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Abstract— We propose to learn the structure and parameters
of rule-based probabilistic transition models for manipulation
actions with the presence of multiple objects. For each rule,
we use deictic references to myopically select relevant objects
and learn a neural network predictor on the transition of their
states. Our algorithm simultaneously assigns training data to
each rule and learns the rule parameters through clustering and
EM-like methods. We evaluate learned rules on variants of a
simulated, 3D table-top pushing task involving stacks of objects.
Comparing to a baseline that uses a vector representation of
all the objects in the scene, our approach with a template
representation of the model is more data-efficient and performs
better under varying numbers of objects in the scene.

I. INTRODUCTION

Consider a household robot preparing dinner in an un-
familiar kitchen, or organizing papers in a cluttered office
space. The robot must be able to perform a wide variety of
object-manipulation tasks, such as opening cabinets, turning
the knob on the stove, gathering papers, and so on. More
importantly, the robot must have an understanding of how an
action will affect the world state, i.e. the robot configuration
and the poses of all of the objects in the room. Only then
can the robot plan a sequence of actions to achieve possibly
long-horizon, high-level goals like preparing a meal. This
work focuses on the acquisition of this understanding, in
the form of a transition model. Specifically, given an initial
world state and an action, we wish to predict the resulting
state of the world after the action is taken.

Even simple actions have complex effects. Consider a
robot pushing an object, i.e. the target, on a table. Because
of the absence of detailed information about the world, e.g.
the imprecise exertion of force or uneven friction of surfaces,
the pushing action cannot produce deterministic effects even
if only the target is on the table [1]. Moreover, given the
presence of additional objects close to the target, the push
can be prevented from succeeding or other objects may move
as well, such as any on top of the target object or in the path
of the push. As a consequence, the resulting change in the
world state is not only stochastic, but it also includes the
poses of multiple objects; hence, it is very challenging to
represent and learn a probabilistic transition model.

In this work, we propose to represent the continuous-
space transition distribution using a rule language that is
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a generalization of PPDDL (probabilistic planning domain
description language) operator descriptions to continuous
domains. While actions may produce complex effects, the
type of effects that may result are often structured and can
be grouped into a small number of categories that capture
plausible outcomes. By characterizing these structured cate-
gories, we obtain rules for how the state of the world changes
as a result of an action.

Continuing our simple example of pushing, though the
push action may have an effect on the target object, the
objects on top the target and the nearby objects, other
objects far away or at the opposite direction of the push
are less likely to be affected. By capturing these structural
relations between objects, henceforth referred to as deictic
references [2], [3], we can represent the possible outcomes
of an action as a collection of rules. This collection of rules
is in turn a representation of a transition model.

To predict how a particular action will affect the objects in
a scene, a rule starts with the target object of the action and
pull in as context some small number of additional objects
related to the target in predefined ways (e.g., objects on top of
the target, in contact with the target, within some given radius
of the target, etc.). Based on properties of these selected
objects only, the rule will make a prediction for how the
action will affect some subset of objects in the scene, again
chosen by structural relations starting from the target object
of the action. All other objects that are not selected by the
rule are assumed to remain unchanged.

Because rules are agnostic to the total number of objects in
the scene, the same, relatively “small” rules can be applied to
a variety of complicated scenes with many objects, making
rules a compact and general representation of a transition
model. Because each rule is only responsible for the objects
selected by the deictic references (i.e., structural relations
between objects), it requires fewer training examples to make
good predictions and scales easily to a large number of
objects in the scene.

Main contributions: We specify the language of rules and
how they can be used to predict outcomes of actions. We then
introduce our algorithm for learning such rules. Finally, we
evaluate our algorithm and the performance of rules on a
simulated 3D pushing task.

II. RELATED WORK

The representation and learning of transition models for
capturing the effects of actions in the environment has been
studied extensively. A variety of representations have been
presented, each with their own learning algorithms.



These representations include the representation of ac-
tions as STRIPS actions [4], for which proposed learning
approaches include logical inference [5], [6], kernel percep-
trons [7], etc, for deterministic actions. To consider stochastic
action effects, action representations include “schemas” [8],
[9] where states consist of some number of discrete sensor
values, probabilistic STRIPS operators [10], and “affor-
dances” [11], [12] that capture the relation between an object,
an action, and an effect, so that given any two, predictions
can be made for the third.

Our work on is mostly inspired by [3], which introduces
and presents a learning method for Noisy Deictic Rules
(NDRs), an extension of probabilistic STRIPS operators
to include a possible noise outcome, as well as deictic
references that refer to objects relative to the actions for
which predictions are being made. NDRs are learned via
a greedy search procedure involving three nested layers of
search, where each layer progressively fills in more structure
or details of the model. However, our rules differ substan-
tially from NDRs in that, rather than using a predicate-
based state description, our rules operate on continuous
state spaces described by object features and relations, such
as mass and relative pose. As a consequence, our rules
represent predictions for the outcomes of stochastic actions
as a continuous distribution over resultant object features,
rather than as a collection of possible discrete outcomes with
associated probabilities.

