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Abstract— Robots require knowledge about objects in order
to efficiently perform various household tasks involving objects.
The existing knowledge bases for robots acquire symbolic
knowledge about objects from manually-coded external com-
mon sense knowledge bases such as ConceptNet, WordNet
etc. The problem with such approaches is the discrepancy
between human-centric symbolic knowledge and robot-centric
object perception due to its limited perception capabilities.
Ultimately, significant portion of knowledge in the knowledge
base remains ungrounded into robot’s perception. To overcome
this discrepancy, we propose an approach to enable robots to
generate robot-centric symbolic knowledge about objects from
their own sensory data, thus, allowing them to assemble their
own conceptual understanding of objects. With this goal in
mind, the presented paper elaborates on the work-in-progress
of the proposed approach followed by the preliminary results.

I. MOTIVATION

Baber [1] postulated that a deliberation for tool selection
in humans or animals alike is facilitated by conceptual
knowledge about objects, especially, knowledge about their
physical and functional properties and relationship between
them. The conceptual knowledge about household objects
is desired in a service robot too when performing various
household tasks, for instance, selecting an appropriate tool
for a given task, selecting a substitute for a missing tool
required in some task or action selection for using objects.
Since the demand for such conceptual knowledge about
objects has been increasing, the development of such knowl-
edge bases has been undertaken by the researchers around the
world. In [2], we reviewed the following existing knowledge
bases developed for service robotics: KNOWROB [3], MLN-
KB [4], NMKB [5], OMICS [6], OMRKF [7], ORO [8],
OUR-K [9], PEIS-KB [10], and RoboBrain [11]; with respect
to various criteria corresponding to the categories knowl-
edge acquisition, knowledge representation, and knowledge
grounding.

Knowledge grounding, a.k.a. symbol grounding or per-
ceptual anchoring, which describes a mapping from abstract
symbols to representative sensory data, is of special interest
for robots. It closes the gap between symbolic reasoning,
which enables abstract decision making, and interpreting
their sensory data, which is imperative for understanding
a robot’s environment. In many existing knowledge bases
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Fig. 1. Symbol grounding approach comparison: the typical approach to
grounding knowledge vs. proposed approach to grounding the knowledge

(see [2] for details), symbols are defined by humans and
are derived from common sense knowledge bases such as
WordNet (KnowRob, MLN-KB, OMICS, RoboBrain), Cyc
(PEIS-KB) OpenCyc (KnowRob, ORO, RoboBrain) (see left
side of Fig. 1). By employing sensors, a mapping from
these symbols to sensory data is constructed. However, this
imposes a human perspective on a robot’s sensory data.
Humans select sensors and dictate their interpretation for
grounding the symbols. This can only work with unambigu-
ous sensory data and complete knowledge about all relevant
object categories.

In contrast, we propose a bottom-up approach to symbol
grounding, a robot-centric symbol generation approach, see
right side of Fig. 1. Our current research work is aimed at
creating a multi-layered dataset that can be used to build
robot-centric conceptual knowledge about household objects.
Instead of predefining the symbols and grounding them
afterwards, we use sensory data and robot-centric extraction
methods to generate qualitative data for each object property.
Afterwards, symbols are generated from this qualitative data
in an unsupervised manner and thereby inherently grounded
in the robots sensory data. Moreover, this approach enables a
robot to build up its own individualized understanding about
objects that does not rely on completeness.

The conceptual knowledge considered in this work pri-
marily involves properties of the objects. The properties
considered are divided into physical and functional properties
where physical properties describe the physicality of the ob-
jects such as rigidity, weight, hollowness while the functional
properties ascribe the (functional) abilities or affordances to
the objects such as containment, blockage, movability.

The remainder of this paper is structured as follows:
we initially define the considered physical and functional
properties and introduce the property acquisition in Sec. II.
Using the presented definitions and acquisition methods,
we further elaborate on the architecture of our framework
for the generation of robot-centric knowledge in Sec. II-C.
In Sec. IV we present our preliminary results. Finally, we
conclude our work and discuss possible future work (Sec. V).



