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Abstract
While any grasp must satisfy the grasping stability criteria, good grasps depend on the specific manipulation scenario: the
object, its properties and functionalities, as well as the task and grasp constraints. We propose a probabilistic logic approach
for robot grasping, which improves grasping capabilities by leveraging semantic object parts. It provides the robot with
semantic reasoning skills about the most likely object part to be grasped, given the task constraints and object properties,
while also dealing with the uncertainty of visual perception and grasp planning. The probabilistic logic framework is task-
dependent. It semantically reasons about pre-grasp configurations with respect to the intended task and employs object-task
affordances and object/task ontologies to encode rules that generalize over similar object parts and object/task categories. The
use of probabilistic logic for task-dependent grasping contrasts with current approaches that usually learn direct mappings
from visual perceptions to task-dependent grasping points. The logic-based module receives data from a low-level module
that extracts semantic objects parts, and sends information to the low-level grasp planner. These three modules define our
probabilistic logic framework, which is able to perform robotic grasping in realistic kitchen-related scenarios.

Keywords Cognitive robotics · Probabilistic logic · Task-dependent grasping · Semantic grasping · Local shape grasping

1 Introduction

Toperformmanipulation tasks in arbitrary and dynamic envi-
ronments, robots need vision capabilities to perceive the
world, reasoning skills to interpret it, and good grasping
strategies. Performing good grasps, besides satisfying the
grasping stability criteria, depends on the specific manipula-
tion scenario: the object, its properties and functionalities, as
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well as task and grasp constraints (e.g., the gripper configu-
ration). The problem we address in this work is how to take
such information into account for robot grasping.

More specifically, instead of learning a function that
directly maps visual perceptions to task-dependent grasps,
we propose, as key contribution, a probabilistic logic mod-
ule to semantically reason about themost likely object part to
be grasped, given the object properties and task constraints.
To do so, we exploit the semanticmeaning of object parts that
generalize across several object categories and thus, allow us
to reason at a higher-level. In addition, the semantic part-
based representation allows grasp transfers to novel objects
that have similar parts. Our approach has several benefits: it
allows for generalization over similar (multiple) object parts,
it reduces the grasping inference space by reasoning about
possible task-constrained grasps, and it enhances object cat-
egory estimation by employing both semantic part labels as
well as object shape and curvature information. The prob-
abilistic logic module (PLM) links semantic object parts
to several tasks defined as associations between parts and
gripper poses. Inspired by the Gibsonian definition (Gibson
1979) of object affordances which refers to the properties
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of an object to allow action possibilities offered to it by its
surrounding environment, we consider grasping affordances
that each task activates according to associations between
object categories, object parts and gripper poses in a house-
hold environment. To further generalize and reason across
object and task categories, the PLM exploits ontologies of
object and task categories.

The emerging research question that raises in this paper
is: does semantic high-level reasoning help selecting a bet-
ter grasp if the next task is known? Let us assume the fetch
and carry scenario (Fig. 1), where a mobile robot with grasp-
ing capabilities has to collect all the bottles on the shelves
and place them in a case. This assignment is a sequence
of individual tasks, i.e., placing each bottle in the case in
an upright pose. The environment constraints (e.g. narrow
spaces to reach the object, collisions with the shelf and low-
dexterity of the gripper) and task constraints (e.g. the most
stable pre-grasp gripper pose for placing the bottle in the
case) pose a difficult grasping problem which can be solved
using semantic reasoning. Specifically, if we consider the
top, middle and bottom as semantic parts of a bottle, the
best part to grasp each bottle is from the middle, given that
the bottle needs to be placed in the case in an upright posi-
tion and the top is partially obstructed by the shelf above.
Using semantic object parts, we can define common sense
grasping rules for our kitchen scenario. The resulting PLM
gives the robot the capability to semantically reason about
the most likely object part to be grasped, given the task-
object category affordance, and thus, help the grasp planner
by reducing the space of possible final gripper poses. This
knowledge could be transferred, via an object category ontol-
ogy, to other similar objects, such as cans. Further, the robot
could reuse these rules in similar environments (e.g., fetch
and carry bottles in a supermarket) by updating the PLM.

Manipulation tasks such as the one mentioned above
require large amounts of data to build a model for proba-
bilistic inference. For instance, considering object variables
such as shape, functionality, pose and category; and task
constraints such object pose and gripper pose, the joint
learning of the dependencies of these variables will require
a vast amount of samples. Previous approaches only con-

sider a subset of the variables mentioned above and learn
the dependencies between those variables in order to avoid
complexity issues. Works like (Madry et al. 2012a, b) sep-
arate object category variables from gripper pose w.r.t. the
object during dependency learning. This allows them to build
a global model by merging two smaller models. In Madry
et al. (2012b), the gripper pose constraints w.r.t. the object
are learned and used in simulation. Differently, our prob-
abilistic logical approach tackles task and environmental
constraints in real-world setups as educated guesses. Logic
offers a natural way to integrate high-level world knowl-
edge such as subsumption relations among object categories
(encoded by an object ontology), task categories (encoded by
the task ontology), and relations between object categories
and tasks (encoded by object-task affordances), in a compact
rule-based grasping model. Because descriptions of the per-
ceived world are uncertain (e.g., not all cups look like the
‘prototypical’ cup), we consider probabilistic logic which
allows reasoning about the uncertainty in the world. Based
on available task and visual scene observations, we can use
probabilistic logic to ask and answer queries about different
aspects of the grasping action.

Themain contribution of this paper is a probabilistic logic
module for task-dependent robot grasping, which provides
the robot with semantic reasoning skills (i.e. inference in
an abstract representation of the world), while dealing with
the uncertainty of the visual perception on two tasks: object
recognition and grasp planning. The main features of the
PLM include: (1) a first general rule-based model integrat-
ing task information and object category for robotic grasping;
(2) a semantic part-based representation of the objects that
generalizes across several categories and allows reasoning by
means of logic; and (3) a new probabilistic logic approach
to object grasping which uses high-level knowledge such as
object-task affordances and object/task ontologies to gener-
alize over object/task categories and improve robot grasping.
This allows us to experiment with a wide range of objects of
different categories, a critical aspect of autonomous agents
acting independently in new environments. Our approach can
be extended beyond the set of categories used, by augmenting
the probabilistic logic model to cover new categories.

Fig. 1 Fetch and carry scenario: collect all bottles from the shelves and place them in the case
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The benefits of the features listed above for task-based
dependent grasping are shown experimentally. Different
tasks can be successfully executed on newobjects that belong
to the object categories considered.

2 The proposed framework

An overview of our three module grasping framework is
shown in Fig. 2. The first module is a visual perception mod-
ule (detailed in Sect. 4) which maps the detected object point
cloud to a set of symbolic and probabilistic visual observa-
tions of the scene. After segmenting the object point cloud
and performing a full object shape reconstruction, the visual
module estimates object properties such as pose, symbolic
parts and geometric-based object category. The second mod-
ule is the PLM for task-dependent grasping. Given the input
observations, it is able to reason about the grasping scenario.
It can (re)predict and improve the category of the object via
the semantic object categorizationmodel (Sect. 7.1). Further,
the module can answer queries about the most likely task
and most likely object part to grasp, given the task (denoted
as pre-grasp). It uses probabilistic visual observations about
the object provided by the first module, evidence about the
task and world knowledge such as object/task ontologies and
object-task affordances. Once we have identified the most
likely pre-grasp, the framework calls the thirdmodule, which
solves the problem of planning the grasp execution by using
local shape features of the object part and completing it on
the robotic platform (Sect. 8).

Figure 2 illustrates the framework on the example of an
empty cup. Given the point cloud of the cup and using vision-
based techniques, the framework obtains a description of the
object: it has the symbolic parts top,middle, bottom and han-
dle, stands in an upright pose and is empty.We employ global
object similarity based on part information to complete the
scene description with an initial prior on the object category:
cup, can and pot with probabilities 0.56, 0.36 and 0.05,
respectively. Next, using the visual description, we query the
PLM for the most likely object category, most likely task and
best pre-grasp. The categorical logic module reasons about

the symbolic parts and recalculates the category distribution
as follows: 0.98 for category cup and 0.02 for category pan.
The presence of exactly one handle increases the probability
of the object being more a cup rather than a can and iden-
tifies the object more as a pan rather than a pot. Similarly,
using object-task affordances and world knowledge (e.g., the
task pour in cannot be executed on a full object), the PLM
predicts the tasks pass, pick-place on and pick-place inside
upright with equal probability. If the task given is pass, the
task-dependent grasping model next predicts the middle part
of the object as most likely pre-grasp. The last step in the
framework, the low-level grasping planner, predicts the best
point for grasping in the pre-grasp point cloud.

We proceed as follows. First, we review related work.
Then, we explain in detail each component of the proposed
framework: the low-level perception module, the probabilis-
tic logic object categorization module, the probabilistic logic
graspingmodule and the low-level grasp planner. Before con-
cluding, we present our experiments in simulation as well as
on a real robot.

3 Related work

We review the state-of-the-art following three main axes that
are addressed in our work: (i) visual grasping; (ii) task-
dependent grasping; (iii) statistical relational learning for
robotics.

3.1 Visual-dependent grasping

The majority of grasping methods consider mainly visual
features to learn a mapping from 2D/3D features to grasping
parameters (Bohg and Kragic 2010; Montesano and Lopes
2012; Lenz et al. 2015; Saxena et al. 2008). Nevertheless,
these methods have a major shortcoming: it is difficult to link
a 3D gripper orientation to solely local image features. Only
recently, methods that take global information into account
have been proposed (Aleotti and Caselli 2011; Neumann
et al. 2016). The benefit is an increased geometric robust-
ness, which is advantageous with respect to the pre-shape of

Fig. 2 The task-dependent grasping framework on a cup point cloud
example. The boxes represent the main components. From left to right:
object 1©, symbolic object parts 2© with labels top (yellow), middle

(blue), bottom (red), and handle (green), PLM 3©, predicted pre-grasp
middle 4©, and shape-based grasp model 5© (Color figure online)
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the robotic hand and the general shape of the object, gen-
erating more accurate grasps. However, global information
relies on a complete shape of the object.