III. PROBLEM FORMULATION

In this section, we formalize this class of problems, define
a new rule structure for specifying probabilistic transition
models for these problems, and articulate an objective func-
tion for estimating these models from data.

A. Relational domain

A problem domain is given by tuple 𝒟 = (ϒ,𝒫,ℱ ,𝒜)
where ϒ is a countably infinite universe of possible objects,
𝒫 is a finite set of properties 𝑃𝑖 : ϒ ↦→ R, 𝑖 ∈ [𝑁𝒫 ] =
{1, · · · , 𝑁𝒫}, and ℱ is a finite set of deictic reference
functions 𝐹𝑖 : ϒ

𝑚𝑖 ↦→ ℘(ϒ), 𝑖 ∈ [𝑁ℱ ] where ℘(ϒ) denotes
the powerset of ϒ. Each function 𝐹𝑖 ∈ ϒ maps from an
ordered list of objects to a set of objects, and we define it as

𝐹𝑖(𝑜1,...,𝑜𝑚𝑖
)={𝑜|𝑓𝑖(𝑜,𝑜1,...,𝑜𝑚𝑖

)=True, 𝑜,𝑜𝑗∈ϒ,∀𝑗∈[𝑚𝑖]} ,

where the relation 𝑓𝑖 : ϒ
𝑚𝑖+1 ↦→ {True, False} is defined in

terms of the object properties in 𝒫 . For example, if we have a
location property 𝑃loc and 𝑚𝑖 = 1, we can define 𝑓𝑖(𝑜, 𝑜1) =
1‖𝑃loc(𝑜)−𝑃loc(𝑜1)‖<0.5 so that the function 𝐹𝑖 associated with
𝑓𝑖 maps from one object to the set of objects that are within
0.5 distance of its center; here 1 is an indicator function.
Finally, 𝒜 is a set of action templates 𝐴𝑖 : R𝑑𝑖 × ϒ𝑛𝑖 ↦→
Ψ, 𝑖 ∈ [𝑁𝒜], where Ψ is the space of executable control
programs. Each action template is a function parameterized
by continuous parameters 𝛼𝑖 ∈ R𝑑𝑖 and a tuple of 𝑛𝑖 objects
that the action operates on. In this work, we assume that

𝒫,ℱ and 𝒜 are given.1

A problem instance is characterized by ℐ = (𝒟,𝒰), where
𝒟 is a domain defined above and 𝒰 ⊂ ϒ is a finite universe
of objects with |𝒰| = 𝑁𝒰 . For simplicity, we assume that, for
a particular instance, the universe of objects remains constant
over time. In the problem instance ℐ, we characterize a state
𝑠 in terms of the concrete values of all properties in 𝒫 on all
objects in 𝒰 ; that is, 𝑠 = [𝑃𝑖(𝑜𝑗)]

𝑁𝒫 ,𝑁𝒰
𝑖=1,𝑗=1 ∈ R𝑁𝒫×𝑁𝒰 = S.

A problem instance induces the definition of its action space
A, constructed by applying every action template 𝐴𝑖 ∈ 𝒜
to all tuples of 𝑛𝑖 elements in 𝒰 and all assignments 𝛼𝑖 to
the continuous parameters; namely, A = {𝐴𝑖(𝛼𝑖, [𝑜𝑖𝑗 ]

𝑛𝑖
𝑗=1) |

𝑜𝑖𝑗 ∈ 𝒰 , 𝛼𝑖 ∈ R𝑑𝑖}.

B. Sparse relational transition models

In many domains, there is substantial uncertainty, and the
key to robust behavior is the ability to model this uncertainty
and make plans that respect it. A sparse relational transition
model (SPARE) for a domain 𝒟, when applied to a problem
instance ℐ for that domain, defines a probability density
function on the resulting state 𝑠′ resulting from taking action
𝑎 in state 𝑠. Our objective is to specify this function in terms
of domain elements 𝒫 , ℛ, and ℱ in such a way that it will
apply to any problem instance, independent of the number
and properties of the objects in its universe. We achieve this
by defining the transition model in terms of a set of transition
rules, 𝒯 = {𝑇𝑘}𝐾𝑘=1 and a score function 𝐶 : 𝒯 ×S ↦→ N.
The score function takes in as input a state 𝑠 and a rule
𝑇 ∈ 𝒯 , and outputs a non-negative integer. If the output is
0, the rule does not apply; otherwise, the rule can predict the
distribution of the next state to be 𝑝(𝑠′ | 𝑠, 𝑎;𝑇 ). The final
prediction of SPARE is

𝑝(𝑠′ | 𝑠, 𝑎; 𝒯 ) =

{︃
1

|𝒯 |

∑︀
𝑇∈𝒯 𝑝 (𝑠′ | 𝑠, 𝑎;𝑇 ) if |𝒯 | > 0

𝒩 (𝑠,Σdefault) otherwise
,

(1)

where 𝒯 = argmax𝑇∈𝒯 𝐶(𝑇, 𝑠) and the matrix Σdefault =
𝐼𝑁𝒰 ⊗ diag([𝜎𝑖]