II. PROPERTY ACQUISITION

As a prerequisite to the generation of a robot-centric
knowledge base, we present definitions of the considered
object properties in Sec. II-A. These are general and not
specialized towards a robotic platform as they represent the
humans’ perspective. In contrast, in Sec. II-B we define
methods for acquiring scalar representations of the defined
object properties for a robotic platform. Their implementa-
tions are embedded into an extensible framework for data
aggregation, which we will briefly introduce in Sec. II-C.

A. Property Definition

Overall, we consider ten core object properties. We start
with six physical properties. These form the basis from
which the remaining four functional properties, which we
will define afterwards, emerge from.

1) Physical Properties: As a selection of core physical
properties linked to the physicality of an object we have
considered size, hollowness, flatness, rigidity, roughness,
and weight. This selection is inspired from the discussion
on the design of tools offered by Baber in [12] where it
is stated that, among others, the properties such as shape,
size, rigidity, roughness, and weight play a significant role
in the design of a tool. In the following, we discuss briefly the
property definitions which state how they are to be measured.

Size of an object is described by its spatial dimensionality
in form of length, width and height. Flatness, on the contrary,
describes a particular aspect of an object’s shape. Flatness is
defined as the ratio between the area of an object’s greatest
plane and its overall surface area. For instance, a sheet of
paper has maximal flatness while a ball has minimal flatness.
Hollowness focuses on another aspect of an object’s shape.
It is the amount of visible cavity or empty space within an
object’s enclosed volume. Weight of an object is borrowed
from physics: the object’s weight is the force acting on its
mass within a gravitational field. Similar to gravity, forces
acting on objects might deform it depending on its rigidity.
Consequently, we define rigidity as the degree of deformation
caused by a force operating vertically on an object. The last
physical property to be defined is roughness. It provides a
feedback about the object’s surface. Therefore, we simplify
the physical idea of friction and define roughness as an
object’s resistance to slide.

2) Functional Properties: Opposed to physical properties,
functional properties describe the functional capabilities or
affordances of objects. It is proposed in [13] that functional
properties do not exist in isolation, rather certain physical
properties are required to enable them. The proposed system
follows the same suit where each functional property is
defined in terms of the associated physical properties

A basic functional property is support. It describes an
object’s capability to support, i.e. to carry another object.
Therefore, an object is attributed with support, if other
objects can be stably placed on top of the supporting object.
The containment property extends this idea. An object is
attributed with property containment if it can encompass
another object to a certain degree. Finally, we also consider
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Fig. 2. Proposed property hierarchy and their dependencies.

movability, which describes the required effort to move an
object, and blockage, which describes an object’s capability
to stop the movement of another object.

B. Property Extraction

Though the property definitions in Sec. II-A are formu-
lated from a human perspective, we aim at enabling a robot
to assemble its own understanding about objects. Hence,
we have devised the extraction methods allowing a robot to
interpret its sensory data for generating scalar representations
of object properties. The different levels of abstractions,
starting with the sensory data and ending with functional
properties, are shown in Fig. 2. This, however, requires to
take the available sensors and actuators into account to ensure
observability of all properties. While this means that the
presented methods are tuned towards our robotic platform
(a Kuka youBot [14] (see Fig 4(d)) and a Asus Xtion Pro
depth sensor [15] (see Fig. 3(a))), they are adoptable to other
robotic platforms as we use common hardware.

Across all methods, we assume that the object for which
the property shall be measured, is placed in its most natural
position. For instance, a cup is most commonly placed in
such a way, that its opening points upwards.

1) Physical Properties: The size of an object is extracted
from point clouds of an RGB-D sensor by segmenting an
object from the scene which then is used to estimate the
bounding box. The length, width, and height of the bounding
box are then used to measure the size.

Additionally, the segmented object point cloud enables the
robot to extract the object’s flatness value. By observing an
object from above, an object’s greatest top-level plane is ex-
tracted using RANSAC (RAndom SAmple Consensus). The
size of this plane, that is, the number of points corresponding
to this plane is divided by the number of points representing
the observed object to get a scalar measure of its flatness.

Similar to flatness, hollowness is also focused on an ob-
ject’s shape. According to its definition, an object’s enclosed,
but not filled volume defines its hollowness. For the sake of
simplicity, we measure the internal depth and height of an



(a) Multi-camera setup (b) Side RGB-D camera

(c) Top RGB-D camera (d) Top RGB-D camera

Fig. 3. Experimental setup consisting of a two camera combination, for
acquiring physical properties such as hollowness, size, roughness.

