
Playdough to Roombots: Towards a Novel Tangible User Interface for
Self-reconfigurable Modular Robots*

Mehmet Mutlu1,2, Simon Hauser1, Alexandre Bernardino2 and Auke Ijspeert1

Abstract— One of the main strengths of self-reconfigurable
modular robots (SRMR) is their ability to shape-shift and
dynamically change their morphology. In the case of our SRMR
system “Roombots”, these shapes can be quite arbitrary for
a great variety of tasks while the major utility is envisioned
to be self-reconfigurable furniture. As such, the ideas and
inspirations from users quickly need to be translated into the
final Roombots shape. This involves a multitude of separate
processes and - most importantly - requires an intuitive user
interface. Our current approach led to the development of a
tangible user interface (TUI) which involves 3D-scanning of
a shape formed by modeling clay and the necessary steps to
prepare the digitized model to be formed by Roombots. The
system is able to generate a solution in less than two minutes
for our target use as demonstrated with various examples.

Index Terms— tangible user interface, self-reconfigurable
modular robots, deformable material, shape formation

I. INTRODUCTION

Roomboots is an SRMR system designed in Biorobotics
Laboratory, EPFL [1]. The mechanical design, control of
self-reconfiguration and user interfaces are three main work
divisions of Roombots. One of the grand challenges [2] for
the intended usage of structures built with SRMR is the
method of how the inspiration for a structure by a user is
translated into an real-world representation with SRMR. This
process is illustrated in Fig. 1. We formally split the full
process into five subprocesses: (i) expression, where an idea
of a user takes shape in the real world, (ii) digitization, where
this idea gets digitized and put into a PC, (iii) abstraction,
where the raw digital representation is post-processed into
a representation that can be used by an SRMR system, (iv)
planning where algorithms produce an instruction plan that
creates the desired shape in the form of a building sequence
and finally (v) formation, where the SRMR form into the
initial inspiration in the real world by following the building
plan provided by the planning step. It is important to notice
that only the first and the last processes take place in the
real world and only they are usually able to provide any
other than visual feedback (e.g. haptic feedback) which is
the primary type of feedback in the digital representation
(Fig. 1).

*This work was supported by the Fundação para a Ciência e Tecnologia
(FCT) agency of Portugal under the contract number PD/BD/105781/2014
and project grant AHA-CMUPERI/HCI/0046/2013 and the Swiss National
Science Foundation (Project 153299).

1M. Mutlu, S. Hauser and A. Ijspeert are with the Biorobotics Laboratory,
School of Engineering and Institute of Bioengineering, École Polytechnique
Fédérale de Lausanne, Switzerland mehmet.mutlu at epfl.ch

2M. Mutlu and A. Bernardino are with the Electrical and Computer En-
gineering of the Faculty of Engineering at IST, Instituto Superior Téchnico,
Lisbon, Portugal

User

Formation

Self-reconfiguration
of Roombots

Expression

Tangible UI,
passive medium

Digitization

~real time 3D scan,
raw mesh

Abstraction

Voxel, robotic
representation

e.g. Haptic feedback Visual feedback

Algorithms,
building instructions

Planning

Inspiration
e.g. stool

Real world Digital world

100

300

y(mm)

200 300

x(mm)

200100

200

100

z(
m

m
) 300

mod1; m0; pos120
mod1; m1; pos90
mod2; m0; pos-120
mod3; m2; pos240
mod1; m0; pos0
mod3; m1; pos-90
mod2; m1; pos180
mod2; m2; pos0
mod1; m0; pos120

Fig. 1. The cycle from an inspiration to the final Roombots shape. The
inspiration first is expressed in the real world. A digitization step transforms
it into the digital world where the processing steps abstraction and planning
can take place. At last, the inspiration takes shape with the SRMR by the
formation.