𝑁𝒫
𝑖=1) is the default predicted covariance for

any state that is not predicted to change, so that our problem
is well-formed in the presence of noise in the input. Here
𝐼𝑁𝒰 is an identity matrix of size 𝑁𝒰 , and diag([𝜎𝑖]

𝑁𝒫
𝑖=1)

represents a square diagonal matrix with 𝜎𝑖 on the main
diagonal, denoting the default variance for property 𝑃𝑖 if
no rule applies. In the rest of this section, we formalize the
definition of transition rules and the score function.

Transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default) is characterized
by an action template 𝐴, two ordered lists of deictic ref-
erences Γ and Δ of size 𝑁Γ and 𝑁Δ, a predictor 𝜑𝜃 and
the default variances 𝑣default = [𝑣𝑖]

𝑁𝒫
𝑖=1 for each property 𝑃𝑖

under this rule. The action template is defined as operating
on a tuple of 𝑛 object variables, which we will refer to

1There is a direct extension of this formulation in which we encode
relations among the objects as well. Doing so complicates notation and
adds no new conceptual ideas, and in our example domain it suffices to
compute spatial relations from object properties so there is no need to store
relational information explicitly, so we omit it from our treatment.



as 𝑂(0) = (𝑂𝑖)
𝑛
𝑖=1, 𝑂𝑖 ∈ 𝒰 ,∀𝑖. A reference list uses

functions to designate a list of additional objects or sets of
objects, by making deictic references based on previously
designated objects. In particular, Γ generates a list of objects
whose properties affect the prediction made by the transition
rule, while Δ generates a list of objects whose properties
are affected after taking an action specified by the action
template 𝐴.

We begin with the simple case in which every function
returns a single object, then extend our definition to the case
of sets. Concretely, for the 𝑡-th element 𝛾𝑡 in Γ (𝑡 ∈ [𝑁Γ]),
𝛾𝑡 = (𝐹, (𝑂𝑘𝑗

)𝑚𝑗=1) where 𝐹 ∈ ℱ is a deictic reference
function in the domain, 𝑚 is the arity of that function, and
integer 𝑘𝑗 ∈ [𝑛 + 𝑡 − 1] specifies that object 𝑂𝑛+𝑡 in the
object list can be determined by applying function 𝐹 to
objects (𝑂𝑘𝑗 )

𝑚
𝑗=1. Thus, we get a new list of objects, 𝑂(𝑡) =

(𝑂𝑖)
𝑛+𝑡
𝑖=1 . So, reference 𝛾1 can only refer to the objects

(𝑂𝑖)
𝑛
𝑖=1 that are named in the action, and determines an

object 𝑂𝑛+1. Then, reference 𝛾2 can refer to objects named
in the action or those that were determined by reference 𝛾1,
and so on.

A

B

C

D

Gripper Table

Fig. 1. A robot grip-
per is pushing a stack
of 4 blocks on a table.

When the function 𝐹 in 𝛾𝑡 =
(𝐹, (𝑂𝑘𝑗 )

𝑚
𝑗=1) ∈ Γ returns a set of

objects rather than a single object,
this process of adding more objects
remains almost the same, except that
the 𝑂𝑡 may denote sets of objects, and
the functions that are applied to them
must be able to operate on sets. In the
case that a function 𝐹 returns a set,
it must also specify an aggregator, 𝑔,
that can return a single value for each property 𝑃𝑖 ∈ 𝒫 ,
aggregated over the set. Examples of aggregators include the
mean or maximum values or possibly simply the cardinality
of the set.

For example, consider the case of pushing the bottom
(block 𝐴) of a stack of 4 blocks, depicted in Figure 1.
Suppose the deictic reference is 𝐹 =above, which takes
one object and returns a set of objects immediately on top
of the input object. Then, by applying 𝐹 =above starting
from the initial set 𝑂0 = {𝐴}, we get an ordered list of sets
of objects (𝑂0, 𝑂1, 𝑂2) where 𝑂1 = 𝐹 (𝑂0) = {𝐵}, 𝑂2 =
𝐹 (𝑂1) = {𝐶}.

