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ABSTRACT

Providing reliable descriptions of the agents in a video scene
is an essential task in many applications, such as surveillance.
However, most works focus solely on the characterization
of pedestrians, which is not sufficient to describe complex
scenes, where a variety of vehicles (e.g., bikes and cars) are
also present. In this work we address this limitation and pro-
pose a framework based on switching motion fields to ef-
ficiently characterize the different agents in a scene. Our
method achieves a balanced accuracy of 91.9% on the iden-
tification of bikers and pedestrian classes on three challeng-
ing scenarios, and provides comprehensive information about
their behaviors.

Index Terms— Surveillance, Trajectory Analysis, Multi-
agent Identification, Motion Fields

1. INTRODUCTION

The research community has shown a great interest in tasks
related with video analysis. This is mainly due to its wide
range of potential applications, that spam from sport perfor-
mance analysis to surveillance systems or self-driving cars
[1, 2]. A key factor that is common to most of the applications
is the requirement of methods that are able to provide reliable
descriptions of the agents in video scenes and/or their move-
ments. Such information is useful many tasks, e.g, tracking
agents in the video [3, 4], identifying abnormal behaviors in
surveillance scenarios [5, 6], and recognizing activities [7].

Most of the works on the aforementioned topics focus
solely on describing the behavior of one class of agent, usu-
ally pedestrians. Although this is a reasonable assumption
in some scenarios (e.g, indoor sports), it will not be suffi-
cient to describe complex and crowded scenes such as the re-
cently released Stanford Drone Dataset [3], where there are
several types of agents (bikers, skaters, cars, pedestrians) all
interacting at the same time (see Fig. 1). Some works ad-
dressed the multi-agent problem considering that the pedes-
trians represent normal examples and that any other agent
will be an abnormality [5, 6]. However, abnormality is a
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Fig. 1. Image from the Stanford Drone Dataset [3]. The
bounding box colors identify different agents.

subjective concept that incorporates other (abnormal) behav-
iors such as fighting, jaywalking, or vehicles that move on the
wrong direction. Moreover, it is not expected for pedestrians
and vehicles to exhibit similar motions. Additionally, differ-
ent types of vehicles (e.g., bicycles and cars) may also show
variability. Hence, it is important to address the representa-
tion of multiple agents in complex scenes.

In this work we aim to address this issue, and demon-
strate that a switching probabilistic model based on motion
fields [8] is able to separately describe different agents in a
surveillance scene. Our main contributions are the estimation
of agent-specific motion models and the proposal of suitable
metrics to recognize the class of the agent based on its move-
ment.

2. RELATED WORK

Methods for video analysis may be divided into two groups:
those that rely on a pixel-based analysis of the video frames
and those that are trajectory based [9]. Both groups have pros
and cons. Pixel based do not require explicit tracking of the
agents in the video, thus being robust to tracker failures. How-
ever, they require the analysis of images and may be less ap-
propriate to deal with far field scenarios, such as the Stanford
Drone Dataset [3] (see Fig. 1), where the camera is too far
way from the agents to provide detailed information of their
poses and body motions. On the other hand, trajectory based
methods are able to deal with far field scenarios, provide rel-
evant information about movement patterns in a scene, and



are interpretable. Moreover, trajectory based methods do not
require the actual videos, since they rely on sequences of po-
sitions, which can be conveyed by other types of data (e.g.,
GPS [10]).

The switching motion model used in this work belongs to
the category of trajectory models. In particular, it fits in the
class of models that assume that the trajectories of the agents
are constrained by their interactions with the geometry of the
scenes (e.g., a pedestrian will go around an obstacle and a
car will circulate on the road and not on a sidewalk). Under
this assumption, it is possible to summarize the motions into
a finite set of patterns. An alternative to the aforementioned
methods are those that rely on the social forces model, where
the trajectories are governed by attractive and repulsive forces
between agents [11].

It is also possible to further separate the trajectory models
into deterministic and generative groups. The former com-
prise methods based on clustering (e.g., vector field k-means
[10]) and supervised classification, such as deep learning
methods [12], while the latter includes methods that assume
the existence of a dynamical equation that governs the move-
ment. Examples of generative methods are those based on
Gaussian processes [13], Dirichlet processes [14], motion
fields [8], and more recently circular distributions [4]. The
proposed model uses motion fields, thus it fits in the category
of generative methods.

3. SWITCHED MOTION MODEL

A complex outdoor scene usually comprises several agents
that may belong to different classes, such as pedestrians or
cars. We postulate that different agents exhibit distinct mo-
tion patterns, which may be used to identify them. We also
assume that these motion regimes can be represented using
motion fields [8], where T c

k : [0, 1]2 → R2 is the k − th mo-
tion field associated with agent class c ∈ {1, ..., C}, [0, 1]2

denotes the image plane and k ∈ {1, . . . ,Kc} is the type of
motion regime. Each agent class c is associated with a set
of possible motion fields, but only one motion field governs
the trajectory at each time instant. Nonetheless, the model
is flexible enough to allow the switching between motions at
specific positions in the scene.

