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ABSTRACT

Skin lesions are organized in a hierarchical way, which is
taken into account by dermatologists when diagnosing them.
However, automatic systems do not make use of this informa-
tion, performing the diagnosis in a one-vs-all approach, where
all types of lesions are considered. In this paper we propose
to mimic the medical strategy and train a deep-learning ar-
chitecture to perform a hierarchical diagnosis. Our results
highlight the benefits of addressing the classification of der-
moscopy images in a structured way. Additionally, we pro-
vide an extensive evaluation of criteria that must be taken into
account in the development of diagnostic systems based on
deep learning.

Index Terms— Skin Cancer, Hierarchical Classification,
Deep Learning, Dermoscopy

1. INTRODUCTION

Skin cancer is one of the most common types of cancer world-
wide, accounting for approximately one third of all the diag-
noses. The overwhelming increase in its incidence rates, par-
ticularly of melanoma that has grown over 300% from 1990 to
2018 just in the US [1], has raised the attention of researchers.
In particular, there is a focus on the development of methods
for the automatic diagnosis of dermoscopy images [2].

Although dermoscopy image analysis has been an active
topic of research for more than twenty years, the last couple
of years have seen a significant increase in the number of pub-
lished works [2]. Such interest has been mainly encouraged
by the release of public dermoscopy datasets, such as PH2

[3] and the ISIC challenges [4, 5]. Moreover, the deep learn-
ing revolution [6] has also played a role, with the proposal
of increasingly deeper and better convolutional architectures
(CNN) and the release of open source software tools. Deep
learning and small datasets, such as the dermoscopy ones, are
antagonists, meaning that it is not reasonable to train CNN
architectures from scratch to tackle the problem of skin can-
cer. However, the availability of pre-trained networks, which
may be used for transfer learning either as feature extractors
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or as a starting point for fine-tuning to the skin cancer prob-
lem, has fostered the release of several works based on this
methodology [7].

The most recent public datasets have extended the tra-
ditional melanoma/benign problem using only melanocytic
lesions, to a multi-class one where non-melanocytic lesions
have been added (e.g., ISIC 2017 [5]). Several methods have
treated this problem has a one-vs-all approach, where the
network tries to distinguish between all of the classes in the
same decision layer. But, dermatologists divide this task
into a hierarchical method: first they distinguish between
melanocytic/non-melanocytic and only then they perform the
final diagnosis [8].

Thus, it is possible to wonder if there is any benefit in
mimicking the medical diagnosis, and train hierarchical net-
works. This paper shows that it is better to use hierarchi-
cal networks. Additionally, we conduct several experiments
that shed some light on the following points: i) importance of
color normalization and lesion segmentation; ii) performance
of transfer learning strategies; and iii) comparison of evalua-
tion metrics. To the best of our knowledge this is the first work
that explores the hierarchical organization of skin lesions and
simultaneously investigates points i), ii), and iii).

The remaining of the paper is organized as follows. Sec-
tion 2 gives an overview of CNN architectures in skin cancer
diagnosis, Section 3 introduces the hierarchical architectures,
and Section 4 describes the experimental setup. Section 5
presents the results and Section 6 concludes the paper.

2. CNNS IN DERMOSCOPY IMAGE ANALYSIS

For the past years, CNNs have been used in dermoscopy im-
age analysis. One of the first works is that of Codella et al. [9]
where the Caffe architecture was used as a feature extractor.
Esteva et al. [10] trained an Inception network from scratch
using a very large private dataset of both clinical and der-
moscopy images, showing that it was possible to achieve a
performance similar to a human expert. However, training a
CNN from scratch to diagnose skin cancer is usually infea-
sible due to the reduced size of the datasets (e.g., the dataset
from the 2017 challenge contained only 2000 images). There-
fore, most works have either used pre-trained CNNs as feature
extractors or have fine-tuned them for this problem [7].
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Fig. 1: Classification strategies: multi-class (left), hierarchical melanocytic-non melanocytic (hier1-mid), and hierarchical
malignant-benign (hier2-right). Here, o identifies the melanocytic class and p stands for the dropout probability.

The use of CNNs was extensively observed in the 2017 [5]
and 2018 1 ISIC challenges. While in 2017 most participants
showed a preference for ResNet, Inception, and ResNext ar-
chitectures, in 2018 the use of deeper and more complex ar-
chitectures, such as DenseNet and PNASNet, was also ob-
served . Another difference in the two challenges is the use of
ensembles of CNNs in 2018, which had already been pointed
out by the challenge organizers as a way to improve the re-
sults [5]. Recently, several ensemble techniques have been
proposed [11, 12], with promising results.

Some authors have devoted their work to studying specific
aspects of the CNN that may improve the classification results
of dermoscopy images. In particular, great importance has
been given to the identification of suitable data augmentation
strategies that may help dealing with the limited amount of
available data [13, 14]. Additionally, attention has been paid
to the comparison between transfer learning with and without
fine-tuning [15], performing data augmentation on the test set
[14], and other relevant criteria (e.g, image size and selected
architecture) [11].