Returning to the definition of a transition rule, we now can
see informally that if the parameters of action template 𝐴 are
instantiated to actual objects in a problem instance, then Γ
and Δ can be used to determine lists of input and output
objects (or sets of objects). We can use these lists, finally,
to construct input and output vectors. The input vector 𝑥
consists of the continuous action parameters 𝛼 of action 𝐴
and property 𝑃𝑖(𝑂𝑡) for all properties 𝑃𝑖 ∈ 𝒫 and objects
𝑂𝑡 ∈ 𝑂𝑁Γ that are selected by Γ in arbitrary but fixed order.
In the case that 𝑂𝑡 is a set of size greater than one, the
aggregator associated with the function 𝐹 that computed
the reference is used to compute 𝑃𝑖(𝑂𝑡). Similar for the
desired output construction, we use the references in the list
Δ, initialize �̂�(0) = 𝑂(0), and gradually add more objects to
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Fig. 2. Instead of directly mapping from current state 𝑠 to next state 𝑠′,
our prediction model uses deictic references to find subsets of objects for
prediction. In the left most graph, we illustrate what relations are used to
construct the input objects with two rules for the same action template, 𝑇1 =

(𝐴,Γ(1),Δ(1), 𝜑
(1)
𝜃 ,𝑣

(1)
default) and 𝑇2 = (𝐴,Γ(2),Δ(2), 𝜑

(2)
𝜃 ,𝑣

(2)
default),

where the reference list Γ(1) = [(𝛾
(1)
1 , 𝑜2)] applied a deictic reference

𝛾
(1)
1 to the target object 𝑜2 and added input features computed by an

aggregator 𝑔 on 𝑜3, 𝑜6 to the inputs of the predictor of rule 𝑇1. Similarly
for Γ(2) = [(𝛾

(2)
1 , 𝑜2), (𝛾

(2)
2 , 𝑜3)], the first deictic reference selected 𝑜3

and then 𝛾
(2)
2 is applied on 𝑜3 to get 𝑜1. The predictors 𝜑

(1)
𝜃 and 𝜑

(2)
𝜃 are

neural networks that map the fixed-length input to a fixed-length output,
which is applied to a set of objects computed from a relational graph
on all the objects, derived from the reference list Δ(1) = [(𝛿

(1)
1 , 𝑜2)]

and Δ(2) = [(𝛿
(2)
1 , 𝑜2)], to compute the whole next state 𝑠′. Because

𝛿
(2)
1 (𝑜2) = (𝑜4, 𝑜6) and the 𝜑

(2)
𝜃 is only predicting a single property, we

use a “de-aggregator” function ℎ to assign its prediction to both objects
𝑜4, 𝑜6.

construct the output set of objects �̂� = �̂�(𝑁Δ). The output
vector is 𝑦 = [𝑃 (𝑜)]𝑜∈�̂�,𝑃∈𝒫 where if 𝑜 is a set of objects,
we apply a mean aggregator on the properties of all the
objects in 𝑜.

The predictor 𝜑𝜃 is some functional form 𝜑 (such as a
feed-forward neural network) with parameters (weights) 𝜃
that will take values 𝑥 as input and predict a distribution
for the output vector 𝑦. It is difficult to represent arbitrarily
complex distributions over output values. In this work, we
restrict ourselves to representing a Gaussian distributions
on all property values in 𝑦, encoded with a mean and
independent variance for each dimension.

Now, we describe how a transition rule can be used to
map a state and action into a distribution over the new
state. A transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default) applies
to a particular state-action (𝑠, 𝑎) pair if 𝑎 is an instance
of 𝐴 and if none of the elements of the input or output
object lists is empty. To construct the input (and output)
list, we begin by assigning the actual objects 𝑜1, . . . , 𝑜𝑛 to
the object variables 𝑂1, . . . , 𝑂𝑛 in action instance 𝑎, and
then successively computing references 𝛾𝑖 ∈ Γ based on
the previously selected objects, applying the definition of
the deictic reference 𝐹 in each 𝛾𝑖 to the actual values of
the properties as specified in the state 𝑠. If, at any point, a
𝛾𝑖 ∈ Γ or 𝛿𝑖 ∈ Δ returns an empty set, then the transition
rule does not apply. If the rule does apply, and successfully
selects input and output object lists, then the values of the
input vector 𝑥 can be extracted from 𝑠, and predictions are
made on the mean and variance values Pr(𝑦 | 𝑥) = 𝜑𝜃(𝑥) =
𝒩 (𝜇𝜃1(𝑥),Σ𝜃2(𝑥)).

Let
(︁
𝜇
(𝑖𝑗)
𝜃1

(𝑥),Σ
(𝑖𝑗)
𝜃2 (𝑥)

)︁
be the vector entry correspond-

ing to the predicted Gaussian parameters of property 𝑃𝑖 of 𝑗-
th output object set 𝑜𝑗 and denote 𝑠[𝑜, 𝑃𝑖] as the property 𝑃𝑖

of object 𝑜 in state 𝑠, for all 𝑜 ∈ 𝒰 . The predicted distribution



of the resulting state 𝑝(𝑠′ | 𝑠, 𝑎;𝑇 ) is computed as follows:

