geometry, defined by the microlens array and
the configuration (zoom and focusing) of the main lens. In this paper we
augment the network application range by accepting larger input disparity
ranges that can be obtained by different configurations or cameras. The
proposed methodology involves converting a field of view and a depth
range into the settings where the DDFFNet has been trained. The con-
version of the input data is based in the estimation of gradients (structure
tensor) on the light field. Results show that depth estimation is possible
for various cameras while using the originally trained DDFFNet.

1 Introduction

The last years have seen a rise in the study and improvement of pleonoptic
cameras since the first model was developed by Ng [4], in 2006. The use
of these cameras allow to obtain, from a single shot, what is called a light
field, an array of multiple scene views named viewpoints, as if an array
of conventional pinhole cameras were used. A light field can be digitally
refocused after it has been captured, as demonstrated by Ng et al. [3], and
used to achieve depth reconstruction, as shown by Tao et al. [5].

Hazirbas et al. [1] presented Deep Depth From Focus Network
(DDFFNet), a Convolutional Neural Network that outputs a disparity map
from a focal stack. As any neural network it requires intense training, and
while it may lead to good test results, it may also result in an inability to
perform well under inputs with characteristics outside its training scope.
In this paper we deal with the network’s inability to correctly reconstruct
datasets with disparity ranges outside its scope. These ranges can vary
widely depending either on the camera’s zoom or focus or its physical
characteristics, such its baseline.

Although the usual approach to solve this problem lying on fine tun-
ing, that is not always possible when dealing with new data, due to con-
strains such as few number of examples, time or computational power.

The method presented here tries to enlarge the application range by
obtaining a new light field by backprojecting the original, transforming
it and finally reprojecting the result into an array of cameras identical to
Hazirbas’.

2 From light fields to the Deep Depth From Focus
Network

We can describe a light ray using the pixel it hits, in the form of a light
field L(i, j,k, l), where (k, l) indicates the viewpoint’s index within the
array, while (k, l) indicates the pixel in the viewpoint.

We focus on a disparity ∂ i
∂k = ∂ j

∂ l = α by performing shearing, this is
translating each viewpoint by an amount proportional to its distance from
the array’s center, Lα (i, j,kα , lα )=L(i, j,k+α(icenter−i), l+α( jcenter−
j)), and summing them. By stacking multiple images, each focused at a
different disparity, we obtain what is called a focal stack.

The DDFFNet takes a focal stack of 10 images, each focused at lin-
early spaced disparities, to produce a disparity map as output. The net-
work was trained for a depth range of [0.5, 7] meters, meaning, by the
camera parameters, that the input focal stacks cover disparities between
[0.02, 0.28] pixels. Datasets with ranges outside this scope are incor-
rectly reconstructed. Retraining is not always possible, so we propose

simulating a camera as the one used in the training process by transform-
ing the new light field in one similar to the ones captured for training the
DDFFNet.

3 Ground Truth based Camera Adaptation

Considering a plenoptic camera as an array of pinhole cameras, its field
of view can be bounded by the envelope of all cameras’ fields of view
(pyramids). This envelope is not much wider than the central viewpoint’s
pyramid, because usually baselines are very small.

We will transform the new dataset, as a point cloud, from the original
trunk of pyramid to one similar to the DDFFNet camera, forming a new
light field similar to the one the latter would captured. As example, we
used the dataset Cotton, Figure 1(f), present in the 4D Light Field Bench-
mark [2], which its disparity range is outside the ones used for training
the network.

Backprojection In the first step we backproject the center viewpoint,
resulting in a 3D point cloud, as in Figure 1(a). Besides the camera’s
intrinsic parameters, we need a depth estimation for each pixel, obtain
through the ground truth or through some depth estimation method, such
as the structure tensor, explained in detail in section 4. With depth Z we
compute the other 3D coordinates, (X ,Y ), using the backprojection model
[X Y Z 1]T = [CT 1]T + [Z.DT 0]T where C = −P−1

1:3 ·P4 represents the
optical center, D = P−1

1:3 · [u v 1]T is the optical ray’s direction for a
given (u,v) pixel and Pi the projection matrix’s ith column.

FOV rotation and scaling We obtain the two model’s fields of view by
backprojecting the image corners, Figure 1(a) with Benchmark and Hazir-
bas’ in red and blue, respectively. To align their centers, the point cloud
is rotated along X and Y around the optical center. For each, the rotation
angle can be computed backprojecting both cameras’ principal points to
a depth z, Figure 1(b) where the red and white dot are the Benchmark and
Hazirbas’ projection, respectively. We conclude that θ = tan−1(δx/z).
The other dimension’s angle can be computed in an analogous form.

To match the field of views vertex angles, we scaled X and Y , by the
same factor to avoid distortion. However, due to their different shapes
(Benchmark’s is a square while Hazirbas’ a rectangle), the scaling factor
is the one that scales the point cloud so that it matches Hazirbas’ smaller
side, that is, the ratio between their maximum Y , for the same depth. The
result of this scaling can be visualized in Figures 1(c) and 1(d).