Although a hierarchical classification was investigated be-
fore using hand-crafted features [16], to the best of our knowl-
edge, the application of this idea to CNNs has been poorly in-
vestigated in the dermoscopy field. The exception is the work
of Demyanov et al. [17], which uses both clinical and der-
moscopy images to train a ResNet-50 using a tree-loss func-
tion. This dataset is significantly different from the one used
in our work, which contains only dermoscopy images. More-
over, we propose a simpler approach to impose hieararchy in
our classification procedure.

3. HIERARCHICAL CNN

Dermoscopy lesions are categorized in a hierarchical way,
where the lesions are firstly grouped in melanocytic or non-
melanocytic, according to their origin, and only then diag-
nosed into a more fine category [8]. Although this hierarchy
is well know in the literature, an evaluation of CNN architec-
tures that perform a structured classification is still missing in
the literature.

We address this problem and compare three classification

1https://challenge2018.isic-archive.com/leaderboards/

strategies: one based on a multi-class formulation (see Fig. 1
(left)) and two based on hierarchical classification (see Fig.
1 (mid and right)). Our dataset contains examples of non-
melanocytic lesions (seborrheic keratosis-K) and melanocytic
lesions (melanoma-M and Nevi-N).

With respect to the hierarchical strategies, we aim to in-
fer it is better to: i) mimic dermatologists and first discrim-
inate between non-melanocytic (K) and melanocytic lesions
(M and N) - hier1; or ii) to first discriminate between malig-
nant (M) and benign lesions (K and N) - hier2.

4. EXPERIMENTAL SETUP

This section describes the experimental evaluation of the
strategies proposed in Section 3. Additionally, we also assess
the role of several factors that may influence the performance
of deep neural networks. In the following sections we identify
key aspects that are studied in the paper.

4.1. Dataset

For many years, the works devoted to skin cancer diagno-
sis used relatively small datasets, which usually comprised
only examples of melanocytic lesions. Recently, the ISIC
project started to release increasingly larger and more com-
plex datasets associated with conference challenges. The
challenges’ datasets are particularly relevant, since they allow
a fair comparison between methods and their performances.
Therefore, in this work we will use the ISIC 2017-ISBI set
[5], which is divided into training (2000 images), validation
(150 images), and test (600 images) sets. The task of this
challenge was to diagnose three classes of lesions: M, K,
and N. Contrary to several of the challenge competitors, we
will not augment the training set with external data, as we
are interested in assessing how to make the most of a dataset,
even if limited, to efficiently train deep learning architectures.
Moreover, we want to ensure that our results are reproducible.

4.2. Pre-processing

It may be useful to perform several transformations to der-
moscopy images before feeding them to a CNN. In this work



Fig. 2: Examples of pre-processed images: original (1st col-
umn); segmented and cropped (2nd column); normalized (3rd
column).

we will focus in two types of transformations: lesion segmen-
tation and color normalization.

Lesion segmentation corresponds to the separation be-
tween the lesion and the surrounding skin. In our experiments
this will amount to cropping the original dermoscopy image
with a tight bounding box around the lesion (see Fig. 2, 2nd
column). Although the role of lesion segmentation is still an
open issue in dermoscopy image analysis [7], it is important
to understand how it influences the performance of CNN
architectures.

Color normalization allows us to correct the colors of the
dermoscopy images and reduce the variability introduced by
the acquisition setup, as exemplified in Fig. 2, 3rd column.
Similarly to the top classified of the ISIC-2017 challenge [18]
and several of the participants of the ISIC-2018 challenge,
we apply the color normalization strategy proposed in [19] to
correct the image colors using its statistics. We set the value
of p = 6.

After applying the aforementioned transformations, all of
the images were resized to 299×299.

4.3. Network Training

Due to the reduced size of the training set we will use the
DenseNet-161 architecture pre-trained on the ImageNet
dataset [20], comparing two approaches: feature extractor
vs fine-tuning. In the feature extractor learning approach we
will freeze all the layers except the decision one(s), which
will be trained for our problem, while in the fine-tuning case
the pre-trained weights will be used as a soft initialization.

All of the models will be trained using the Adam Opti-
mizer and a mini-batch approach, with a batch size of 5. The
starting learning rate η will be η = 0.005 for transfer learning
and η = 10−5 for fine-tuning, with a decay rate of 0.5 for
every 40 epochs. Cross-entropy is the selected loss function.

4.4. Generalization

It is crucial to train deep learning architectures that general-
ize well to new images. In this work we will rely on two

strategies. The first one is based on online data augmenta-
tion, which consists of randomly flipping, rotating, cropping,
and altering the colors of the training images in each epoch.
We have picked this particular combination of transforma-
tions because they have been shown to improve the results
of CNNs [13, 14]. Although online augmentation does not
increase the size of the training set, it guarantees that the net-
work ”sees” a different version of the same image between
epochs, which reduces the probability of the network memo-
rizing it and improves the generalization.

The other strategy is based on the use of dropout [21]. In
particular, we will apply dropout with 50% probability, before
the decision layer(s), as shown in Fig. 1.