𝑝(𝑠′[𝑜,𝑃𝑖]|𝑠,𝑎;𝑇 )=

⎧⎪⎨⎪⎩
1

|𝐽|
∑︀

𝑗∈𝐽 𝒩 (𝜇
(𝑖𝑗)
𝜃1

(𝑥),Σ
(𝑖𝑗)
𝜃2 (𝑥)) if |𝐽| > 0

𝒩 (𝑠[𝑜, 𝑃𝑖], 𝑣𝑖) otherwise

where 𝐽 = {𝑗 : 𝑜 ∈ 𝑜𝑗} and 𝑣𝑖 ∈ 𝑣default is the default
variance of property 𝑃𝑖 in rule 𝑇 . There are two important
points to note. First, it is possible for the same object to
appear in the object-list more than once, and therefore for
more than one predicted distribution to appear for its proper-
ties in the output vector. In this case, we use the mixture of
all the predicted distributions with uniform weights. Second,
when an element of the output object list is a set, then we
treat this as predicting the same single property distribution
for all elements of that set. This strategy has sufficed for
our current set of examples, but an alternative choice would
be to make the predicted values be changes to the current
property value, rather than new absolute values. Then, for
example, moving all of the objects on top of a tray could
easily specify a change to each of their poses. We illustrate
how we can use transition rules to build a SPARE in Fig. 2.

For each transition rule 𝑇𝑘 ∈ 𝒯 and state 𝑠 ∈ S, we
assign the score function value to be 0 if 𝑇𝑘 does not apply
to state 𝑠. Otherwise, we assign the total number of deictic
references plus one, 𝑁Γ +𝑁Δ + 1, as the score. The more
references there are in a rule that is applicable to the state,
the more detailed the match is between the rules conditions
and the state, and the more specific the predictions we expect
it to be able to make.

C. Learning SPAREs from data

We frame the problem of learning a transition model from
data in terms of conditional likelihood. The learning problem
is, given a problem domain description 𝒟 and a set of
experience ℰ tuples, ℰ = {(𝑠(𝑖), 𝑎(𝑖), 𝑠′(𝑖))}𝑛𝑖=1, find a SPARE
𝒯 that minimizes the loss function:

ℒ(𝒯 ;𝒟, ℰ) = − 1

𝑛

𝑛∑︁
𝑖=1

log Pr(𝑠′
(𝑖) | 𝑠(𝑖), 𝑎(𝑖); 𝒯 ) . (2)

Note that we require all of the tuples in ℰ to belong to the
same domain 𝒟, and require for any (𝑠(𝑖), 𝑎(𝑖), 𝑠′

(𝑖)
) ∈ ℰ

that 𝑠(𝑖) and 𝑠′
(𝑖) belong to the same problem instance,

but individual tuples may be drawn from different problem
instances (with, for example, different numbers and types
of objects). In fact, to get good generalization performance,
it will be important to vary these aspects across training
instances.

IV. LEARNING ALGORITHM

We describe our learning algorithm in three parts. First,
we introduce our strategy for learning 𝜑𝜃, which predicts a
Gaussian distribution on 𝑦, given 𝑥. Then, we describe our
algorithm for learning reference lists Γ and Δ for a single
transition rule, which enable the extraction of 𝑥 and 𝑦 from
ℰ . Finally, we present an EM method for learning multiple
rules.

A. Distributional prediction

For a particular transition rule 𝑇 with associated action
template 𝐴, once Γ and Δ have been specified, we can
extract input and output features 𝑥 and 𝑦 from a given set of
experience samples ℰ . From 𝑥 and 𝑦, we would like to learn
the transition rule’s predictor 𝜑𝜃 to minimize Eq. (2). Our
predictor takes the form 𝜑𝜃(𝑥) = 𝒩 (𝜇𝜃1(𝑥),Σ𝜃2(𝑥)). We
use the method of [13], where two neural-network models
are learned as the function approximators, one for the mean
prediction 𝜇𝜃1(𝑥) parameterized by 𝜃1 and the other for the
diagonal variance prediction Σ𝜃2(𝑥), parameterzied by 𝜃2.
We optimize the negative data-likelihood loss function

ℒ(𝜃,Γ,Δ;𝒟,ℰ)= 1
𝑛

∑︀𝑛
𝑖=1((𝑦

(𝑖)−𝜇𝜃1
(𝑥(𝑖)))TΣ𝜃2

(𝑥)−1(𝑦(𝑖)−𝜇𝜃1
(𝑥(𝑖)))

+log detΣ𝜃2
(𝑥(𝑖)))

by alternatively optimizing 𝜃1 and 𝜃2. That is, we alternate
between first optimizing 𝜃1 with fixed covariance, and then
optimizing 𝜃2 with fixed mean.

Let ℰ𝑇 ∈ ℰ be the set of experience tuples to which
rule 𝑇 applies. Then once we have 𝜃, we can optimize
the default variance of the rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default)
by optimizing ℒ({𝑇};𝒟, ℰ𝑇 ). It can be shown that these
loss-minimizing values for the default predicted variances
𝑣default are the empirical averages of the squared deviations
for all unpredicted objects (i.e., those for which 𝜑𝜃 does not
explicitly make predictions), where averages are computed
separately for each object property.