Shape completion using a single viewhas been extensively
studied, typically in robotics grasping applications. Usually
multiple object partial views are acquired from different
viewpoints, using 3D range cameras, and the gathered point
clouds are then registered and aligned together in a common
reference frame (e.g. ICP Besl and McKay 1992 its variants
Rusinkiewicz and Levoy 2001). However, when only a single
view is available and/or it is not possible to acquire several
views due to time constraints or scenario/robot restrictions
the shape completion problem becomes harder and some
assumptions or pattern analysis must be made. Thrun and
Wegbreit (2005) address the single view scenario, propos-
ing a method based on the symmetry assumption. This
method considers 5 basic and 3 composite types of symme-
tries that are organized in an efficient entailment hierarchy.
It uses a probabilistic model to evaluate and decide which
are the completed shapes, generated by a set of hypothe-
sized symmetries, that best fit the object partial view. More
recently Kroemer et al. (2012) proposed an extrusion-based
completion approach that is able to deal with shapes that
symmetry-based methods cannot handle. The method starts
by detecting potential planes of symmetry by combining the
Thrun and Wegbreit method with Mitra et al.’s (2006) fast
voting scheme.Given a symmetryplane, ICP is used to decide
the extrusion transformation to be applied to the object par-
tial point cloud. Despite the fact that these methods were
shown to be robust to noise and were able to deal with a
wide range of object classes, they are inherently complex in
terms of computational effort and thus, not suitable in real-
time. Other approaches have taken advantages of common
scenario structures and objects properties that are usually
found in daily environments (e.g. man-made objects are typ-
ically symmetric and standing on top of planar surfaces). For
example, Bohg et al. (2011) took advantage of the table-top
assumption and the fact that many objects have a plane of
reflection symmetry.

Tenorth et al. (2013) decompose CAD models into geo-
metric primitives and define rules for the primitives that are
able to find handles, containers and supporting planes in
CAD models. A method for matching the CAD models to
perceived sensor data provides the functional parts of the
objects. This method complements very well the main sub-
ject of this work, but it is based on CAD models and does
not perform object completion for grasping actions. Starting
from the work of Thrun and Wegbreit (2005) and similar in
spirit toBohg et al. (2011),we implemented an efficient shape
completion approach which translates a set of environmen-
tal assumptions into a set of approximations, allowing us to
reconstruct the object point cloud in real-time, given a partial
view of the object.

3.2 Task-dependent grasping

Since grasping is highly correlated with the task to be per-
formed on the object, a lot of recent work has focused
on incorporating task constraints in robot grasping. This is
mostly done by learning a direct mapping function between
good grasps and geometrical and action constraints, action
features and object attributes. A part of this work focuses on
Bayesian network learning to integrate symbolic task goals
and low-level continuous features such as object attributes,
action properties and constraint features (Madry et al. 2012a;
Song et al. 2010). The goal is to learn features of importance
for grasping knowledge transfer. This work is extended to
consider object categorical information as an additional fea-
ture to predict suitable task-dependent grasping constraints
(Madry et al. 2012b). Further, Detry et al. (2012a, b, 2013)
identify grasp-predicting prototypical parts by which objects
are usually grasped in similar ways. The discrete part-based
representation allows robust grasping. Differently, in addi-
tion to the semantic parts, we also consider a task-dependent
setting that uses probabilistic logic and world-knowledge to
reason about best pre-grasps. Several approaches make use
of object affordances for grasping. While in Sweeney and
Grupen (2007) the authors employ estimated visual-based
latent affordances, the work in Barck-Holst et al. (2009)
reasons about grasp selection by modeling affordance rela-
tions between objects, actions and effects using either a fully
probabilistic setting or a rule-based ontology. In contrast, we
employ a probabilistic logic-based approach which can gen-
eralize over similar object parts and several object categories
and tasks.

Related to our probabilistic logic framework is the fully
probabilistic one introduced in Bohg et al. (2012). It com-
bines low-level features and Bayesian networks to obtain
possible task-dependent grasps. Also, closely related is the
semantical pipeline presented in Dang and Allen (2012). It
employs a semantic affordance map which relates gripper
approach directions to particular tasks. In contrast, we exploit
additional object/task ontologies using probabilistic reason-
ing and leverage low-level learning and semantic reasoning.
This allows us to experiment with a wide range of object
categories.

3.3 SRL for robot grasping and other robotic tasks

From a different point of view, probabilistic relational
robotics is an emerging area within robotics. Building on sta-
tistical relational learning (SRL) and probabilistic robotics,
it aims at endowing robots with a new level of robustness
in real-world situations. We review some recent successful
contributions of SRL to various robotic tasks. Probabilistic
relational models have been used to integrate common-sense
knowledge about the structure of the world to successfully
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accomplish search tasks in an efficient and reliable goal-
directed manner (Hanheide et al. 2011). Further, relational
dependency networks have been exploited to learn statisti-
cal models of procedural task knowledge, using declarative
structure capturing abstract knowledge about the task (Hart
et al. 2005). The benefits of task abstraction were shown in
Winkler et al. (2012), where the robot uses vague descrip-
tions of objects, locations, and actions in combination with
the belief state of a knowledge base for reasoning. The
goal of this work is to robustly solve the planning task in
a generalized pick and place scenario. Abstract knowledge
representation and symbolic knowledge processing for for-
mulating control decisions as inference tasks have proven
powerful in autonomous robot control (Tenorth and Beetz
2009). These decisions are sent as queries to a knowledge
base. SRL techniques using Markov Logic Networks and
BayesianLogicNetworks for object categorization have been
proposed in Marton et al. (2009) and Nyga et al. (2014).

In probabilistic planning, relational rules have been
exploited for efficient and flexible decision-theoretic plan-
ning (Lang and Toussaint 2010) and probabilistic inference
has proven successful for integrating motor control, plan-
ning, grasping and high-level reasoning (Toussaint et al.
2010). In mobile robotics, relational navigation policies have
been learned from example paths with relational Markov
decision Processes (Cocora et al. 2006). In order to com-
pute plans comprising sequences of actions and in turn be
able to solve complex manipulation tasks, reasoning about
actions on a symbolic level is incorporated into robot learning
from demonstrations (Abdo et al. 2012). Symbolic reasoning
enables the robot to solve tasks that are more complex than
the individual, demonstrated actions. In Kulick et al. (2013)
meaningful symbolic relational representations are used to
solve sequential manipulation tasks in a goal-directed man-
ner via active relational reinforcement learning. Relational
Markov networks have been extended to build relational
object maps for mobile robots in order to enable reasoning
about hierarchies of objects and spatial relationships amongst
them (Limketkai et al. 2005). Related work for generaliz-
ing over doors and handles using SRL has been proposed in
Moldovan et al. (2013a).

These approaches successfully intertwine relational rea-
soning and learning in robotics. However, none of these
frameworks solves the generalization capability needed
for task-dependent grasping following a semantic and
affordance-based behavior. Relational affordance models for
robots have been learned in a multi-object manipulation
task context (Moldovan et al. 2012, 2018). We propose a
probabilistic logic framework to infer pre-grasp configura-
tions using task-category affordances. Our approach features
semantic generalization and can tackle unknown objects.
This research topic has great importance in robotics as robots
aimed at working in daily environments should be able to

manipulate many never-seen-before objects and to deal with
increasingly complex scenarios.

4 Semantic vision-based scene description

The role of the visual module (cf. first module box in Fig. 2)
is to obtain a semantic description of the perceived objects
in terms of their pose, symbolic parts and probability dis-
tributions over possible object categories. In the context of
object manipulation, a comprehensive representation must
consider object semantics, shape, affordances, motion plan-
ning and the task to be performed on the object. To define
such a representation, the ideal model should consider both
continuous and discrete variables, while dealing with uncer-
tainty. In this work we are driven by the motion planning
constraints to define our main assumptions. The motivation
comes from the space limitations for efficient planning in
small household spaces (e.g., the kitchen). As a result:

• Grasping regular kitchen and workshop objects requires
a significant payload. This implies larger power require-
ments which are coped by larger arms, reducing signifi-
cantly the task workspace.

• Holistic view of top/down object parts. Consider objects
placed on top of a table or in a shelf. The top or bottom
regions of the object may not be available for grasping
due to collision constraints with the table or the shelf, but
the middle region of the object is usually available. In the
same line of though, the top region of the objects are usu-
ally available for grasping when the object is in a drawer.
These rules of thumb are truth without considering the
object shape and affordances, so the semantic top and
bottom parts allow to define rules that do not depend on
the object shape. Although very general, these rules have
exceptions that we consider. The use-cases of this view
include kitchen cupboards and shelves, and tool storage
shelves and drawers, and can be applied to chest of draw-
ers, tables and shelves in general.

• Tool holistic parts. Our main assumption is that we can
estimate the bounding box of every semantic part from a
partial view of the object. To accomplish this, we assume
that all the objects are symmetric [either global or partial
symmetry (Thrun andWegbreit 2005)]. Also, we assume
that usable area(s) and handle can cover most of the tools
and are appropriate for the definition of tasks such as:
pass the tool to a person (the object should be grasped
from the usable area) and pick and place (the handle is
usually the better candidate for grasping).

• Discrete object poses.We consider poses upright, upside-
down, and sideways. Semantically, upright is distin-
guished from upside-down according to what the object
affords, meaning that if the object is a container, the posi-
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tion of the lid on top corresponds to the upright pose and
the lid on bottom corresponds to upside-down one.

• Low-level grasp planning is customized to the particular
end-effector and it is learned independently of the task,
using only point cloud statistics in the selected part. In
this work the robot has a two finger gripper in practice, so
the grasp planning is tailored for that type of end-effector.
In order to apply the semantic and geometric reasoning
to other end-effectors, the end-user just needs to learn the
grasp planning model for other type of hands.

• Grasping control and stability. We do not address this in
our model but rely on the force and grip control provided
by the end-effector selected for the experiments (Schunk
WSG). The current technological developments in tac-
tile sensing are limited in terms of frequency and sensor
density (Yousef et al. 2011), so the application of human
dexterity control procedures that maximize comfort
(Flanagan et al. 2006) are out of the scope of this work.