Depth scaling We have now to scale the point cloud so that its depth
lies in network’s trained range. However, inspecting Figure 2(b) of the
supplementary material available in [1], we conclude that using a smaller
range will result in a more well distributed set of focused depths. Thus
the range used was [0.5, 2.5] meters. Through an affine transformation
we can force the depth to fall within a range [z1,z2] by solving the linear
system, zmina+ b = z1 and zmaxa+ b = z2, with zmax, zmin the original
maximum and minimum depths, respectively. To compensate for this, the
X and Y are multiplied, (xnew,ynew) =

znew
z · (x,y), for each point. See

Figure 1(e).

Reprojection The final step is to project the point cloud to a camera
array with the same intrinsic and extrinsic parameters as the camera used
in the DDFFNet. This results in the new light field which will then be
refocused and used to create the input focal stack.



(a) Original point cloud (b) FOV rotation (c) Before FOV
Scaling

(d) After FOV Scal-
ing

(e) After depth Scal-
ing

(f) Central viewpoint (g) Ground truth (h) STDI (i) STDI + DDFF (j) STII + DDFF

Figure 1: Depth reconstruction from a light field. Light field central viewpoint (f) and ground truth data (a, g) from the dataset [2]. Ground truth
based camera adaptation, point cloud transformations (b - e). Camera adaptation based on the structure tensor (h - j).

4 Structure Tensor based Camera Adaptation

In real cases 3D point clouds are not available. We propose obtaining an
initial depth estimation to construct the point cloud.

In a light field, slices made by fixing (i,k) or ( j, l) will result in an
epipolar image. The disparity of a feature will translate as the slope of
a epipolar line in these images, being parallel to the gradient direction
such that ∂ i

∂k =− ∇iL
∇kL , as in Figure 2. By measuring the gradient in those

images we can extract a depth estimation.

Figure 2: Epipolar plane. Depth information can be obtained from the
gradient.

For this we need to obtain each pixel structure tensor, S(k, l), a matrix
derived from the gradient that will give its predominant direction in that
pixel.

Let Iik
(.)( j, l) be the value of ∇(.)L calculated at ( j, l), for a horizontal

epipolar image, calculated using a Sobel operator. For each pixel the local
structure tensor, S0( j, l), is computed as

S0( j, l) =

[
Iik

j ( j, l)2 Iik
j ( j, l)Iik

l ( j, l)
Iik
l ( j, l)Iik

j ( j, l) Iik
l ( j, l)2

]
. (1)

Values are then averaged along j, resulting in a 1D array Sik
e (l). This

process is repeated for every horizontal and vertical epipolar image. The
value of the final structure tensor is obtained by doing S(k, l)=∑i ∑ j Sik

e (l)+

S jl
e (k), where S jl

e (k) represents the average 1D array for vertical epipolar
images.

In a structure tensor matrix, computing the eigenvector corresponding
to the greatest eigenvalue, λ1, gives the predominant gradient direction.
The relation between both eigenvalues allow for a confidence level on the
gradient obtained. Such measure was defined as λ1−λ2, with cases below
a given threshold discarded.

After computing the structure array, its eigenvectors are calculated
and filtered, and from them the gradient directions are computed. These
are then used to compute the disparity for each pixel. This disparity map
is converted to depth and used to construct the point cloud.

To deal with areas of low gradient being discarded, we propose two
strategies. Constructing the point cloud as is and inpaint each viewpoint
in intensities, or inpainting the disparity map, and then projecting a full
point cloud.

5 Experimental results

Given the focal stack input, the network was used to obtained a new point
cloud to be transformed using the inverse transformation of each step, in
reverse order. Each point is projected to a camera identical to the Bench-
mark central viewpoint, forming a depth map, then converted to disparity
and compared to the ground truth.

The proposed method was evaluated on the Benchmark’s [2] Train-
ing Set, the same used by Hazirbas to evaluate the network performance
after retraining. In Table 1 are the numerical results, as defined in [1]. Pre
refer to results using the untransformed datasets. GT concerns the ground
truth based approach. STDI and STII refer to structure tensor methods
complemented with disparity or intensity inpainting, respectively. As a
qualitative analysis, the disparity map obtained by each method is pre-
sented in Figure 1, along with the ground truth and central viewpoint.

Method Pre Retrain GT STDI STII+DDFF STDI+DDFF
Disparity MSE 0.7741 0.19 0.3002 0.7383 0.5378 0.3392
Disparity RMS 0.8709 0.42 0.5463 0.7934 0.7227 0.5765

Depth MSE 0.9395 —- 0.2934 1.1063 0.6499 0.3104
Depth RMS 0.7233 —- 0.4220 0.6950 0.5958 0.4332
Table 1: Retrain and ground truth (GT) vs structure tensor methods.

Analyzing the results we conclude that applying the network directly
on the 4D Benchmark datasets produces an MSE in depth of almost 1
meter, rendering it almost useless. However, by applying the proposed
method through the Structure Tensor + Disparity Inpainting technique we
reduce that error by more than two thirds, ≈67%.

6 Conclusions

In this paper we presented a method to overcome the small disparity range
limitation of the DDFFNet without resorting to retrain. The datasets used
in this proof of concept were restricted to the benchmark [2], however,
other datasets can be transformed to a valid DDFFNet input, provided
the intrinsic parameters of the camera are known. Comparing to a full
retraining approach, the proposed method provides a faster, more versatile
and adapting approach at the cost of loosing some accuracy.
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