(a) Rigidity extraction
at time t=1

(b) Rigidity extraction at
time t=2

(c) Rigidity extraction
at time t=3

(d) Roughness extrac-
tion at time t=1

(e) Roughness extrac-
tion at time t=2

(f) Roughness extract. at
time t=3

Fig. 4. Experimental setup consisting of a camera-manipulator combina-
tion, for acquiring physical properties such as rigidity and roughness which
are required to acquire functional properties such as support and movability.

object, which resembles the enclosed volume, and use their
ratio as hollowness value. To measure depth and height, we
employ marker detection, which is robust and insusceptible
to noise. We place one marker inside (or on top) of the
considered object and another marker right next to the object
which functions as a global spatial reference (see samples in
Fig. 3(b)- 3(d)).

In contrast, measuring the weight of an object is straight
forward. Using a scale with a resolution of 1g, the actual
weight of each object can be measured directly. While this
requires additional hardware, a robot could easily try to lift
an object and calculate its weight by converting the efforts
observed during the process in each of its joints (we are
currently working on replacing the method).

The rigidity property requires a more sophisticated mea-
suring process. Following its definition, we use a robotic

arm with a planar end-effector to vertically exert a force
onto an object until predefined efforts in the arm’s joints
are exceeded, see Fig. 4(a)-(c). Using the joints’ positions
at the first contact with the object and when the efforts
are exceeded, the vertical movement of the arm during the
experiment is calculated. For rigid objects, this distance is
zero while it is increased continuously for non-rigid objects.

Similar to rigidity, roughness requires interaction to mea-
sure an object’s resistance to sliding. Therefore, the robotic
arm is used to act as a ramp on which the considered object
is placed, see Fig. 4(d)-(f). Starting horizontally, with an
angle of 0°, the ramp’s angle is increased and thereby causes
the force pulling the object down the ramp to be increased
too. As soon as the object starts sliding, which is detected
based on marker detection, the movement is stopped. In
this position, the ramp’s angle is a measure of the object’s
roughness.

2) Functional Properties: As functional properties are
enabled by an object’s physical attributes, we define their
extraction methods on the basis of an object’s physical
properties. Corresponding to its definition, support requires
to consider three aspects of an object. Firstly, the considered
object needs to be rigid. Secondly, for carrying another
object, the sizes of both need to match. Thirdly, the object’s
shape needs to be sufficiently flat in order to enable the
placing of another object on top of it. Consequently, for
measuring support, we consider rigidity, size, and flatness.

Similarly, the containment property requires to consider
two aspects. In order to contain something, an object needs
to be hollow. On the other hand, it’s size itself needs to be
respected when considering whether it can contain another
object. Thus, the value of an object’s containment property
is formed by combining its hollowness and size.

Extracting an object’s movability is based on a robot’s
primary ways of moving objects: either by lifting or pushing.
For both, an object’s weight is important. Additionally, when
pushing an object, its sliding resistance, that is, its roughness
(see Fig. 4), needs to be considered.

Finally, assessing an object’s blockage, can be derived
from its movability. According to its definition, blockage
states to which degree an object is able to stop another
object’s movement. Thus, the object itself needs to be not
movable by the other object, which is the inverse of its
movability.

The described hierarchy of object properties as well as
their dependency on feature and sensory data is illustrated
in Fig. 2.

C. Framework for Dataset Acquisition

Using the extraction methods of Sec. II-B, we present
our ROS-based framework with which our robotic platform
gathers data about objects to build up its individualized
knowledge. A schematic overview on the framework is given
by Fig. 5.

Although different software platforms for operating robots
exist (e.g. Fawkes [16] or Orocos [17]), ROS (Robot Operat-
ing System) [18] became a quasi-standard. Given the amount
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Fig. 5. Data flow within the data set creation framework.

TABLE I
HUMAN-PREDEFINED OBJECT CLASSES, NUMBER OF INSTANCES IN

EACH CLASS AND THEIR NUMERIC LABELS USED IN THE PLOTS IN

FIG. 6 AND 7
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of supported hardware components, building on top of this
middleware enables other researchers to reproduce our results
and adapt our framework according to their specific hardware
(which is essential for building an robot-centric knowledge
base).