In practice, in a kitchen scenario we consider the cate-
gories pan, cup, glass, bottle, can, knife, and in a workshop
scenario we consider the categories hammer and screw-
driver. We are able to distinguish between upright and
sideways poses (i.e. semantic poses). The considered sce-
narios and object categories cover a large set of regular
household objects and their common poses in such environ-
ments. Regarding the parts, we are able to segment objects
and label each one of their parts with one of the follow-
ing labels: top, middle, bottom, handle and usable area.
The object symmetry assumption allows us to apply shape
completion algorithms, only on the parts or on the whole
object according to a decision scheme. Then, using the shape-
completed point cloud, we segment the object into its parts
and assign them a semantic label. This reduces the search
space for robot grasp generation, prediction and planning.
The next subsections explain our symmetry-based method
for shape-completion and the division of the completed point
cloud into a set of semantic parts.

4.1 Object shape completion

As any other type of reconstruction based on a partial view
of an object, computing its bounding-box is an ill posed
problem due to lack of observability of the self-occluded
part. However, the actual bounding shape provides a large
set of reaching poses (i.e. pre-grasp hypotheses), which lead
to successful grasping. Thus, we complete the object shape
by assuming either global or partial rotational symmetry.
Inspired by the work of Thrun and Wegbreit (2005) and
Bohg et al. (2011) and keeping in mind the computational
efficiency, we propose an approach that translates a set of
assumptions and rules of thumb observed inmany daily envi-
ronments into a set of heuristics and approximations: (a) the

objects stand on top of a planar surface (Muja & Ciocar-
lie); (b) the camera is at a higher viewpoint; (c) the objects
have rotational symmetry; (d) their main geometrical axes
are either orthogonal or parallel to the supporting plane; (e)
the axis of symmetry corresponds to one of the main geo-
metrical axes; and (f) the direction of the axis of symmetry
indicates the object’s pose (i.e., upright or sideways). These
constraintsmodel perfectly simple box-like and cylinder-like
object shapes, such as kitchen-ware tools, and are reason-
able assumptions for many other approximately symmetric
objects, such as tools (Fig. 3). These heuristics allow us to
reconstruct the unobserved part of an object point cloud in
real-time, given a partial view (Fig. 4).

To find the main geometrical axis, we employ a global
PCArepresentation.Afterwe identify thePCAdirectionwith
more energy, the decision scheme for finding the object parts
has two main steps:

• If the direction is perpendicular to the table, the object
may have or not a handle. The object has a handle if the
projection of the points onto the table planefits very likely
a circle. Otherwise, the object does not have a handle.
The handle is defined as the set of projected points out
of the circle. Then, the symmetry completion is applied
separately to the handle and to the rest of the object,which
is decomposed into top, middle and bottom parts.

• If the direction is parallel to the table, we consider the
heightw.r.t. the table. If the height is greater than a thresh-
old, the object is not a tool and the procedure described
in the previous point is applied. Otherwise, the object is a
tool that has a handle and an usable area, and the object
is completed with linear symmetry.

Analogous to Bohg et al. (2011), we consider one type
of symmetry, that is the line reflection symmetry (Thrun and
Wegbreit 2005) as it copes better with the object categories
that we want to detect. More details on the assumptions and
the implementation can be found in Figueiredo et al. (2017).
The bounding boxes of the object parts define the pre-grasp
hypotheses, providing two hypotheses for each face of a box,
as illustrated in Fig. 5. The set of pre-grasp poses is used by
the low-level grasp planner (Sect. 8) for local-shape grasp-
ing prediction and motion trajectory planning. The software
and its ROS node that implements the object pose and part
segmentation of Sect. 4.1 is available online.1

4.2 Object properties

Given the completed object point cloud and its semantic
parts, we can estimate additional properties of the object such
as pose, category and containment.

1 Available at: https://github.com/vislab-tecnico-lisboa/object_
recognition/tree/master/ist_object_details.
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Fig. 3 Objects having global rotational symmetry

Fig. 4 Semantic parts for several objects after applying the completion algorithm. The colors correspond to parts as follows: yellow—top, blue—
middle, red—bottom, green—handle, and magenta—usable area. a Pan, b Knife, c Hammer, d Glass, e Bowl, f Mug (Color figure online)

Fig. 5 Examples of the pre-grasp gripper poses for the superior face of
the top part of a bottle

Object pose The orientation of the axis of symmetry with
respect to the object’s supporting plane indicates the pose of

the object (upright, upside-down or sideways). In our real-
world experiments we do not estimate the upside-down pose.

Similarity-based object classification We can estimate the
object class by retrieving the objects with the most simi-
lar global properties. Due to good results for grasping point
prediction (Neumann et al. 2016), we employ the manifold-
based graph kernel approach proposed in Neumann et al.
(2013) to asses global object similarity. It ensures a strong
appearance-based predictor for object category. The predic-
tion, in the form of a probability distribution on object labels,
is used further as a prior by the probabilistic logic mod-
ule. Other global object similarity methods can be also used
instead.

We obtain the distribution on object categories for a par-
ticular object by retrieving the objects in an object database
being most similar in terms of global shape and semantic
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part information.We represent the objects by labeled graphs,
where the labels are the semantic part labels derived by the
visual module and the graph structure given by a k-nearest
neighbor (k-nn) graph of the completed object’s point cloud.
For each completed object we derive a weighted k-nn graph
by connecting the k nearest points w.r.t. Euclidean distance
in 3D.

The nodes have five semantic labels encoding object part
information top, middle, bottom, handle and usable area.
To capture manifold information as graph features in pres-
ence of full label information we use a diffusion scheme
of the labels corresponding to the diffusion graph kernel,
simply referred to as propagation kernel in Neumann et al.
(2012). The similarity measure among objects is a kernel
function over counts of similar node label distributions per
diffusion iteration.We consider a maximum number of itera-
tions. Given a new object G∗ that the robot aims to grasp, we
first select the top n most similar graphs {G(1), . . . ,G(n)},
where n = 10 in all our experiments. Second, we build a
weighted average over the categories of the objects corre-
sponding to {G(1), . . . ,G(n)}. This average is used as a prior
distribution on object categories for the object graphG∗. The
prior for the scenario in Fig. 2 is: P = 0.56 cup, P = 0.36
can, P = 0.05 pot, and P = 0.02 pan. It is used by the PLM
to reason about different prediction tasks.

Object containment In our scene description we addition-
ally consider observations about the object containment. It
can be estimated by comparing top visual images of empty
and full objects (opened containers) or by observing human
(or humanoid) lifting and transportation actions (closed con-
tainers) (Palinko et al. 2014). We assume either that the
containment property is not observed (e.g., for tools), the
object is empty, or the object is full with a certain probabil-
ity.

5 CP-logic for task-dependent grasping

We encode the extracted semantic description of the scene
using Causal Probabilistic (CP) Logic (Vennekens et al.
2009) and introduce its syntax and semantics w.r.t. our setup.
We observe one object at a time.2 The conjunction of obser-
vations is: given task, object parts and visual properties of the
object, that is pose, containment and category. Visual obser-
vations are represented using deterministic facts and ground
probabilistic facts. For the scenario in Fig. 2 a deterministic
fact is obsObject(o), stating that an object o is observed, and a
probabilistic fact is 0.8::part(top,o), stating that o has a top
part with probability 0.8. The observation obsObject(o) is a
logical atom and obsObject/1 is a predicate symbol of arity 1.

2 The work can be extended to consider several objects simultaneously.

The object identifier o is a constant denoted in lower case and
represents a ground term. Terms can also be variables when
denoted in uppercase. Ground atoms, such as obsObject(o)

and part(top,o), do not contain variables and represent par-
ticular relations. They possess truth-values, that is they are
either true or false. When ground atoms are true, they are
also called facts.

Additional visual observations are encoded via CP-rules
capturing a prior distribution over the object category. For
object o such a distribution is:

0.56::cup(o); 0.36::can(o); 0.05::pot(o);
0.02::pan(o) ← obsObject(o).

The CP-rule states that an object o belongs to a category with
a certain probability, that is, it is either a cup with probability
0.56 or a can with probability 0.36 or a pot with probability
0.05 or a pan with probability 0.02. The arrow means impli-
cation (if). The left side of the arrow represents the head of
the CP-rule. It is a disjunction of logic atoms indicating the
possible outcomes of the body, represented by the logical
atom obsObject(o). In any CP-rule, the sum of the possible
outcomes can be at most 1.3 The probability should be inter-
preted as: if the body is true, then it causes the consequence to
become true with a causal probability. The body of a rule can
be empty, i. e., always true. In Example 1, this is formalized
as: 0.8::part(top,o). If the head contains only one atom
with probability 1.0, we may write it deterministically, e.g.,
obsObject(o). More deterministic CP-rules are illustrated in
Sect. 6.

We can also have a prior on the task type. In our scenario,
if the task is not given, we assume a uniform distribution.
Similarly, if the prior on the object category is not observed,
we consider a uniform prior instead. Example 1 illustrates
the set of visual observations made about the world in Fig. 2
as CP-rules.

Example 1 Visual observations for the scenario in Fig. 2:

obsObject(o).
0.8::part(top,o).
1.0::part(handle,o).
1.0::part(middle,o).
1.0::part(bottom,o).
0.5::pose(o,upright).
empty(o).
0.56::cup(o); 0.36::can(o); 0.05::pot(o);
0.02::pan(o) ← obsObject(o).

There are several advantages of using CP-Logic to model
complex uncertain dependencies over the more popular
graphical models such asMarkov networks or Bayesian Net-
works (BNs). First, CP-Logic is designed to explicitly model
causal events (or relationships between random variables).
Robotic grasping is characterized by a number of causal

3 If the sum is less than 1, there is a non-zero probability that nothing
happens.
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uncertain events which sometimes involve different conse-
quences. For example, if the object has a usable area and a
handle, it is likely to be any specific tool category, includ-
ing a ‘hammer’. This rule is a general, but local piece of
information which does not consider other possible causes
for the object being a ‘hammer’. This is rather difficult to
encode with a BN, as querying for the object being a ham-
mer involves knowing all the possible causes and how they
interact with the set of observations. Similarly, if the object is
a ‘tool’ and the task is ‘pass’, then it should be rather grasped
by the usable area instead of the handle. This involves again
local causation.