Based on this formulation, the position xct is given by the
following dynamical equation

xct = xct−1 + T c
kt

(xct−1) + wc
kt
, (1)

where T c
kt

(xct−1) is the class-specific active motion field that
governs the movement of the agent at time instant t andwc

kt
∼

N(0,Σc
kt

) is white noise perturbation, which defines the un-
certainty associated with the position. The transition between
motion fields is modeled as a first order Markov process, with
space-varying probabilities

P (kt = j|kt−1 = i, xct−1) = bcij(x
c
t−1), (2)

where bcij(x
c
t−1) is the element ij of a stochastic transition

matrix Bc(xct−1), computed at position xct−1.
The class-specific motion models are discretized over a

regular grid of
√
n ×
√
n nodes, such that each node i of the

grid is associated with a set of displacement vectors T c,i
k , a set

of transition matricesBc,i, and a set of noise covariances Σc,i
k .

In positions outside the nodes, these parameters are obtained
by bilinear interpolation

T c
k (x) =

n∑
i=1

T c,i
k φi(x)

Bc(x) =
n∑

i=1

Bc,iφi(x)

Σc
k(x) =

n∑
i=1

Σc,i
k φi(x), (3)

where T c,i
k is the motion vector from the k − th field,

Bc,i ∈ RK×K is the switching matrix, and Σc,i
k is the k − th

covariance matrix, all of them associated with node gi for the
c − th class. The scalar φi(x) is the interpolation coefficient
of the i− th node.

Given C separate sets of trajectories, X c = {x(c,1), ...,
x(c,S)}, one per agent class, it is possible to estimate the
class-specific model parameters θ = (T c,Bc,Σc) using the
EM-algorithm [8, 15, 16], where the hidden variables are the
sequences of active motion fields Kc = {k(c,1), ..., k(c,S)}.

4. TRAJECTORY CLASS IDENTIFICATION

In this work we assume that different agents in an outdoor
scene will exhibit different behaviors and movement patterns
that can be captured using motion fields. Under this assump-
tion, we will start by estimating a separate motion model for
each of the possible classes, using the formulation introduced
in Section 3. Given the set of C models, it is possible to an-
alyze new trajectories, for which the class is unknown, as we
describe next.

i) Trajectory Sampling: Our strategy is suitable to
analyze the trajectory either as a whole, or by dividing it
into segments. In the second case, we use a moving win-
dow strategy to analyze consecutive portions of a trajectory
(xto , xto+1, ..., xto+∆), with an overlap of ∆

2 . Both formu-
lations are admissible, however, the analysis by segments
allows us to deal with localized abnormalities in a trajectory.

ii) Trajectory Analysis: We assume that by estimating
a motion model for each class of agents, we will be able to
capture their specific patterns of movement and discriminate
between classes. The motion model allows us to define the
following set of metrics, which can be used to characterize
the whole trajectory or a segment. It is important to stress that
while the following metrics are formulated for a trajectory
segment, they can easily be extended the entire trajectory.

1. The log-likelihood



log p(xto , ..., xto+∆|θc) =
∑
k

log

[
to+∆∏
t=to+1

p(xt|kt, xt−1, θ
c)

×bckt−1,kt
(xt−1)

]
, (4)

where p(xt|kt, xt−1, θ
c) = N(xt|xt−1 + T c

kt
(xt−1),

Σc
kt

(xt−1)) and the outer sum accounts for all the pos-
sible label sequences k = (kto+1, ..., , kto+∆). The
computation of this metric becomes more computa-
tionally demanding as the number of motion fields and
the length of the trajectory segment increase.

2. The complete log-likelihood

p(xto , ..., xto+∆; k̂to , ..., k̂to+∆|θc), (5)

which is computed as (4), but without performing the
outer sum. In this case, the sequence of active fields
(k̂to , ..., k̂to+∆) is estimated using the Viterbi algo-
rithm [17].

3. The auxiliary function of the EM-algorithm [15]

U(θc, θ′c) = E
{
log p(X ,K|θc)|K, θ′c

}
+ log p(θc). (6)

4. The minimum prediction error ε, defined using

εc = min
k
εck

εck =

to+∆∑
t=to+1

‖xt − x̂t−1 − T c
k (x̂t−1)‖22, (7)

where k ∈ {1, ...,K}, x̂t−1 is the estimated position,
and x̂to = xto . In this case we set the same k for
the whole segment, meaning we do not consider the
possibility of switching between motion regimes.

5. The representation error given by

εc =

to+∆∑
t=to+1

‖xt − x̂t−1 − T c
k̂t

(x̂t−1)‖22, (8)

where the sequence (k̂to , ..., k̂to+∆) is estimated using
the Viterbi algorithm. Contrary to (7), this metric con-
siders the possibility of switching.

These metrics are computed for each of the C sets of
class-specific motion models. This means that a trajectory
segment will be characterized by C sets of metrics, each as-
sociated with one class model.

iii) Trajectory Classification: The last step is to classify
the trajectory into one of the possible agent classes. This cor-
responds to comparing the metrics of the different classes and
selecting the class that maximizes log p(xto , ..., xto+∆|θ),
p(xto , ..., xto+∆; k̂to , ..., k̂to+∆|θ), or U(θ, θ′); and the class
that minimizes ε or ε.