Earlier works on Roombots focus mostly on only single
processes of Fig. 1. In [3], a user utilizes a tablet PC and
augmented reality to virtually place pre-defined structures
into a living room; the inspiration is never expressed in
real world and digitization does not take place since the
abstraction step is directly performed manually. [4] proposes
a direct human robot interaction (HRI) to control the location
of modules in discrete grid environment in the real world,
whereas [5] extends this idea to the continuous space; the
expression and digitization steps are skipped in both cases.
In contrast, much stand-alone work has been done in the
planning step (e.g. [6]), where a selected set of abstracted
structures have been provided to reconfiguration algorithms.
The formation step has not yet been the primary focus and
is subject of ongoing hardware development but ultimately
necessary to demonstrate the complete cycle.

This work focuses on the three aspects expression, digi-
tization and abstraction as a whole. In particular, we seek
a method that is able to rapidly produce the abstracted
representation of an idea; as one of the main strengths of
SRMR is their ability to shape-shift and create (almost)
arbitrary structures, a fast abstraction of the inspiration is
necessary to allow a purposeful interaction with an SRMR-



system. We present a method that combines the relatively
novel technology of 3D-scanning with an existing algo-
rithmic approach (DFS) with adjustments to autonomously
generate the building instructions for Roombots, bringing us
one step closer to the vision of Roombots to be used as
“fast-protyping” user-created furniture. At last, the formation
(self-reconfiguration) step is subject of ongoing hardware
development and will not be discussed in this work.

II. ANALYSIS OF THE PROBLEM
The main purpose of this study is to create a user friendly

interface to generate a final shape of structures to be self
assembled by Roombots. The interface should come up with
a construction plan of the a desired arbitrary structure. For
this, each of the three processes (see Fig. 1) leading to the
processing step are explained in detail below, motivating our
choice of each of the used methods. The explanation of each
method can be found in further sections.

A. Expression: Modeling clay
An inspiration can be expressed in the real world in many

different ways. It can be in the form of a drawing, a spoken
or written description or even as a pantomimic gesture.
As the purpose of Roombots is to form 3-dimensional
shapes, expressing the inspiration also in a 3-dimensional
way seemed to be the most intuitive approach. However,
the size of the structures formed by Roombots is roughly
in the order of magnitude of a human. Hence, a method
to form a model of the inspiration was desired: a Tangible
User Interface (TUI) [7] [8]. There exist diverse interaction
media proposed in the literature that could benefit a TUI.
For instance, computational building blocks in [9] and ac-
tive cubes proposed in [10] can immediately transform the
physical structure that a user is building into the digital
domain as a 3D voxel array. Furthermore, [11] offers a
construction method with kinetic memory which includes
the ability of a user to input the shape of the structure as
well as the expected motion. The Roombots is a complex
robotic system due to the nature of SRMRs. In order to
simplify the interaction, we inclined for a passive medium.
In this work, the passive medium can be anything (LEGO R©

blocks, wood pieces etc.) that allows creation of structures
that can be replicated with Roombots. Modeling clays are
widely used for 3D shape modeling in games, e.g. Cranium R©

and Cluzzle R©, or professional activities like architecture or
art. Play-Doh R© or similar modeling clays are very easy to
shape and made for kids to create 3D shapes. Modeling clay
is also one of the most studied tangible user interface (TUI)
material used in the literature. For instance, [12], [13] use the
modeling clay for fascinating landscape analysis and digital
3D design. [14] creates electronic circuits using conductive
and insulating playdough. Another usage is explained in [15]
where modeling clay is used to design an ergonomic PC
mouse.

B. Digitization: 3D scanning
Having a passive interaction medium requires an addi-

tional step to digitize the shape information that is formed by

the playdough (note that if the inspiration is directly digitized
e.g. by modeling a structure in a PC, the expression step can
be skipped). In this regard, we rely on commercial scanning
solutions, which are becoming widely available and cheaper
by the day, to convert the real object to the digital data.
The result of the 3D-scanning process is a mesh grid that
approximates the shape of an object with surface triangles.