Second, a CP-Logic theory is more efficient as it is more
compact, requires fewer parameters (Meert et al. 2008) and
allows parameter sharing by generalizing over similar situ-
ations. This is due to its first order nature. Differently, BNs
are a probabilistic extension of propositional logic, and thus,
they inherit limitations of propositional logic: they have a
rigid structure and cannot handle interactions between a vari-
able number of objects in a generic way. Consider building a
probabilistic model of a set of kitchen table settings, where
the goal is stacking objects in order to clear the table. This
is rather difficult to be done with BNs as a kitchen table
scenario involves configurations of objects, such as plates,
knives, forks, cups. The structure of different settings is, at
an abstract level, fairly similar. However, each particular set-
ting would need to be modeled by its own specific BN. In
contrast, CP-Logic can generalize over similar object con-
figurations.

Third, due to its first order nature, CP-Logic can intuitively
integrate (hierarchical) world knowledge as logic rules. For
example, we can easily integrate and exploit object ontolo-
gies to reason about object (super-)categories or task-object
affordance models. This integration is not obvious with BNs.

6 World knowledge: ontologies and
affordances

After we described the visual scene using CP Logic, we
introduce the knowledge base used by our PLM. This part is
essential to generalize over similar semantic object parts and
across object/task categories. The knowledge basemakes use
of an object category ontology, a task ontology, object-task
affordances and environmental constraints.

We consider the object category ontology illustrated in
Fig. 6. It structures 11 object categories: C = {pan, pot,
cup, glass, bowl, bottle, can, hammer, knife, screwdriver,
cooking_tool}. The super-categories are defined based on
the object functionality, and are represented by: kitchenCon-
tainer, dish, openContainer, canister, container, tool, object.
The super-category dish subsumes the categories bowl,
glass and cup. By making use of the ontology structure,

the grasping model makes abstraction of the fine-grained
object categories. The ontology can be extended with new
categories.

The ontological knowledge is translated by our probabilis-
tic logic module into deterministic logical rules. They are
obtained by encoding the super-category in the head and the
finer-grained category in the body. Suchmappings are shown
in Example 2. The rule canister(X) ← can(X) is determinis-
tic and states that “any can is a canister”. The argument X ,
denoted in uppercase, is a term in the form of a variable. All
variables are universally quantified. In other words, the rule
canister(X) ← can(X) specifies that for all objects X , when
X is a can, X is a canister as well.

Example 2 Object ontology mappings to logical rules:

kitchen_container(X) ← pan(X).
kitchen_container(X) ← pot(X).
. . .
canister(X) ← can(X).
canister(X) ← bottle(X).
. . .
open_container(X) ← kitchen_container(X).
open_container(X) ← dish(X).
container(X) ← open_container(X).
container(X) ← canister(X).
object(X) ← container(X).
object(X) ← tool(X).

Next, we consider as world knowledge the task ontol-
ogy in Fig. 7. It structures 7 tasks: T = {pass, pourOut,
pourIn, p&pInUpright, p&pInUpsidedown, p&pInSideways,
p&pOn}.4 The task pass refers to grasping and passing
the object to a human in the exact same pose, the tasks
pourOut and pourIn to the actions of pouring liquid out of
and inside the object, respectively, after grasping it. Tasks
p&pInUpright, p&pInUpsidedown andp&pInSideways refer
to picking the object from the current pose and placing it (in
a shelf/in a cupboard/on a table) in the upright, upside-down
and sideways poses, respectively. Finally, the task p&pOn
is defined as picking and placing the object on a surface in
the same initial pose. Depending on the object pose, its parts
and the task to be performed, the object should be grasped in
different ways. The task super-categories are: p&pIn, pick-
Place, pour, task. Task ontology knowledge is translated
by our probabilistic logic module into deterministic logical
rules as well. The super-task is encoded in the head, while
finer-grained task in the body as Example 3 shows. The rule
pour(T) ← pourIn(T) specifies that “any task of pouring liquid
in to fill some object is a pouring task”.

Example 3 Task ontology mappings as logical rules:

p&pIn(T) ← p&pInUpright(T).
p&pIn(T) ← p&pInUpsidedown(T).
p&pIn(T) ← p&pInSideways(T).
. . .
task(T) ← pickPlace(T).
task(T) ← pour(T).
task(T) ← pass(T).

4 The notation p&p is abbreviation for pick and place.
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Fig. 6 Object category ontology

Fig. 7 Task category ontology

While the broader Gibsonian definition of affordance
refers to the properties of an object to allow action pos-
sibilities offered to it by its surrounding environment, we
narrow down the notion of object-task affordances as the
tasks afforded by objects in our object grasping scenario,
considering the manipulation capabilities of the two-finger
gripper mounted on a robotic arm (Fig. 9d). Figure 8 illus-
trates common sense affordances in the form of a table. They
allow us to relate object-task concepts and help us to define
the grasping model in a relational way. Both the affordances
table and object ontologies were defined by human experi-
ence and inspired by AfNet: The Affordance Network.5 They
can be extended to include new object or task categories.

By looking at the table, we can define possible object-
task affordances. Our probabilistic logic grasping model
encodes them as probabilistic logical rules (Example 4).
The rule 0.9::possible(X,T) ← object(X), pass(T) states that
any object in our scenario afford the task of passing with
a high probability. The body of the rule is a disjunction
of the atoms object(X) and pass(T). We can also gener-
ally state that 0.9::possible(X,T) ← container(X), pour(T),
that is any container affords the task of pouring. However,
this is not always true, as pouring liquid in a canister is

5 Available at: www.theaffordances.net.

an almost impossible task, even for a human. We encode
such constraints via the impossible/2 predicate. The rule
1.0::impossible(X,T) ←canister(X), pourIn(T) states that a
canister does not afford the task of pouring in. The possible/2

and impossible/2 predicates are combined by the affords/2

predicate, giving us the final object-task affordance knowl-
edge.

Example 4 Object-task affordances as probabilistic logical
rules:

0.9::possible(X,T) ← object(X), pass(T).
0.9::possible(X,T) ← container(X),
pour(T).
0.9::possible(X,T) ← object(X), p&pOn(T).
0.9::possible(X,T) ← container(X),
p&pIn(T).
0.9::possible(X,T) ← tool(X),
p&pInSideways(T).

Impossible object-task affordances:

1.0::impossible(X,T) ← canister(X),
pourIn(T).
1.0::impossible(X,T) ←
kitchenContainer(X), pourOut(T).
. . .

The final object-task affordance model is given by the rule:

affords(X,T) ← possible(X,T),
not(impossible(X,T)).
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Fig. 8 Object-task affordances

Finally, next to the affordance rules,we include someother
common sense object-task constraints, which hold for our
kitchen setup. In Example 5 some of them are shown. They
are encoded via the impossible/2 predicate and illustrate
situations when the object is observed to be filled with con-
tent, i.e., f ull/1 is true. If extra object/task categories are
added to the scenario, the list of constraints can be increased.

Example 5 Other common sense exceptions:

impossible(X,T) ← pan(X), full(X),
pass(T).
impossible(X,T) ← container(X), full(X),
p&pInUpsidedown(T).
. . .

We employ a manually-defined probabilistic affordance
model. However, the parameters of the model can be
learned to obtain better estimations of the object-task
affordances (Moldovan et al. 2012, 2018). They can be
also re-estimated by our probabilistic logic module, given
the prior distribution over object categories. When the
task is not given, it can be inferred from the model.
Querying for the most likely task in our grasping sce-
nario, implies calculating argmaxT P(affords(o,T)|V,M),
where T is the task variable which unifies with possi-
ble tasks. Without grounding T, one obtains a probability
distribution over possible tasks. For the cup scenario in
Fig. 2, the resulted distribution over the considered tasks is:
P(affords(o,pass)) = 0.32, P(affords(o,p&pOn)) = 0.32,
P(affords(o,p&pInUpright)) = 0.32, P(affords(o,pourIn))
= 0.03, P(affords(o,p&pInUpsidedown)) = 0.01, P(affords
(o,p&pSideways)) = 0.0, and P(affords(o,pourOut)) = 0.0
(the cup is empty). This shows the flexibility of our approach.

Now that we introduced our knowledge base, we explain
next in more detail the probabilistic logic module.

7 Probabilistic logic module

Our PLM for grasping is defined using CP Logic. Its role is
to answer three types of queries: most probable object cate-
gory, most affordable task and best semantic pre-grasp. Thus,
the resulting CP-Logic module for object grasping includes
three parts in the form of probabilistic logic rules: knowl-
edge about the world (object/task ontologies and object-task
affordances explained in Sect. 6), the object category model
and the task-dependent grasping model. After introducing
the world knowledge in the previous section, we present the
remaining two parts of the PLM in the following two subsec-
tions. Note that for all prediction tasks we make the mutually
exclusiveness assumption. For object category prediction this
implies that an object cannot have several categories at the
same time. Similarly, for task selection, this translates into
the fact that only one task can be executed at any point in
time.We use a ProbLog implementation (Fierens et al. 2011)
for the CP-Logic module and we show experimentally that
by putting together probabilistic and logical reasoning we
improve the grasping performance.

7.1 Probabilistic logic for object categorization

Our probabilistic logic object categorization model answers
the query: what is the most probable object category? We
can query an object instance o for being, for example, a ham-
mer by using the predicate category/2 and by calculating the
probability of the ground atom P(category(o, hammer)).
It is possible to ask the query without grounding the specific
object category. Querying for the most likely object category
is equivalent to calculating argmaxC P(category(o,C)|
V,M), where the variable C indicates the category of o and
unifies with defined object categories, M is the PLM and V

is the conjunction of observations made about the world: the
given task, the observed object parts, pose and containment
(presented in Sect. 4.2).
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The CP-model for object categorization is encoded using
CP-events to indicate object category consequences based
on the object parts and properties and deterministic rules.
Example 6 illustrates some rules extracted from our object
category model. The first deterministic rule reads as: if the
object has a usable area and a handle and it poses sideways,
then it is a tool. Similarly, we can define CP-events showing
several possible outcomes in the head of the rule when its
body is true. When observed parts are, for example, bottom,
middle and top, no handles are detected and the pose is
sideways or upright, then the object can be a glass, a bowl or
a canister (rules 2 and 3). If the observed pose is upsidedown
then the object can be a glass, a bowl or a can (rule 4). If
exactly one handle is observed, then the object may be a cup
or a pan (rule 5).