We use 𝜃,𝑣default ← LEARNDIST(𝒟, ℰ ,Γ,Δ) to refer to
this learning and optimization procedure for the predictor
parameters and default variance.
Algorithm 1 Greedy procedure for constructing Γ.

1: procedure GREEDYSELECT(𝒟, ℰ , 𝐴,Δ, 𝑁Γ)
2: train model using Γ0 = ∅, save loss 𝐿0

3: 𝑖← 1
4: while 𝑖 ≤ 𝑁Γ do
5: 𝛾𝑖 ← None ; 𝐿𝑖 ←∞
6: for all 𝛾 ∈ 𝑅𝑖 do
7: Γ𝑖 ← Γ𝑖−1 ∪ {𝛾}
8: 𝜃,𝑣default ← LEARNDIST(𝒟, ℰtrain ,Γ𝑖,Δ)
9: 𝑙← ℒ(𝒯𝛾 ;𝒟, ℰval)

10: if 𝑙 < 𝐿𝑖 then 𝐿𝑖 ← 𝑙 ; 𝛾𝑖 ← 𝛾

11: if 𝐿𝑖 < 𝐿𝑖−1 thenΓ𝑖 ← Γ𝑖−1 ∪ {𝛾𝑖} ; 𝑖← 𝑖+1
12: else break

B. Single rule

In the simple setting where only one transition rule 𝑇
exists in our domain 𝒟, we show how to construct the
input and output reference lists Γ and Δ that will determine
the vectors 𝑥 and 𝑦. Suppose for now that Δ and 𝑣default
are fixed, and we wish to learn Γ. Our approach is to
incrementally build up Γ by adding 𝛾𝑖 = (𝐹, (𝑂𝑘𝑗

)𝑚𝑗=1)
tuples one at a time via a greedy selection procedure.
Specifically, let 𝑅𝑖 be the universe of possible 𝛾𝑖, split
the experience samples ℰ into a training set ℰtrain and a
validation set ℰval , and initialize the list Γ to be Γ0 = ∅. For
each 𝑖, compute 𝛾𝑖 = argmin𝛾∈𝑅𝑖

ℒ(𝒯𝛾 ;𝒟, ℰval), where ℒ



in Eq. (2) evaluates a SPARE 𝒯𝛾 with a single transition rule
𝑇 = (𝐴,Γ𝑖−1 ∪ {𝛾},Δ, 𝜑𝜃,𝑣default), where 𝜃 and 𝑣default are
computed using the LEARNDIST described in Section IV-A2.
If the value of the loss function ℒ(𝒯𝛾𝑖

;𝒟, ℰval) is less than
the value of ℒ(𝒯𝛾𝑖−1

;𝒟, ℰval), then we let Γ𝑖 = Γ𝑖−1∪{𝛾𝑖}
and continue. Else, we terminate the greedy selection process
with Γ = Γ𝑖−1, since further growing the list of deictic
references hurts the loss. We also terminate the process when
𝑖 exceeds some predetermined maximum allowed number of
input deictic references, 𝑁Γ. Pseudocode for this algorithm
is provided in Algorithm 1.

In our experiments we set Δ = Γ and construct the lists of
deictic references using a single pass of the greedy algorithm
described above. This simplification is reasonable, as the
set of objects that are relevant to predicting the transition
outcome often overlap substantially with the objects that are
affected by the action. Alternatively, we could learn Δ via
an analogous greedy procedure nested around or, as a more
efficient approach, interleaved with, the one for learning Γ.

C. Multiple rules

Our training data in robotic manipulation tasks are likely
to be best described by many rules instead of a single one,
since different combinations of relations among objects could
be present in different states. For example, we may have
one rule for pushing a single object and another rule for
pushing a stack of objects. We now address the case where
we wish to learn 𝐾 rules from a single experience set ℰ , for
𝐾 > 1. We do so via initial clustering to separate experience
samples into 𝐾 clusters, one for each rule to be learned,
followed by an EM-like approach to further separate samples
and simultaneously learn rule parameters.

To facilitate the learning of our model, we will additionally
learn membership probabilities 𝑍 = ((𝑧𝑖,𝑗)

|ℰ|
𝑖=1)

𝐾
𝑗=1, where

𝑧𝑖,𝑗 represents the probability that the 𝑖-th experience sample
is assigned to transition rule 𝑇𝑗 , and

∑︀𝐾
𝑗=1 𝑧𝑖,𝑗 = 1 for

all 𝑖 ∈ [|ℰ|]. We initialize membership probabilities via
clustering, then refine them through EM.

Because the experience samples ℰ may come from dif-
ferent problem instances and involve different numbers of
objects, we cannot directly run a clustering algorithm such
as 𝑘-means on the (𝑠, 𝑎, 𝑠′) samples themselves. Instead we
first learn a single transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default)
from ℰ using the algorithm in Section IV-B, use the resulting
Γ and Δ to transform ℰ into 𝑥 and 𝑦, and then run 𝑘-means
clustering on the concatenation of 𝑥, 𝑦, and values of the
loss function when 𝑇 is used to predict each of the samples.
For each experience sample, the squared distance from the
sample to each of the 𝐾 cluster centers is computed, and
membership probabilities for the sample to each of the 𝐾
transition rules to be learned are initialized to be proportional
to the (multiplicative) inverses of these squared distances.