C. Abstraction: Voxels and Roombots

For representing the 3D information, we use a voxel rep-
resentation. Voxels are commonly used to represent SRMRs,
particularly lattice types like Roombots. Example usage of
cubic SRMR representation can be seen in [16], [17] and
[18]. The quality of voxelization greatly depends on the voxel
resolution and generally improves with a higher resolution,
for which small and many voxels are required. However,
Roombots modules are relatively big such that a representa-
tion in which a voxel corresponds to a half Roombots module
would result in big voxels and low resolution. Low resolution
voxelization is likely to result in undesired information loss
and a voxel array that possibly is not resembling the original
shape anymore. Nevertheless, it is possible to preserve the
rough shape information even with big/coarse voxels when
voxelization is done in a smart way. An advertisement of
LEGO R© is cleverly illustrating this challenge in Fig. 2.

Fig. 2. The inspirational LEGO R© advertisement emphasizing the shape
representation capabilities of primitive construction bricks.

D. Constraints and simplifications

Some shapes cannot be built with Roombots due to their
structure which consists of two consecutive cubic/spheric
shape. For instance, the T shaped block (in its elementary,
symmetric form) in the famous Tetris R© game is physically
impossible to build with Roombots modules.

Each Roombots module has three degrees of freedom
(DOF) that can continuously rotate and two active connection
mechanisms (ACM) that allows modules to connect to each
other or to an environment equipped with connection plates
[1]. Such motion capabilities allow a single module to
locomote by itself and gives it functional flexibility. However,
the same blessing of motion capabilities turn into a curse of
dimensionality in a search problem. Nevertheless, most of
the furniture-like structures made out of Roombots that have
been demonstrated so far do not make use of DOFs, i.e.
each joint of a Roombots module is set to zero degrees and
the module resembles two consecutive voxels. Even though
the continuous rotation of each DOF increases the number
of possible structures that can be built with Roombots, in



this work we use modules as if they are construction bricks.
Hence, construction is done only in orthogonal axes.

III. SOLUTION METHOD

The construction of structures with a shape given by the
playdough is a multi stage process that is almost completely
autonomous. Once the user shapes the playdough, the follow-
ing stages are (i) 3D scanning, (ii) mesh pre-processing, (iii)
voxelization, (iv) initial module placement (v) construction
search and (vi) the user feedback.

A. 3D Scanning of playdough

3D scanning is needed to capture the information sculpted
into playdough. There is a deep research literature on 3D
scanning focusing on many different methodologies. An
early study in [19] captures 3D mesh in real time using a
camera. In a more recent study, [20] shows how to fuse color
and depth information to have high quality 3D scans. [21]
suggests a method to scan modeling clay in 2.5D in real time.
There are also commercial 4D scanners (3D scanners that
can capture temporal changes). However, they are usually
expensive systems. [22] offers an open source and one of
the most economical instantaneous 3D scanners.

It is possible to replicate the system in [22] in a smaller
scale for smaller objects. However, developing a 3D scan-
ning system is out of scope of this work. We picked the
cheapest commercially available solution: a 3D scanner
from XYZprinting R© for 200$. It is using an Intel R© Real-
SenseTMF200 camera to obtain depth and color images. The
Intel RealSense SDK and 3D Scan tool (11.0.27.8892) is
used for 3D scanning. As a result, we compromised on real-
time scanning for the sake of cost efficiency. Nevertheless, a
playdough structure similar to the one shown in Fig. 1 can
be scanned in approximately 45 to 90 seconds.

B. Pre-Processing of Mesh

3D scanned meshes need a quick and almost automatized
preprocessing. The initial meshes are solidified (to obtain
closed surfaces), simplified by reducing the triangle patch
count to accelerate voxelization and saved as .stl file format.
Finally, they are imported into MATLAB R2015b for the
rest of the abstraction. Scanned parts can occasionally have
small artifacts as seen in Fig. 3a However, those artifacts are
insignificant, and rarely need to be explicitly removed.