Example 6 Rules extracted from the object category model:

tool(X) ← part(ua,X), part(ha,X),
pose(X,sideways). (1)

0.25::glass(X); 0.25::bowl(X);
0.5::canister(X) ← part(top,X),
part(middle,X), part(bottom,X),
no_handle(X), pose(X,upright). (2)

0.25::glass(X); 0.25::bowl(X);
0.5::canister(X) ← part(top,X),
part(middle,X), part(bottom,X),
no_handle(X), pose(X,sideways). (3)

0.33::glass(X) ; 0.33::bowl(X)
; 0.33::can(X) ← part(top,X),
part(middle,X), part(bottom,X),
no_handle(X), pose(X,upsidedown). (4)

0.75::cup(X); 0.25::pan(X) ←
part(middle,X), part(top,X),
part(bottom,X), part(handle,X),
pose(X,upright). (5)
. . .

These rules encode generality also by using object super-
category atoms in the head (e.g., tool and canister). In order to
estimate the object category in these cases, we adapt the orig-
inal object ontology defined in Sect. 6 to a similar ontology
which, in addition,models categorydistributionswith respect
to the super-categories across the ontology. This is part of the
object categorizationmodel and is done also usingCP-events.
The causal probabilities are estimated based on the number
of categories in the leafs. Example 7 pictures the distribution
over hammer, knife, screwdriver and cooking_tool caused
by the super-category tool, and the distribution over can and
bottle caused by the object being a canister.

Example 7 Examples of category distributions with respect
to the super-categories:

0.25::hammer(X); 0.25::knife(X);
0.25::screwdriver(X); 0.25::cooking_tool(X)← tool(X).

0.5::can(X); 0.5::bottle(X) ←
canister(X).

In our experiments, during inference, the object catego-
rization rules are used together with world knowledge and

visual observations to form the CP-theory for object cate-
gorization. Its parameters should not be interpreted as the
conditional probability of the head atom given the body,
e.g., P(can(o)|canister(o)) = 0.5 is incorrect. It is part
of the semantics of CP-Logic that each rule independently
makes a head atom true when triggered. Thus, the condi-
tional probability that o is a can, given that o is a canister,
may be different than 0.5, in case there is a second possible
cause, e.g., a prior knowledge that o is a can with prob-
ability 0.36, which contributes to P(can(o)). To illustrate
the benefits of the categorization model let us reconsider
our cup example in Fig. 2. Initially, the manifold shape
model predicts for the detected object categories cup, can
and pot with probabilities 0.56, 0.36 and 0.05, respectively.
However, after querying our model, the new distribution
is P(cat(o, cup)) = 0.98, P(cat(o, pan)) = 0.02, while
P(cat(o, can)) and P(cat(o, pot)) become 0.0. The result
is a better probability distribution over object categories than
the observed prior.

There are different levels of generalization with respect
to the rules of the theory. We experimented also with
more general rules to investigate the suitability of our
model. They were able to improve the object category
prior (see Sect. 9), showing similar behavior and results
to the more specific one. Example 8 shows more gen-
eral rules, which replace, for example, the more specific
head 0.25::glass(X); 0.25::bowl(X); 0.5::canister(X) with
the super-category 1.0::container(X), while keeping the same
body. For the cup example the new distribution with the
more general theory becomes P(cat(o, cup)) = 0.93,
P(cat(o, pot)) = 0.05, P(cat(o, pan)) = 0.02.

Example 8 More general rules from the object category
model:

1.0::container(X) ← part(middle,X),
part(top,X), part(bottom,X), no_handle(X),
pose(X,upright).

1.0::container(X) ← part(middle,X),
part(top,X), part(bottom,X), no_handle(X),
pose(X,upsidedown).

0.6::dish(X); 0.4::canister(X)← part(top,X), part(middle,X),
part(bottom,X), no_handle(X),
pose(X,sideways).

0.5::cup(X); 0.5::kitchen_container(X)
← part(top,X), part(middle,X),
part(bottom,X), one_handle(X).
. . .

7.2 Probabilistic logic for task-dependent grasping

We introduce next our probabilistic logic task-dependent
grasping model. Its role is to answer the query: what is the
best semantic pre-grasp?We examine possible pre-grasps by
queryingP(grasp(o,t,Part)),where t is the given task andPart
is a variable which unifies with possible object parts. Query-
ing for the most likely semantic pre-grasp of an object is
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equivalent to calculating argmax
Part

P(grasp(o,t,Part)|V,M),
where M is the PLM and V is the conjunction of world
observations, to obtain a probability distribution over pos-
sible object parts or pre-grasps.

The CP-model for estimating the best pre-grasp is a set of
causal probabilistic (CP) events. Each such event generates
as consequence the graspability of a certain object part condi-
tioned on the part existence, task, object (super-category and
properties). The feasibility of the semantic grasp is encoded
via the causal probability. Some examples from the grasping
model for the dish super-category are illustrated in the Exam-
ple 9. The first three rules state that if the object is a full dish
in the upright pose, the task is pass, and the object affords
the task, then, the object can be grasped by the observedmid-
dle part with probability 0.7, top part with probability 0.2 or
handle with probability 0.1. The next three rules refer to the
situation when the dish is in the same pose, but it is empty.
Then, it can be passed by grasping it from the detected bot-
tom part with probability 0.1, middle part with probability
0.7 or top part with probability 0.2. Finally, the last rule in
the example considers the scenario when the task to be per-
formed on the dish is pourOut. In this case, the object can be
grasped by the observed middle part with probability 1.0.

Example 9 Rules extracted from the semantic pre-grasp
model:

0.7::grasp(X,T,middle) ← dish(X),
pose(X,upright), full(X), pass(T),
affords(X,T), part(middle,X).

0.2::grasp(X,T,top) ← dish(X),
pose(X,upright), full(X), pass(T),
affords(X,T), part(top,X).

0.1::grasp(X,T,handle) ← dish(X),
pose(X,upright), full(X), pass(T),
affords(X,T), part(handle,X).

0.1::grasp(X,T,bottom) ← dish(X),
pose(X,upright), empty(X), pass(T),
affords(X,T), part(bottom,X).

0.7::grasp(X,T,middle) ← dish(X),
pose(X,upright), empty(X), pass(T),
affords(X,T), part(middle,X).

0.2::grasp(X,T,top) ← dish(X),
pose(X,upright), empty(X), pass(T),
affords(X,T), part(top,X).

1.0::grasp(X,T,middle) ← dish(X),
pourOut(T), affords(X,T), part(middle,X).
. . .

Our CP-theory can also enforce constraints to model
impossible pre-grasps. Examples of such constraints are
showed below (Example 10). For example, when the object
is a tool and the task is pour , we have an impossible affor-
dance and thus, also an impossible pre-grasp position. This
is specified through the first constraint which states that it
is impossible for the pre-grasp atom grasp(X,T,R) to be true
when the body is true. It guarantees that the probability of
such grasps is equal to 0.0. Further, when attempting to grasp

and a collision happened during grasping execution, our CP
model can incorporate feedback to the high-level reasoning
module announcing an impossible pre-grasp position. The
second constraint rule shows that we can connect the rea-
soning module to the execution planner by enforcing the
probability of a pre-grasp to 0.0, if there are environmen-
tal constraints for the gripper. Finally, the third constraint
indicates that if the object is a pan in the upside down pose
then no task should be executed, as grasping the object in this
situation is very difficult.

Example 10 Constraint for impossible affordances:

false:- grasp(X,T,R), task(T), object(X),
impossible(X,T),part(R,X).

Constraint for collision:
false:- grasp(X,T,R), task(T), object(X),
part(R,X), collision(R).

Grasping constraint:

false:- grasp(X,T,R), pose(X,upsidedown),
pan(X), task(T), part(R,X).

In our implementation, the grasping CP-theory used dur-
ing task-dependent reasoning includes, besides the semantic
pre-grasp rules, the object category rules, world knowledge
and visual observations about the world. For our cup exam-
ple in Fig. 2 the distribution over possible grasping parts
when the task t =pass is: P(grasp(o,pass,middle))=0.87,
P(grasp(o,pass,top))=0.08, P(grasp(o,pass,bottom))=0.03,
P(grasp(o,pass,handle))=0.01.

Similar to the object categorization theory, there are dif-
ferent levels of generalization with respect to the rules. To
test the fittingness of the theory we experimented also with
more general rules, by generalizing over the object pose and
containment with respect to several tasks and thus, reducing
the number of rules. Example 11 generalizes the excerpt of
the theory presented above for task pass and super-category
dish.

Example 11 Part of a more general theory of the semantic
pre-grasp model:

0.1::grasp(X,T,bottom) ← affords(X,T),
pass(T), dish(X), part(bottom,X).

0.6::grasp(X,T,middle) ← affords(X,T),
pass(T), dish(X), part(middle,X).

0.2::grasp(X,T,top) ← affords(X,T),
pass(T), dish(X), part(top,X).

0.1::grasp(X,T,handle) ← affords(X,T),
pass(T), dish(X), part(handle,X).

1.0::grasp(X,T,middle) ← dish(X),
pourOut(T), affords(X,T), part(middle,X).

Our (non-optimal) models were defined using human
experience and “educated guesses”. They can be augmented
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by adding extra rules to include new object/task categories.
The world knowledge was encoded as general as possible
while still reflecting the ontologies and task-object affor-
dances. The parameters of the rules composing the models
can, in principle, be learned from data (Meert et al. 2008)
to best represent the application domain. Our current results
with the quite rigid affordance model can be improved by
learning better probability estimates for object-task affor-
dances from data. We made the code of the PLM available
online.6

8 Low-level grasping planner

The PLM presented in the previous section selects the object
pre-grasp given the task to be performed by taking into
account semantic information. This high-level result is fur-
ther complemented by the specialized grasping module. It
considers only local shape information (rightmost box in
Fig. 2). The low-level grasping module is a two stage plan-
ner which estimates: (i) the grasping probability of given a
pre-grasp pose and (ii) the arm motion planner for reaching
the pre-grasp pose.

The grasping probability of a pre-grasp pose P(grasp|
pre-grasp pose, shape) relies on the completed point cloud
shape of the selected object part (Sect. 4.1). It is estimated
by training a binary classifier which discriminates between
graspable andnon-graspable pre-grasp poses andbymapping
the classification output of a Support Vector Machine onto a
probability. The classifier is trained using local shape depth
features of pre-grasps as explained below.