Consequently, the interface for operating sensors and
actuators is provided to our framework by ROS. This in-
terface is used by different experiments for observing and
interacting with objects to acquire the necessary sensory data.
Together both blocks (ROS Abstracted Sensors & Actuators
and Experiment Control) form a control loop which generates
feature data (see Fig. 2).

To provide extensibility and comparability along with
our framework, versatile experiments can be defined by
either adding independent ROS nodes or extending existing
experiments. The generated feature data is further processed
by property extraction methods to calculate the values of
each property for the object currently under consideration.
Again, extendability and comparability are facilitated by
running each extraction method as an independent ROS node
and therefore by providing a plug-and-play interface.

The data generated by the extraction methods resembles
the scalar representations of an objects properties. Therefore,
physical as well as functional properties of objects are
available and used by the knowledge base generation process
to generate a symbolic representation.

III. KNOWLEDGE BASE

Using the framework described in the previous section, we
can employ our robotic platform to gather scalar data about
an object’s properties. However, this data can not be used
for symbolic reasoning yet. To facilitate this application, a
knowledge base needs to be generated. We briefly describe
this step in this section.

The knowledge base primarily consists of two layers:
knowledge about object instances and knowledge about
object classes. The primary input to the knowledge base
is the data about the physical properties of the objects
where each object instance is represented in terms of its

TABLE II
THE SUB-CATEGORIZATION PROCESS WHICH GENERATES THE

SYMBOLIC KNOWLEDGE ABOUT OBJECT INSTANCES.

Object Sensory Data Discretized Data
Class Instance Rigidity Rigidity

Ceramic Cup
ceramic cup 1 0.76 soft
ceramic cup 2 3.17 medium
ceramic cup 3 7.69 rigid

physical properties as well as its functional properties. The
data about the properties of the objects is processed by the
knowledge base module in two stages: sub-categorization
and conceptualization. In the sub-categorization process, the
non-symbolic continuous data of each property is trans-
formed into symbolic data using a clustering algorithm such
as K-means. The cluster representation of the numerical
values of the property data can also be seen as a symbolic
qualitative measure representing each cluster. Consequently,
the number of clusters describes the granularity with which
each property can qualitatively be represented. In case of
a high number of clusters, an object is described in finer
detail. Complementary, a lower number of clusters suggest a
general description of an object. For instance, the numerical
data about the rigidity of the object instances of Ceramic
Cup, when clustered into three clusters, can be represented
as Rigidity={soft,medium, rigid} (see Table II). At the end
of the sub-categorization process, each object is represented
in terms of the qualitative measures for each property.

The conceptualization process gathers the knowledge
about all the instances of an object class and represents the
knowledge about an object class. Initially, the knowledge
about objects is represented using bivariate joint frequency
distribution of the qualitative measures of the properties
in the object instances. Next, conceptual knowledge about
objects is calculated as a sample proportion of the frequency
of the properties across the instances of a class.

The conceptual knowledge about instances and object
classes is represented in JSON format in order to allow the
users of the knowledge base to adapt the suitable represen-
tation formalism for their application.

IV. PRELIMINARY RESULTS

In the endeavor of enabling a robot-centric conceptual
knowledge acquisition, we introduced physical and func-
tional properties of objects in the previous section and
presented a framework implementing the envisioned process.
Since this is a work in progress, we subsequently present
preliminary results of the proposed dataset. For the initial
experiments, we primarily focused on the evaluation of the
discrimination of the object instances with regard to the
acquired properties. Given the acquired properties of each
instance, we represented each instance in vector form, i.e.
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each vector element represents a specific physical property
value. For the preliminary results, we acquired the physical
properties of 46 objects in total which span across 16 object
classes. The number of instances considered for each class
is stated in the Table I.