1) Scaling: The scanned playdough model is a smaller
mock-up of the desired structure where the user has to
specify the size of the desired final structure. In other words,
the user is giving only the shape information with the
playdough and the final size of the desired object is another
parameter. There could be a hard-coded constant gain to scale
up the 3D model to get the real-life object size. However,
making an exactly scaled model means more effort for the
user since removing or adding material to change the scale
of the sculpture may not be simple. Additionally, the user
may want to change the size of the object after some use. In
such scenarios, having an adjustable parameter κ eases the
user’s role. In this paper, κ is assumed to be the maximum

(a)

100

200

100 200

z(
m

m
) 300

3D Mesh

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Fig. 3. (a)Initial view of the 3D scan and (b) after pre-processing when
the mesh is ready for the voxelization.

length of the object along any x-y-z axes and it can be set
on the fly. We envision that the user can use the GUI or
a physical object such as knob or slider bar to define the
scale. In summary, κ is the only user parameter other than
the playdough shape in the proposed interface. Fig. 3b shows
the scaled model with κ = 420mm.

2) Orientation: Orientation of the mesh is critical for
the processing step of the proposed interface since the
Roombots modules will be placed along the orthogonal axes
as explained in Sec. II-D. In a stationary 3D scanning system,
the orientation of the coordinate frame of playdough structure
would be fixed with respect to the world coordinate frame
and the user could simply rotate the playdough sculpture to
input the desired orientation. Although this could be a nice
feature, our orientation information is not reliable due to the
handheld 3D scanner. A workaround is to rotate the mesh
manually. Alternatively, we propose an auto rotate method
in the pre-processing step.

We assume that the user is working on a flat surface, e.g.
table, with the surface normal pointing in reverse gravity
direction. As a result, the only unknown orientation axes that
needs to be optimized is rotation with respect to the surface
normal. The problem can be formulated as

argmax
θ∈[0◦,90◦)

f(θ,M) (1)

where f is the occupancy function, θ is the rotation with
respect to the surface normal where the sculpture is placed
and M denotes the scanned and scaled mesh.

C. Voxelization of the 3D model

The power of the shape representation of a voxel space
highly depends on the voxel resolution. When the resolution
is low, the voxel space suffers from aliasing. Voxelizing the
M with Roombots-size voxels is likely to result in drastic
shape deformations. Hence, we firstly voxelize the M with
relatively high resolution to minimize the severe effects of
aliasing and obtain the high resolution voxel set Vh. The
voxelization for Vh is based on the generic ray intersection
method similar to the one that is described by [23]. The
whole space is discretized uniformly (center of each cell
space representing a voxel area) and voxels confined in
the M are assigned into Vh. The voxels of Vh obtained
by voxelizing the mesh in Fig. 3b are plotted in Fig. 4a.



Secondly, we create a uniform low resolution voxel set Vl
on the same space. Voxels in Vl are large and have the size
of half of a Roombots module. Unlike Vh, where all voxels
are binary, Vl associates an occupancy value to each voxel.
That is one of the main breaking points where the proposed
solution goes from a generic to a specific application for
Roombots. In our implementation, we set the size of large
voxels of Vl (they will be called vl) to be five times larger
than the small voxels of Vh (they will be called vs). That
ratio between the voxel sizes will be called ρ. So, the space
covered by a half Roombots module is represented by 53 vs.

1) Grid offset selection: The accuracy of shape represen-
tation capability with large voxel set Vl relies on the discrete
offset (o) value between Vl and Vh. The offset is the discrete
position translation (in 3D space) of Vh on top of Vl with
the step size of vs edge length. The occupancy value of a
single voxel in (Vl) is defined as

Vl(xi, yi, zi) :=
xi+bρ/2c∑
xi−bρ/2c

yi+bρ/2c∑
yi−bρ/2c

zi+bρ/2c∑
zi−bρ/2c

Vh(x, y, z)
ρ3

(2)

which corresponds to total number of vs in the space defined
by the given vl divided by total number of vs that could fit in
the same space. When Vl is shifted by the size of one vs in
any x-y-z axis, the occupancy of voxels in Vl changes. Before
proceeding further, we define another set Vlo which a subset
of Vl that consists of elements of Vl that have minimum 0.5
occupancy.