Depth difference features The local shape features are com-
puted in the volume enclosed by the gripper, which is a
bounding box located and oriented according to the pre-grasp
hypothesis pose. Depth changes in the objects were shown
helpful to recognize graspable regions, even in cluttered
environments where objects cannot be segmented accurately
(Fischinger et al. 2013). The symmetry height accumulated
feature (Fischinger et al. 2013) is robust, but constrained
to top grasps only. We introduce a feature with computa-
tions based also on heights, however, it can be computed for
any grasping orientation. Our feature, called depth gradient
image (DGI), computes the gradient of the depth image in
the volume enclosed by the gripper. This volume defines a
depth value (i.e., the height in mm) as the z-component of
the distance from the gripper base to the object point. Fig-
ure 9c shows an example of the selected region of an object
and Fig. 9d illustrates the volume of interest enclosed by the
gripper.

6 Available at: https://people.cs.kuleuven.be/~laura.antanas/.

The depth image requires a discrete sampling of the vol-
ume, which was defined as boxes of 7 × 7 × 15 (mm) and is
defined as:

DI(u, v) =
{
min{z} if z ∈ box(u, v)

−1 otherwise,
(1)

where box(u, v) represents the set of points inside the box
defined at the pixel (u, v). Equation (1) performs an orthog-
onal projection of the closest point to the base of the gripper
for every pixel of the depth image. Figure 10 shows the depth
image for the selected volume in Fig. 9d. Finally, the DGI is
computed on the depth image by applying pixel differences
in u and v as follows:

DIu(u, v) = DI(u + 1, v) − DI(u − 1, v), (2)

DIv(u, v) = DI(u, v + 1) − DI(u, v − 1), (3)

DGI(u, v) =
√
DIu(u, v)2 + DIv(u, v)2. (4)

The DGI acts as a local shape descriptor for the grasping
predictor.

Grasping probability Given DGI shape features xi and their
labels yi , we useSVMs (Cortes andVapnik 1995)withRadial
Basis Function kernel to discriminate between successful and
failed grasps. Before applying the sign function, we map
the SVM output onto a probability by applying a sigmoid
function to the decision value f (x) = wTφ(x) + b. We
employ the parametric sigmoid to estimate

P(grasp|pre-grasp pose, shape)

= 1

1 + exp(A f (x) + b)
, (5)

where the parameters A and b are obtained by generating a
hold-out set and cross-validation. Its advantages were shown
empirically in Platt (1999).

The arm motion planning searches for collision free paths
between the current pose of the armandapre-grasppose.This
problem is solved by an existing algorithm, the tree-based
motion planner (Sánchez and Latombe 2003) available in
the Open Motion Planning Library (Şucan et al. 2012). The
software and its ROS node that implements the low-level
grasp planning of this section is available online.7

9 Experiments

We address the benefits of the PLM for robot grasping
experimentally. After we introduce the different experimen-

7 Available at: https://github.com/vislab-tecnico-lisboa/grasping/tree/
master/ist_grasp_generation/ist_grasping_point_prediction.
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Fig. 9 Illustration of the point cloud region selected for grasping prob-
ability computation. a Object (remote control). b Correspondent point
cloud. The blue points show the selected points of a graspable region
of the remote control. c Cropped grasping cloud of the object; points

enclosed by the gripper volume.dGripper and volume of interest, show-
ing the reference frame origin for the orthogonal projection of the DI
image (Color figure online)

Fig. 10 Example of a depth image (10 × 21 pixels) and its corresponding gradient magnitude (8 ×19 pixels). a Depth image. b Depth gradient
image

123



Autonomous Robots

tal setups, datasets and evaluation criteria in Sect. 9.1, we
present our results in Sect. 9.2 and analyze them in detail in
Sect. 9.3. We investigate two main groups of questions: (q1)
how robust is the probabilistic logic module, howwell does it
generalize and cope with missing information? and (q2) does
the integration of high-level reasoning and low-level learn-
ing improvegraspingperformanceupon local shape features?
To answer (q1) we investigate if the PLM: (i) can improve
upon similarity-based object classification using the logic-
based object categorization model, (ii) can correctly predict
suitable tasks for a given scenario, and (iii) can properly pre-
dict the pre-grasp region using the task-dependent grasping
model. Further, we investigate its robustness with respect
to object category, task, pre-grasp and grasping point pre-
diction. We perturb either the visual observations about the
world when dropping the prior on the object category, or the
CP-theory by employing more general rules. Additionally,
we determine how well the PLM can generalize by com-
paring results obtained with a more general CP-theory to
those gathered with a more domain-dedicated one. We eval-
uate the performance of the framework considering different
options. To answer (q2) we additionally learn a classifier that
maps points sampled from full objects to successful grasps
using solely local shape features. Given a new object, we
then directly predict the most likely grasp using local shape
information. This is our local shape-based baseline.We com-
pare the baseline with the framework classifier, which further
maps points from predicted semantic pre-grasps to success-
ful grasps, using similar local shape features. Given a new
object, we first predict, using high-level reasoning, the most
likely object pre-grasp region. We then use the classifier to
predict, for a given task, good grasping points among the
set of points in the inferred pre-grasp part. As in (q1), we
evaluate the performance of the full framework, consider-
ing different options. To support the research questions, we
also investigate how good are the visual perception module
and the low-level grasping planner. Specifically, we inves-
tigate the performance of the object pose and part detector,
the global similarity-based object classifier and the grasping
pose classifier without considering the rest of the framework.

9.1 Setup and datasets

We consider three setups to obtain the datasets on which
we quantitatively investigate the robustness and power of
generalization of our SRLapproach. In afirst setup, the object
point clouds are obtained from3Dmeshes and theobject parts
are manually labeled. In this case the dataset is synthetic and
actual grasps are not executed. For the second setup, data
samples are obtained from the ORCA simulator (Baltzakis).
In the third setup, data samples are obtained from a real robot
platform.

Fig. 11 The table is in front of the mobile platform. The range sensor
is marked by the green rectangle

Synthetic setup It considers flawless visual detection of
objects from 3D meshes. The object points are distributed
uniformly on the object surface according to their size by
applying the midpoint surface subdivision technique. Point
normals are correctly oriented, the object pose and its parts
are manually labeled as well as the object containment. This
“perfect scenario” serves as an upper-bound comparison sce-
nario to the more realistic scenarios, allowing an extensive
evaluation of the generalization capabilities of the PLM. The
dataset contains 41 objects belonging to all categories in our
ontology and 102 grasping scenarios. We denote this dataset
SSY N .

ORCA setup The second setup is used to evaluate all the
modules and the full framework in simulation. We use
ORCA, which provides the sensors [laser range camera Asus
Xtion PRO (ASUS) and the Universal Gripper WSG 50 (W.
Robotics) force sensor], robotic arm (KUKA LightWeight
Robot (LWR), K. Robotics), objects and interface to physics
engine (Newton Game Dynamics library, Jerez & Suero) for
robot grasping simulation. The other modules are external
to ORCA and interfaced both with the simulated and real
robot. These modules include: object completion, part and
pose detection, global shape similarity, probabilistic logi-
cal reasoning modules, local shape grasping prediction and
the tree-based motion planner (Sánchez and Latombe 2003)
available in the Open Motion Planning Library (OMPL)
(Şucan et al. 2012). Each object is placed on top of a table.
Further, we consider four possible settings:
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· SRE AL_semi Object pose is not estimated but given by
the ground truth, while the parts are estimated from
the completed point cloud, as explained in Sect. 4. The
scene description may have missing parts when they are
occluded or not detected. We assign to all detected parts
probability 1.0;

· SRE AL Both object pose and its parts are estimated from
the completed point cloud.While the pose has associated
a likelihood, we keep highly confident parts;

· SRE AL_noisy We provide, in addition, a part likelihood
according to the limitations of the detection algorithm;

· SGRASP_noisy Includes actual grasping testswith the sim-
ulated robot. It comprises a subset of the scenarios from
the third setting, where all containers are empty and all
objects are graspable by the robot. The rationale behind
is that it is very difficult to check whether a container is
full or if some objects do not fit the gripper capabilities.
Due to the ambiguity between upright and upside-down
poses when using global shape representations, object
poses considered are upright or sideways.

Eachof thefirst three settings contains 26different objects,
instances of categories pan, bowl, cup, glass, bottle, can,
hammer, screwdriver, knife and 126 grasping scenarios. The
fourth setting contains 18 objects, instances of categories
pan, cup, glass, bottle, can, hammer, screwdriver, knife and
113 grasping scenarios.

Real robot setup The robot scenario (Fig. 11) considers
the same type of tests as those included in SGRASP_noisy .
In addition, we evaluate the performance of the framework
when two or more objects are in the field of view of the
camera and the field of action of the arm, considering three
settings of increasing complexity in terms of path planning.
The less complex setting (scenario1), considers only two
objects which are instances of glass and bottle, in a way
that planning constraints are similar to a single object on the
table. The setting with intermediate complexity (scenario2)
includes three objects which are instances of can, hammer
and screwdriver. The more complex setting (scenario3) con-
siders four objects which are instances of bottle, glass and
cup. Figure 12 shows the objects of every scenario. In addi-
tion to the larger number of objects, we also consider object
placement as another criterion for evaluation. Object place-
ment is performed in two steps: (i) plan from the grasp pose
to a post-grasp pose and (ii) plan from the post-grasp pose to
the grasp pose. We denote this dataset SROBOT .8

8 The synthetic dataset and part of ORCA datasets are available for
download at http://www.first-mm.eu/data.html.

9.1.1 Evaluation measures

We evaluate our experiments in terms of accuracy given
by #successes

#tr ies · 100%. We assess a success in several ways.
Depending on the prediction task, the ground truth is either
one value (object categorization, pose detection) or a set
of values (task and pre-grasp prediction, part detection). A
correct pose detection is considered when the discrete pose
predictedmatches the ground truth. For object categorization
we take as prediction the category with the highest probabil-
ity and consider it a success if it matches the ground truth
category. For the uniform prior, it can be that two ormore cat-
egories are predicted with the same probability. This case is
reported as a false positive. For object part detection we con-
sider a success if all detected object parts match the ground
truth.