The objective of this experiment is to examine whether
the physical property measurements of the object instances
convey the physical similarity between different objects.
For this experiment, each object instance was represented
in terms of its physical properties. The dimensionality of
the instance data is initially reduced to two dimensions
(see Fig. 6) using Isomap embedding technique [19]. Next,
the reduced data is split into seven clusters (half of the
total number of actual object categories) using K-means
clustering. The results are depicted as a scatter plot in Fig. 6.
In the plot, an object instance is represented as a point which
is colored according to its cluster assignment. Furthermore,
each point is attributed with a numeric label according to
its class label, see Table I. The clusters group together the
instances which are physically similar, e.g., in the red cluster
the instances of steel cup, ceramic bowl, plastic cup, plastic
box, plastic bowl, and ceramic cup are physically similar
according to the given set-up.

Similar experiments were conducted to evaluate the func-
tional similarities between the objects. Due to the lack of
space, in Fig. 7, we have illustrated the similarity between
objects with respect to support functional property. Ac-
cordingly, the instances of the object classes plastic bowl,
plastic cup, ceramic bowl, ceramic glass and ceramic cup
represented by a brown cluster have the similar degree of
support.

A. Limitations

While designing the property extraction methods and the
framework, we aimed for approaches that do not require
sophisticated hardware and software components. Therefore,
we use a marker-based instead of a generic object tracking
in our experiments. This mitigates the limitations that might
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be caused by complex approaches and facilitates robots
to perform necessary experiments in an automated way.
However, some limitations remain, which we discuss in this
subsection.

One of the limitations is caused by mismatches between
the definition of an object’s property and the corresponding
extraction method. For instance, instead of directly mea-
suring the enclosed volume of an object to determine its
hollowness, we consider its internal depth and height. Conse-
quently, the extraction method will calculate the same value
for an object with a spherical hollowness as it calculates
for an object with a cylindrical hollowness of the same
depth although the enclosed volume is different. A similar
mismatch can occur when calculating the size of an object,
as we consider only its visual bounding box.

Another category of limitations are caused by the design
of extraction methods. To measure the deformability of an
object for extracting its rigidity, it is placed on a planar,
rigid surface. This surface itself provides rigidity to objects
(e.g. for a sheet of paper) and thereby causes incorrect
measurements. Similarly, roughness values for spherical
objects are incorrect as these roll down the ramp instead
of sliding.

Besides these methodological limitations, the employed
hardware components impose limitations too. For instance,
due to its size, the youBot’s robotic arm does not allow
extracting rigidity values for objects with a width greater
than 20cm. This ultimately limits the objects that can be
analyzed.

V. CURRENT STATE AND FUTURE DIRECTION

Standard datasets of the robotics community are generally
created under supervision, one-dimensional, and discrete,
i.e. an unary human-predefined label is given to an object
sample; e.g. a point cloud is labeled as a mug. The presented
work focuses on a framework for generating a dataset from a
robot-centric perspective by gathering continuous conceptual
object knowledge such as the functional property movability.



We defined a set of object properties and their interrela-
tions. Therein we distinguish between physical and func-
tional properties. We show that these properties can be
organized in a hierarchical bottom-up manner from low-level
ones acquired from sensory data to high-level ones acquired
from lower-level properties. Given this basis, we proposed
acquisition procedures for each property. Eventually, we have
introduced a framework consisting of property definitions
and acquisition procedures and a corpus of 46 objects.

In our preliminary experiments we could show the dis-
crimination of instances according to their physical and the
functional property support. These observed results encour-
age us to continue on our goal of creating a robot-centric
conceptual knowledge base.

Therefore, we focus on extending the dataset with ad-
ditional instances as well as classes in order to further
investigate object understanding as such given the gained
conceptual knowledge. Furthermore we aim to mitigate the
discussed limitations. Considering the physical properties of
flatness, hollowness, and size, we plan for introducing 3D
models of objects for generating more robust property values.
Instead of directly processing noisy point clouds, a 3D model
of an object will be created before extracting the respective
properties.

While not considered in this early phase, failure model-
ing [20] and detection will be applied to enable failure-aware
applications and to further mitigate the effects of sensor
failures. Run-time approaches, such as the validity concept,
were successfully applied to depth measurements of RGB-D
sensors as well as to low-level distance sensors [21] and are
specifically design to track sensor failures while propagating
through a processing chain.

Finally, in the endeavor of enabling robots to perform the
extraction methods autonomously, we plan for replacing the
scale for measuring the objects weight. Instead, using the
effort observations within the robotic arm can be used to
determine the weight of an object while lifting it.
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