2When the rule 𝑇 does not apply to a training sample, we use for
its loss the loss that results from having empty reference lists in the
rule. Alternatively, we can compute the default variance Σdefault to be the
empirical variances on all training samples that cannot use rule 𝑇 .

Before introducing the EM-like algorithm that simulta-
neously improves the assignment of experience samples to
transition rules and learns details of the rules themselves,
we make a minor modification to transition rules to obtain
mixture rules. Whereas a probabilistic transition rule has
been defined as 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default), a mixture rule
is 𝑇 = (𝐴, 𝜋Γ, 𝜋Δ,Φ), where 𝜋Γ represents a distribution
over all possible lists of input references Γ (and similarly
for 𝜋Δ and Δ), of which there are a finite number, since
the set of available reference functions ℱ is finite, and
there is an upper bound 𝑁Γ on the maximum number of
references Γ may contain. For simplicity of terminology,
we refer to each possible list of references Γ as a shell,
so 𝜋Γ is a distribution over possible shells. Finally, Φ =

(Γ(𝑘),Δ(𝑘), 𝜑𝜃(𝑘) ,𝑣
(𝑘)
default)

𝜅
𝑘=1 is a collection of 𝜅 transition

rules (i.e., predictors 𝜑𝜃(𝑘) , each with an associated Γ(𝑘),
Δ(𝑘), and 𝑣

(𝑘)
default). To make predictions for a sample (𝑠, 𝑎)

using a mixture rule, predictions from each of the mixture
rule’s 𝜅 transition rules are combined according to the
probabilities that 𝜋Γ and 𝜋Δ assign to each transition rule’s
Γ(𝑘) and Δ(𝑘). Rather than having our EM approach learn
𝐾 transition rules, we instead learn 𝐾 mixture rules, as
the distributions 𝜋Γ and 𝜋Δ allow for smoother sorting
of experience samples into clusters corresponding to the
different rules, in contrast to the discrete Γ and Δ of regular
transition rules.

As before, we focus on the case where for each mixture
rule, Γ(𝑘) = Δ(𝑘), 𝑘 ∈ [𝜅], and 𝜋Γ = 𝜋Δ as well. Our
EM-like algorithm is then as follows:

1) For each 𝑗 ∈ [𝐾], initialize distributions 𝜋Γ = 𝜋Δ

for mixture rule 𝑇𝑗 as follows. First, use the algorithm in
Section IV-B to learn a transition rule on the weighted expe-
rience samples ℰ𝑍𝑗 with weights equal to the membership
probabilities 𝑍𝑗 = (𝑧𝑖,𝑗)

|ℰ|
𝑖=1. In the process of greedily

assembling reference lists Γ = Δ, data likelihood loss
function values are computed for multiple explored shells,
in addition to the shell Γ = Δ that was ultimately selected.
Initialize 𝜋Γ = 𝜋Δ to distribute weight proportionally, ac-
cording to data likelihood, for these explored shells: 𝜋Γ(Γ) =
exp(−ℒ(𝒯Γ;𝒟, ℰ𝑍𝑗

))/𝜒, where 𝒯Γ is the SPARE model with
a single transition rule 𝑇 = (𝐴,Γ,Δ = Γ, 𝜑𝜃), and 𝜒 =
(1− 𝜖)

∑︀
Γ exp(−ℒ(𝒯Γ;𝒟, ℰ𝑍𝑗 )), with the summation taken

over all explored shells Γ, is a normalization factor so that
the total weight assigned by 𝜋Γ to explored shells is 1 − 𝜖.
The remaining 𝜖 probability weight is distributed uniformly
across unexplored shells.
2) For each 𝑗 ∈ [𝐾], let 𝑇𝑗 = (𝐴, 𝜋Γ, 𝜋Δ,Φ), where
we have dropped subscripting according to 𝑗 for notational
simplicity:

a) For 𝑘 ∈ [𝜅], train predictor Φ𝑘 =

(Γ(𝑘),Δ(𝑘), 𝜑𝜃(𝑘) ,𝑣
(𝑘)
default) using the procedure in

Section IV-B on the weighted experience samples
ℰ𝑍𝑗

, where we choose Γ(𝑘) = Δ(𝑘) to be the list of
references with 𝑘-th highest weight according to 𝜋Γ = 𝜋Δ.

b) Update 𝜋Γ = 𝜋Δ by redistributing weight among the
top 𝜅 shells according to a voting procedure where each



Fig. 3. Representative problem instances sampled from the domain.