For task and pre-grasp prediction evaluation, the ground
truth Gt of each instance is a set (e.g., the tasks p&pOn and
p&pInUpright may be equally possible in a particular sce-
nario). In this case, we compare the set of best predictions
Pr to Gt , where |Pr | ≤ |Gt |. If Pr ⊆ Gt a success is
reported. We present results for different sizes of Pr , such
that |Pr | belongs to the set {|Gt |− i}, with i ranging from 0
(the most restrictive evaluation setting) to |Gt |− 1 (the most
pertinent setting). We denote the possible evaluation set-
tings as Ei . For the scenarios with robot grasping execution
(SGRASP_noisy and SROBOT ) the evaluation must consider
the success of grasping execution with respect to the valid
grasping hypotheses provided by the framework. In this case
the accuracy is given by #correctly estimated task/part

#valid grasping hypotheses · 100%.
As a baseline for the global performance evaluation measure
consider theminimumoverall chance level of the framework,
which depends on the information provided to the robot. For
instance, when the object label is provided the overall chance
level will take into account the chance level of: (i) the task,
(ii) pre-grasp pose and (iii) low-level grasping. this overall
chance applies to the SROBOT experiments.

9.2 Results

In the followingwe present quantitative experimental results.
For all results the best performance is indicated in bold.

9.2.1 Visual perception module

Object pose and part detection results are shown in Table 1.
We do not consider the upside-down pose for the tests. Object
part detection suffers frompart occlusion for particular object
poses, reducing the framework performance for object cat-
egory prediction. In addition to the accuracy, we stress the
execution time for the object completion and pose detection.
The average execution times are 27.5 and 15.71 ms on a PC
using one core of the Intel Xeon (2.67 GHz). These numbers
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Fig. 12 Experimental settings with the real robot. Each picture shows the objects utilized for each scenario. Additional object constraints are: the
gray bottle of scenario3 is full with water, the white bottle is empty and the coffee container is full of coffee (Color figure online)

Table 1 Accuracy (%) for object part and pose detection

Dataset Part detection Pose detection

SGRASP_noisy 84.56 100

SROBOT 82.14 100

Table 2 Grasping accuracy (%) on the rectangle dataset (Jiang et al.
2011)

Approach Grasping accuracy

Jiang et al. (2011) 84.7

Lenz et al. (2015) 93.7

Our work 92.63

confirm the computational efficiency of our approach, which
allows to make fast decisions. We note that the PCA global
representation is able to copewell with object pose detection,
considering the table-top assumption and the object cate-
gories used.

We train our grasping pose classifier on the grasping rect-
angle dataset introduced in Jiang et al. (2011). It contains
camera images, point clouds and the pre-grasp poses for
both successful and failed grasps. The dataset is balanced
and contains more than 5K positive and negative samples.
We remove objects with very noisy point clouds, so in total
we have 4708 samples (2424 positive and 2284 negative).
We apply fourfold cross-validation to find the best RBF and
sigmoid parameters. The grasping accuracy defined in Jiang
et al. (2011) selects the top grasping region per object and
then compares it to the ground truth. Table 2 shows that our
approach using only depth features has good performance,
improving the result in Jiang et al. (2011). A better result is
obtained in [6], however they rely on both image and depth
features.

Object category prediction We evaluate the object category
prediction, using two approaches: (i) manifold-based object

model (i.e. part labels in a graph + object shape), and (ii) the
PLM categorization model. As a baseline for the accuracy,
the chance classification level is 9%, in the problem of 11
categories along with the part labels. Table 3 reports the clas-
sification accuracy of the various methods in order to answer
question (q1-i). We compare results of a linear kernel among
label counts (Label fractions), propagation kernels (Global
similarity), and the PLM with and without the similarity-
based prior. Label fractions is a baseline which computes a
linear base kernel using only label counts as features without
any manifold information. In order to evaluate the perfor-
mance of the PLM’s object category predictor when dealing
with missing information, we experiment also without the
manifold prior on the object category. PLMuni f orm indicates
the setting with a uniform prior on the object category. We
vary the generality of our categorization theory to test the
robustness of the PLM. PLMgeneral indicates the more gen-
eral theory with the manifold prior. PLMgeneral

uni f orm indicates
experiments with the more general theory setting and the
uniform prior.

9.2.2 Task prediction and pre-grasp selection

We investigate whether our PLM can correctly predict
suitable tasks for a given scenario (q1-ii). As a baseline,
the chance level of task assignment in the problem of 7
tasks is 14.3%, which is challenging due to the subtle dif-
ferences between some of the tasks (e.g. p&pInUpright,
p&pInSideways, p&pInUpsidedown). Results on all SRE AL

and SSY N are reported in Table 4 with the most restrictive
evaluation setting E0 for both general and more specific
object categorization theories. Figure 13 presents results for
the more specific object categorization theory using all eval-
uation settings, with and without the manifold prior for all
the datasets.

Next, we investigate (q1-iii), that is if our PLM can prop-
erly predict the pre-grasp region when the task is given. As a
baseline for the accuracy, the chance level of random selec-
tionof anobject part is in between25and50%, corresponding
to the number of detected parts (2–4). We consider the spe-
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Table 3 Accuracy (%): PLM
versus global similarity versus
baseline for object
categorization

Dataset Label fractions Global similarity PLMuni f orm PLM PLMgeneral

SSY N 63.4 87.8 31.37 93.14 92.16

SRE AL_semi 39.7 39.7 14.29 49.21 46.83

SRE AL 39.7 39.7 14.29 48.41 46.83

SRE AL_noisy 39.7 39.7 14.29 39.7 39.7

The random category assignment is 9%. Italics indicate similar values for different settings

Table 4 Accuracy (%): PLM for task and pre-grasp prediction

Dataset PLM PLMgeneral

Pre-grasp Task Pre-grasp Task

SSY N 85.29 72.55 84.73 72.55

SRE AL_semi 85.26 95.24 86.73 93.65

SRE AL 85.26 95.24 84.69 93.65

SRE AL_noisy 85.49 93.65 86.73 93.65

SGRASP_noisy E0 75.51 35.71 – –

SGRASP_noisy E1 75.51 50.00 – –

SROBOT E0 66.7 25.00 – –

SROBOT E1 66.7 75.00 – –

The random task assignment is 14.3%, and the random pre-
grasp assignment is in between 25–50%

cific object categorization theory and experiment with both
a more specific and a more general task-dependent grasping
theory. The results for both settings are shown in Table 4
for evaluation setting E0 (top rows). Results of the PLM
pre-grasp predictor for all evaluation settings are reported in
Fig. 14.

9.2.3 Low-level grasping planning versus semantic and
geometric reasoning

The selection of grasping points using only local shape
descriptors bias the ranking of the object points towards the
most visually graspable, disregarding other constraints such
as the pre-grasp pose for task execution, path planning and
post-grasp object pose. By adding those constraints, regions
with lower visually graspable probability will become more
important when considering the task execution probability
and vice versa. Thus, in order to answer question (q2) we
compute the percentage of grasping points that have a low
“visually graspable” probability (Sect. 8), but still lead to
successful grasps when taking into account task constraints.
Results are shown in Table 5, having as baseline the local
shape-based approach.Wealso investigate its robustnesswith
respect to grasping point prediction by dropping the prior on
the object category (Fulluni f orm). The full framework selects
in average more points having low visually graspable proba-
bilities than the other options. This behavior confirms the
importance of task constraints on the computation of the
grasping probability. We note that the complete framework
clearly improves upon using the local shape-based approach.
This answers affirmatively (q2). Additionally, the results
obtained by Fulluni f orm show again the robustness of the
framework.

Finally, we present results for the grasp and place action
discriminated by the level of complexity for the SROBOT

Fig. 13 Accuracy (%): PLM for task prediction using all evaluation settings
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Fig. 14 Accuracy (%): PLM for pre-grasp prediction for all evaluation settings

Table 5 Percentage (%) of
successfully graspable points
that have visually graspable
probability less than (lt) 0.3, 0.4
or 0.5: full versus local shape
grasp prediction

Feature (DGI) Measure Local (%) Full (%) Fulluni f orm(%)

SGRASP_noisy lt 0.5 44.55 52.38 50

lt 0.4 27.27 28.57 21.15

lt 0.3 4.55 7.94 7.69

SROBOT lt 0.5 37.5 50 46.15

lt 0.4 25 42.86 23.08

lt 0.3 12.5 28.57 23.08

Table 6 Percentage of
successful grasps in the real
robot scenarios

Scenario Total tests Reachable pre-grasps Grasped objects Placed objects

Scenario1 10 9 (90%) 7/9 (77.8%) 7/9 (77.8%)

Scenario2 15 10 (66.7%) 7/10 (70%) 7/10 (70%)

Scenario3 20 16 (80%) 8/16 (50%) 8/16 (50%)

Total 45 35 (77.8%) 22/35 (62.9%) 22/35 (62.9%)

Different levels of SROBOT complexity

dataset in Table 6. As a baseline for the global perfor-
mance we consider the overall chance level of the framework
(3.21% = 0.09× 0.14.3× 0.25× 100). When there are few
objects on the table (scenario1 and scenario2), the framework
is able to grasp successfully on 73.7% of the experiments.

9.3 Discussion

In this section we analyze the results and discuss the impact
of the different parts of the semantic reasoning.

9.3.1 Object category prediction

Table 3 shows that, for the synthetic dataset SSY N , the addi-
tion of local object structure improves the accuracy more
than 20% upon using label counts only. We also note a
performance drop of propagation kernels on the SRE AL sce-
narios. This is due to the fact that part assignment is achieved
by applying the part detector introduced in Sect. 4.1. This

detector was designed to work for general objects (i.e. we
assume the scenarios to be as realistic as possible) and its
performance is rather poor for some object categories. Never-
theless, manifold information gives a good prior distribution
on object categories (details in Neumann et al. 2013).

Further, the PLM improves object categorization accuracy
upon global similarity on three of the datasets and equals
it on SRE AL_noisy . This result confirms that the uncertainty
introduced by the global-similarity approach is corrected in
certain situations by the high-level rules of the PLM. Thus,
it improves the semantic perception of the object and obtains
better results. Its lower performance on SRE AL compared to
SSY N is linked to the drop in performance of the similarity-
based object label predictor. By removing the manifold prior
(PLMuni f orm column in Table 3), the PLM gives a result on
SSY N that is 3 times better than random category assignment
(which gives an accuracy of 9%). It improves accuracy with
22.27% on SSY N and with 5.19% on SRE AL upon random
category assignment. Thus, PLMuni f orm behaves reasonably
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well, given that it relies solely on high-level rules and it is
not provided with any object shape information.