The whole trajectory is classified by averaging the labels
across all segments.

Fig. 2. Experimental scenes (1st row) and trajectories (2nd
and 3rd rows - pedestrians in blue and bikers in magenta):
Death-circle (left), Gates (mid), and Little (right).

Table 1. Experimental datasets - ∗ identifies the reference
video for the spatial transformation.

Scene #Bikers #Ped. Train Videos ID Test Videos ID
Death-circle 1548 917 0∗,2,4 1

Gates 458 335 1,3,5 4∗

Little 385 200 1,2,3 0∗

5. EXPERIMENTAL RESULTS

The experiments were carried on the Stanford Drone Dataset
[3], which comprises eight different scenes with multiple
videos, recorded using a quadcopter platform with a 4k
camera. For each of the scenes, the authors have tracked
and annotated the agents according to one of six classes
c ∈ {pedestrian, bike, skater, car, cart, bus}.

In our experiments, we have selected three scenes (see
Fig. 2) and divided their videos in training and test sets as
summarized in Table 1. These scenes were selected due to
their complexity in terms of types of movement and propor-
tion of agents. The different videos were not recorded from
the same point of view, thus it was necessary to align them
through a spatial transformation, using one of the videos as
reference. Regarding the number of classes, we focused on
the distinction between pedestrians and bikers, due to the high
number of trajectories for each of these classes.

For each of the scenes we have estimated C = 2 motion
models, corresponding to the two agent classes. Each model
comprises K = 4 motion fields, roughly representing the di-
rections North-South, South-North, East-West, West-East.

The discriminative power of the models is evaluated using
the the balanced accuracy metric (BACC), which averages the
recall (Re) of the two classes

Re =
TP c

N c
, (9)

where TP c is the number of true positives of class c and N c

is the total number of elements.



Fig. 3. Estimated motion fields (pedestrians in blue and bikers in magenta): Death-circle (left), Gates (mid), and Little (right).

Table 2. Experimental results in terms of BACC using the
whole and sampled (samp.) trajectories. In bold we highlight
the best results.

Death-Circle Gates Little
Metric Whole Samp. Whole Samp. Whole Samp.

Log-like. 82.7% 83.1% 81.9% 82.8% 81.9% 82.2%
Comp-like. 74.7% 82.0% 81.3% 82.8% 75.6% 80.8%
U(θ, θ′) 82.2% 82.7% 82.6% 83.7% 80.0% 83.7%

ε 58.3% 80.2% 61.1% 79.3% 48.7% 83.7%
ε 70.9% 77.3% 69.5% 79.3% 74.1% 85.6%

Log-like+ε 88.2% 93.4% 86.9% 88.2% 89.3% 89.3%
U(θ, θ′) + ε 90.5% 93.3% 86.9% 91.3% 91.1% 91.1%

Fig. 3 shows the estimated fields. As expected, the motion
fields are different for the two classes of agents, especially on
the case of the Little dataset. On one hand, there are certain
regions of the scenes, such as the walkways or the roads that
are mainly used by only one of the classes. In regions where
both pedestrians and bikers trajectories were observed, the ve-
locities of the bikers are usually much higher, as exemplified
by the length of the arrows.

Table 2 (rows 1-5) shows the performance of the model
in the task of agent recognition, using both the entire trajec-
tory and the trajectory sampling process with ∆ = 10, as
described in Section 4. All of the classification metrics lead
to good performances, with the log-likelihood and the auxil-
iary function U(θ, θ′) being slightly better across the differ-
ent scenes. The results show that it is preferable to separately
analyze the trajectory segments (samp.), as it leads to better
results. This was expected from the εmetric, since in this case
we assume that the motion field is always the same. Nonethe-

less, this result shows that switching is an important part of
the model. The performance of the complete-likelihood and ε
are also considerably worse when we analyze the whole tra-
jectory, which may be due to the propagation of an error in the
estimation of the sequence of active fields using the Viterbi al-
gorithm. The ability of the model to recognize the class of the
agent solely using a portion of its trajectory is an important
finding, which may have relevant applications in many areas,
such as multi-target tracking [3].

We have also investigated the fusion of metrics by aver-
aging their scores. The best combinations are shown in Table
2 (bottom rows). This fusion allows us to improve the results,
achieving an average BACC of 91.9% for the three scenes. It
also shows that some of the metrics provide complementary
information.

6. CONCLUSIONS

This paper proposes a methodology based on switching mo-
tion fields to characterize and distinguish multiple agents in
surveillance scenarios. The proposed method was evaluated
on three challenging scenes from the Stanford Drone Dataset,
achieving a promising balanced accuracy of 91.9%, on the
recognition of pedestrians and bikers. The estimated motion
fields provide comprehensive information about the move-
ment patterns of each class, and the model is able to iden-
tify the class of the agent, even when it only has access to a
portion of the trajectory.
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