training sample “votes” for the shell whose predictor mini-
mizes the validation loss for that sample. In other words, the
𝑖-th experience sample ℰ(𝑖) votes for mixture rule 𝑣(𝑖) = 𝑘
for 𝑘 = argmin𝑘∈[𝜅] ℒ(Φ𝑘;𝒟, ℰ(𝑖)). Then, shell weights
are assigned to be proportional to the sum of the sample
weights (i.e., membership probability of belonging to this
rule) of samples that voted for each particular shell: the
number of votes received by the 𝑘-th shell is 𝑉 (𝑘) =∑︀|ℰ|

𝑖=1 1𝑣(𝑖)=𝑘 · 𝑧𝑖,𝑗 , for indicator function 1 and 𝑘 ∈ [𝜅].
Then, 𝜋Γ(𝑘), the current 𝑘-th highest value of 𝜋Γ, is up-
dated to become 𝑉 (𝑘)/𝜉, where 𝜉 is a normalization factor
to ensure that 𝜋Γ remains a valid probability distribution.
(Specifically, 𝜉 = (

∑︀𝜅
𝑘=1 𝜋Γ(𝑘))/(

∑︀𝜅
𝑘=1 𝑉 (𝑘)).)

c) Repeat Step 2a, in case the 𝜅 shells with highest 𝜋Γ

values have changed, in preparation for using the mixture
rule to make predictions in the next step.

3) Update membership probabilities by scaling by data
likelihoods from using each of the 𝐾 rules to make
predictions: 𝑧𝑖,𝑗 = 𝑧𝑖,𝑗 · exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖)))/𝜁, where
exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖))) is the data likelihood from using mix-
ture rule 𝑇𝑗 to make predictions for the 𝑖-th experience
sample ℰ(𝑖), and 𝜁 =

∑︀𝐾
𝑗=1 𝑧𝑖,𝑗 · exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖))) is

a normalization factor to maintain
∑︀𝐾

𝑗=1 𝑧𝑖,𝑗 = 1.
4) Repeat Steps 2 and 3 some fixed number of times, or
until convergence.

V. EXPERIMENTS

We apply our approach, SPARE, to a challenging problem
of predicting pushing stacks of blocks on a cluttered table
top. The object universe ϒ is composed of blocks of different
sizes and weight, the property set 𝒫 includes shapes of
the blocks (width, length, height) and the 3-D position of
the block. We have one action template, push(𝛼, 𝑜), which
pushes toward a target object 𝑜 with parameters 𝛼 ∈ R4

We simulate this 3D domain using the physically realistic
PyBullet [14] simulator with Gaussian noise on the action
parameters. We consider the following deictic references in
the reference collection ℱ : (1) above (O), which returns the
objects immediately above 𝑂; (2) above* (O), which returns
all of the objects that are above 𝑂; (3) below (O), which
returns the objects immediately below 𝑂; (4) nearest (O),
which returns the object that is closest to 𝑂.

We first compare our single-rule learning approach to the
baseline, a neural network function approximator that takes
in as input the current state and action parameter, and outputs
the predicted Gaussian distribution of the next state. In each
problem instance, a robot pushes a block with the presence
of other blocks (Fig. 3). Figure 4(a) shows the performance,
as measured by the log data likelihood, as a function of
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Fig. 4. (a) Comparing performance as a function of number of distractors
with a fixed amount of training data. (b) Comparing sample efficiency of
SPARE to the baseline. Shaded regions represent 95% confidence interval.
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Fig. 5. (a) Shell weights per iteration of our EM-like algorithm. (b)
Membership probabilities of training samples per iteration.

the number of extra blocks when a stack of 3 blocks is
pushed. As more objects are added to the table, baseline
performance drops as the presence of these additional objects
appear to complicate the scene and the baseline is forced to
consider more objects when making its predictions. However,
performance of the SPARE approach remains unchanged, as
deictic references are used to select just the three blocks in
the stack as input in all cases, regardless of the number of
extra blocks on the table. Fig. 4(b) plots the data likelihood
as a function of the number of training samples. Both our
approach and the baseline benefit from having more training
samples, but our approach is much more sample efficient and
achieves good performance within only a thousand training
samples.

Now we put our approach in a more general setting where
multiple transition rules need to be learned for prediction of
the next state. Our approach adopts an EM-like procedure to
assign each training sample its distribution on the transition
rules and learn each transition rule with re-weighted training
samples. First, we construct a training dataset and 70% of
it is on pushing 4-block stack. Our EM approach is able to
concentrate to the 4-block case as shown in Fig. 5(a).

Fig. 5(b) tracks the assignment of samples to rules over
the same five runs of our EM procedure. The three curves
correspond to the three stack heights in the original dataset,
and each shows the average weight assigned to the “target”
rule among samples of that stack height, where the target rule
is the one that starts with a high concentration of samples
of that particular height. At iteration 0, we see that the
rules were initialized such that samples were assigned 70%
probability of belonging to specific rules, based on stack
height. As the algorithm progresses, the samples separate
further, suggesting that the algorithm is able to separate
samples into the correct groups.
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