We note that increasing the generality of the theory
(PLMgeneral ) keeps good results and it is still able to improve
upon the prior. Furthermore, it does not loose much in
terms of performance compared to the more specific the-
ory when manifold information is used, keeping similar
results as those of PLMuni f orm . The results obtained using
this evaluation setting explain the good performance for the
other grasping tasks. More specifically, the PLM assigns an
equal probability to all categories that belong to a super-
category. Estimating the category of an object as any of the
sub-categories of a super-category in the ontology is, thus,
satisfactory to predict good semantic pre-grasps.

9.3.2 Task prediction

Table 4 indicates that the PLM’s accuracy is above 70% on
task prediction, and that PLMgeneral does not loose much
in terms of accuracy when compared to PLM. In addition,
Fig. 14 shows that PLMuni f orm performances are close the
ones of PLM, except for SRE AL_noisy where the PLM is
clearly better. There were few cases for SGRASP_noisy and
SROBOT where the uniform prior provided better results.
These are explained by the fact that the complete framework
failed on the PLM experiment more than the uniform prior
due to uncertainty. In addition, the usage of themanifold prior
gives significantly better results in the most difficult setting,
SRE AL_noisy . For the other evaluation settings, in most situa-
tions, the PLM returns, although not always as first option, a
correct possible task with or without a prior. In the scenarios
with grasp execution (bottom rows in Table 4), the evalua-
tion settings E0 and E1 consider the outcome of the grasping
action. The additional source of failures on grasping include
uncertainty on the pose of the objects and the gripper, which
are caused by the uncertainty of the point cloud and the object
completion. These issues have effects on the performance of
the planner, for instance placing the gripper a bit misaligned
or hitting the object before closing the gripper. We also stress
the advantage of using a prior probability distribution over
the object categories, rather than the top category. The same
experiments only with the top predicted category give accu-
racies of 95.24, 89.68 and 89.68% for SRE AL_semi , SRE AL

and SRE AL_noisy , respectively, which are lower than using
the full prior.

9.3.3 Pre-grasp selection

With respect to pre-grasp selection we note that increasing
the generality of the model (PLMgeneral ), we do not loose
in terms of accuracy (Table 4). This result confirms general-
ization over similar object parts and object/task categories,
which implies that if the input object is an unseen category,

such as a paint roller or a vase, the grasping framework is
robust enough to return a good grasping part. This allows us
to experiment with a wide range of object/task categories
and lets us to believe that our approach can be extended
beyond the categories used (by augmenting the PLM with
extra rules). The uniform prior model has a lower accuracy
than thePLM, in average 8% less over all datasets (Fig. 14). In
all cases the object category provided by themanifold gives a
better performance than the uniform category prior, showing
the benefits of the framework. Again, it is important to con-
sider the full prior distribution as input to the PLM, instead
of only the top category. Our experiments using solely the
top category resulted in accuracies of 81.63, 81.63 and 82.88,
respectively, for the three SRE AL datasets, which are lower
than the ones using the full prior.

We emphasize that in the scenarios with grasp execu-
tion, the evaluation considers the outcome of the grasping
action. We also note that it does not consider mutual exclu-
siveness among possible pre-grasp outcomes. For the other
datasets we performed experiments both with and without
this assumption. The means of the differences between the
mutually exclusive and the non-exclusive results for object
categorization, task prediction and pre-grasp prediction (1.6,
8.5 and 2.6%, respectively) indicate a better result for the
mutually exclusive setup. This lets us to believe that current
robot results can be improved by using the exclusiveness
assumption.

9.3.4 Real scenario evaluation of the semantic reasoning

We emphasize the good performance of the framework in
Table 6 for the very complex scenario3,where the presence of
multiple objects reduce largely the number of available pre-
grasp poses. Considering all three scenarios, the framework
leads to successful grasps in around 63% of the experiments
where there are motion planning solutions in the scenario,
which is around 20 times better than the overall chance level.
This result show in practice that the semantic task selection
and the semantic object part selection of the PLM guide the
robot to execute successfully grasp and place actions.

9.3.5 Comparison to BNs

We compare CP-Logic to BNs for our setup using con-
crete examples. Figure 15 shows three object categorization
CP-rules and their equivalent BN,which has the same param-
eters. In the converting procedure (Meert et al. 2008), the
CP-theory parameters appear in the network’s CPTs, and all
other CPT entires are either 0.0 or 1.0. For every atom in the
CP-theory, a Boolean variable is created in the BN. For every
rule in the CP-theory a choice variable is created, such that
this variable can take n+1 values, with n being the number of
atoms in the head. If an atom is in the head of a rule, an edge
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Fig. 15 The equivalent BN (left) for the exemplified CP-theory (top right) extracted from our probabilistic logic object categorization model.
The CP-theory parameters appear in the CPTs of the choice nodes (right). The CPT for the can(o) node represents the deterministic relationship
c2 = 1 ∨ c3 = 1

Fig. 16 Regular BN for CP-rules with multiple atoms in the rule bodies. CP-rules from our probabilistic logic grasping model (top). Regular BN
combining noisy-OR and AND (middle right) and its CPTs (bottom). BN with additional nodes for the deterministic AND (middle left)

is created from its corresponding choice variable towards a
Boolean variable. The CPTs are constructed in the following
way. The choice variable takes the value i if the i th atom
from the head is chosen the the probabilistic process. If the
body of the rule is true, then the probability that the variable
takes the value i is the causal probability given in the head
of the rule. The CPT of an atom variable represents a deter-
ministic OR function of the different rules having the atom
in the head. If one of the choice variables representing a rule
with the given atom in position i of its head takes the value
i , then the atom will be true with probability 1.0. In all other
cases it will be false, with probability 1.0.

One should, however, compare equivalent BNs to regular
BNs defined over the original atoms, that is networks with
precisely one Boolean node for each atom in the domain and
no additional (unobserved) nodes. CP-theories with at most
one atom in the body and at most one atom in the head can
be represented as a BN consisting of only noisy-OR nodes.
Nevertheless, our PLM consists of CP-rules with more than
one atom in the body or/and in the head. When this happens,
it is no longer possible to represent the theory as a BN with
only noisy-OR nodes. In the following we show that, using
regular BNs instead of CP-Logic implies more parameters,

less interpretability and intractable learning (more details in
Meert et al. 2008).

Let us consider the cup grasping scenario in Fig. 2. Exam-
ple 11 shows pre-grasp rules for any dish when the tasks
considered are pass and pour out. We look at the second and
last rules which give the highest probability to the middle
part. They are CP-rules with multiple atoms in the rule bod-
ies. To represent them as regular BNs, one either has to add
additional nodes for the deterministic AND between the lit-
erals in the body, or one has to combine the noisy-OR and
AND function in oneCPT. Figure 16 illustrates both possibil-
ities. Combining noisy-OR and AND results in many entries
having the same value in the CPT. The addition of separate
AND nodes avoids this redundancy and is easier to interpret.

When there are multiple atoms in the head, we reconsider
the object categorization example in Fig. 15. The regular
BN conversion has to consider the mutually exclusiveness
of the head atoms. Modeling this relationship without any
additional (choice) nodes requires a highly connected net-
work (including cycles). Figure 17 shows the resulting BN.
Edges between the head atoms are mandatory as one atom
is true only if the others are false. Also, even though the
fact that a canister does not cause directly the presence of a
cup, there is a direct edge from canister(o) to cup(o), as
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Fig. 17 Regular BN for CP-rules with multiple atoms in the rule heads

the two atoms are not independent. When canister(o) is not
true, the cup will be triggered, for example, by the super-
category dish and when canister(o) is true, the object must
be either a can or a bottle, but there still is a possibility that
cup is triggered by the super-category dish. Learning such
complex networks is intractable, unless dedicated techniques
are developed. The equivalent BN avoids the fully connected
network by introducing the choice nodes: the choice variable
encodes exactly which of the head atoms is selected by the
probabilistic process.

Thus, CP-Logic offers an elegant way of encoding mutu-
ally exclusive consequences in the head and joint conditions
in the body. Not only CP-Logic is more intuitive to under-
stand, and thus, better to incorporate world knowledge and
constraints, but it also requires fewer parameters than BNs.
This makes such relationships easier to learn in CP-Logic
compared to BN, where, unless dedicated techniques, learn-
ing such complex networks is intractable (Meert et al. 2008).
An experimental comparison to a BN could be further
defined, however, unless both the BN and the CP-model are
learned, the comparison is highly subjective and beyond the
purpose of this paper.

10 Conclusions

We proposed a new probabilistic logic framework combin-
ing high-level reasoning and low-level learning for robot
grasping. The high-level reasoning leverages symbolic world
knowledge, in the form of object/task ontologies and object-
task affordances, object category and task-based information.
The low-level learning is based on visual shape features.
The non-trivial realization of high-level knowledge relies
on logic, which exploits world knowledge and relations to
encode compact grasping models that generalize over simi-
lar object parts and object/task categories in a natural way.
When combined with probabilistic reasoning, our proposed
framework shows robustness to the uncertainty in the world
and missing information.

Our experiments confirm the importance of high-level
reasoning and world-knowledge as opposed to using solely
local shape information for robot grasping. The integra-
tion of high-level reasoning and low-level learning improves
grasping performance. First, the PLM generalizes well over
object/task categories and copes well with missing informa-

tion in object categorization and grasp planning. Second, the
framework is able to transform low-level visual perception
into semantic object parts which represent the task-based
dependent grasping adequately. Third, the final grasp execu-
tion relies on both the low-level grasping classifier and the
probabilistic logic output. Thus, the combination of low-level
percepetion and high-level reasoning provides good seman-
tic task-based grasping skills. The robot is able to perform 7
tasks on 11 object categories while dealing with uncertainty
in realistic scenarios.

We point out three important directions for future work.
The first suggestion is to learn the parameters and structure of
our logic theory from data (Antanas et al. 2018). Further, we
would like to exploit recent advances in the research on per-
sistent homology (Zhu 2013). Persistent homology is a tool
from topological data analysis performing multi-scale anal-
ysis on point clouds identifying clusters, holes, and voids
therein. Incorporating such a technique into our framework
can improve the current part detector. Another direction to
be considered is planning a sequence of actions in order to
fulfill the task-dependent pre-grasp poses. Since planning in
presence of multiple objects raises complexity and general-
ization issues, considering relational planners similar to those
in Moldovan et al. (2013b) is another promising avenue of
future work.
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