4.5. Unbalanced Data

The training set used in this work is very unbalanced, with
the following proportions: 18.7% M, 12.9% K, and 68.6% N.
Popular approaches to deal with this issue are to artificially
augment the less frequent classes, to assign different weights
to the classes in the cost function, or to combine the previous
two.

In this work we will resort to weighting the cross-entropy
losses of the training examples. In particular, we will assign
the class weights based on their distribution:

wc =
#N

#Nc
, (1)

where #N is the size of the training set and #Nc is the num-
ber of training elements form class c ∈ {M,K,N}.

4.6. Evaluation Metrics

Finding the appropriate metrics to evaluate and compare the
performance of classification systems is a challenging task.
The metric used to rank the participants in the ISIC-2017
challenge was the average area under the curve (AUC) for the
M and K diagnosis [5]. Thus, we will also apply this metric to
evaluate the performance of the tested model configurations.

Although, AUC is a suitable metric to compare models, it
is difficult to infer the performance of the model for each of
the classes solely by inspecting its value. In the ISIC-2018
challenge, the ranking procedure was changed to be based on
the balanced accuracy metric (BACC), which averages the
recall (Re) values of all the class

Re =
#TPc

#Nc
, (2)

where TPc is the number of true positives, i.e, the number of
correctly classified examples from class c.

5. RESULTS

The experimental framework described in Section 4 was im-
plement using Tensorflow and one Titan Xp GPU. Overall,
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Fig. 3: Performance results for the test set: .

the experiments amounted to training and evaluating 24 dif-
ferent network architectures. The architectures were trained
for 500 epochs using the 2000 training images, and validated
every 10 epochs using the validation set. Figure 3 summarizes
the AUC and BACC scores for the test set.

These results yield relevant information. First, the use of
a hierarchical classification strategy seems to lead to better
overall results than using a traditional multi-class approach.
Such results are observed both for the feature extraction
(range of blues) and fine-tuning strategies (hot color bars),
using any type of image pre-processing. As expected, fine-
tuning DenseNet-161 to our problem leads to better experi-
mental results both in terms of AUC and BACC. Interest-
ingly, this improvement in more notorious in the AUC scores
of the architectures trained with the full image (1st and 2nd
sets of bars), while for the cropped images (3rd and 4th sets
of bars) it seems that fine-tuning even degrades the perfor-
mance of the multi-class architectures. However, when one
inspects the BACC scores, it is clear that fine-tuning leads to
significant improvements in all of the cases, suggesting that
the evaluation of a model must take into account more than
one metric.

Cropped images seem to convey more discriminant infor-
mation, specially when combined with the hierarchical archi-
tectures. In particular, the use of cropped images seems to
be more suitable to diagnose melanomas, since the ReM in-
creases, as shown in Table 1. The scores shown in this ta-
ble were obtained using the hierarchical architecture hier2,
i.e., first discriminate between malignant and benign lesions
and then between types of benign lesions. Contrary to what
was expected, since hier1 (orange bars) is the methodology
used by dermatologists, hier2 (red bars) seems to be the one
that leads to the best results for most of the configurations.
Such finding may be explained by the difficulty in diagnosing
melanomas when compared with other types of skin lesions.
This is a promising result that must be further investigated
with a dataset that contains other types of malignant lesions,
such as basal cell carcinomas [8].

Regarding the use of color normalization, it seems to lead
to a marginal improvement in the AUC scores and to similar
BACC for the cropped images. However, when we take a
closer look at the Re values for the different classes we ob-

Table 1: Best performance scores.

Image Type ReM ReK ReN AUC BACC
Full 44.4% 70.0% 83.4% 87.2% 65.9%

Full Norm. 46.1% 71.1% 85.0% 87.6% 67.4%
Cropped 50.0% 76.7% 83.3% 87.4% 70.0%

Cropped Norm. 59.8% 71.1% 79.2% 87.5% 70.0%

serve that they are significantly different, evidencing again the
importance of considering more than one metric to evaluate a
classification system.

We have compared our results with those of the ISIC
challenge [5]. Our scores rank in the 70th percentile regard-
ing the AUC metric, meaning that the hierarchical approach
would rank above 7th position in the leaderboard. Regarding
BACC, we have only compared our scores for the melanoma
and keratosis classes, since these are the only Re available to
the public). In this case, our hierarchical formulation would
rank in the 90th percentile, with a BACC = 65.5%. These
are promising results, especially if one takes into account that
we have used simple regularization techniques (dropout and
online data augmentation) an no external data, to train our
networks and prevent overfitting.

6. CONCLUSIONS

This paper explores the hierarchical organization of skin le-
sions, in order to develop a deep learning system that per-
forms a structured classification. Additionally, we performed
comparative studies on the importance of lesion segmenta-
tion, color normalization, and evaluation metrics.

Our results show that a structured classification based on
a distinction between malignant and benign lesions, followed
by the diagnosis of the latter in different classes leads to better
results, when combined with segmented lesions. Color nor-
malization also improves the results, but plays a minor role.
Finally, we have also showed that our approach compares fa-
vorably with other state-of-the-art methods.

Future work should focus on validating these results on a
larger dataset that comprises more classes of non-melanocytic
lesions.
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