For better shape representation of Vl, its voxels should be
occupied as densely as possible. In more rigorous terms, the
optimization problem can be formulated as

argmax
p∈[0,ρ−1)

g(p,Vlo,Vh, ρ) (3)

where p ∈ N and the aim is finding the optimal position
offset p = [px, py, pz] for Vh that maximizes the fitness
function g which is defined as

g(p,Vlo(p),Vh, ρ) :=
[2
∑
Vlo(p)− card(Vlo(p))] ∗ ρ3

card(Vh)
(4)

In Eq. 4, the first term in the numerator (when multiplied
by ρ3) denotes the number of occupied vs in the set Vlo
(i.e. occupied space) and the second term comes from the
number of extra voxels that could fit in Vlo (i.e. empty space).
Thus, the fitness function is rewarding the higher occupancy,
whereas it is penalizing low occupancy. Finally, the term is
normalized with the total number of voxels in Vh. Finding
the optimal offset between Vh and Vl is automated and the
implementation is given in Alg. 1.

For better clarification we will revisit the auto-rotate
method. The computational implementation of the rotation
procedure, is given in Alg. 2. The implementation of Eq. 1
is a brute force method in which the resolution of θ is taken
to be 5◦.

2) Search space selection (reduction): The following sub-
sections will be explaining the construction/search part of the
interface. Having a small search space usually reduces the

Algorithm 1 Find the offset yielding the highest occupancy

Require: Voxel set Vh obtained
1: procedure FINDBESTOFFSET(Vh, ρ)
2: omax ← 0 . o is occupancy
3: popt ← [0, 0, 0]
4: for (each p offset) do . p is 3D in xyz
5: Vlo ← CREATEVLO(p,Vh,ρ) . Eq. 2
6: o← CALCULATEFITNESS(p,Vh,Vlo,ρ) . Eq. 4
7: if o > omax then
8: omax ← o
9: popt ← p

10: return omax, popt

Algorithm 2 Rotate mesh to maximize occupancy

Require: Mesh M is scanned
1: procedure ROTATEMESH(M)
2: θmax ← 0
3: omax ← 0
4: for (each angle θ) do
5: Mt ← ROTATEZ(M, θ)
6: Vh ← VOXELIZE(Mt) . Vh is voxel set
7: o, p← FINDBESTOFFSET(Vh, ρ)
8: if o > omax then
9: omax ← o

10: θmax ← θ

11: M← ROTATEZ(M, θmax)
12: return M

computation time of the search algorithm. Hence we select
only Vlo to be filled with Roombots modules. The resulting
Vlo of the mesh shown in Fig. 3b can be seen in Fig. 4b.

D. Search Space Definitions and Initial Module Placement

In the rest of the section, the search approach used to fill
Vlo with Roombots modules is explained. For a comparative
study, two of the well known exhaustive search algorithms,
breadth first search (BFS) and depth first search (DFS) are
implemented. The discrete search space is Vlo which is a 3D
voxel array. Each node is defined as a connected structure
that is possible to be constructed with Roombots. Each layer
corresponds to total number of modules in the structure. For

(a)

100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Fig. 4. (a) High resolution voxel space to approximate the 3D model
accurately and (b) low resolution voxel space in which the voxel size is
equal to a half Roombots module.



100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(a)

100

200

100 200

z(
m

m
) 300

y(mm)

1000

x(mm)

400

0-100 -100

(b)

Fig. 5. The initial module can be placed in any location in Vlo. Two
examples can be seen in (a) and (b)

instance layer zero is the empty Vlo and layer-1 is a only
single Roombots module placed in Vlo. The goal node (nG)
is the state where either all voxels of Vlo are occupied (when
card(Vlo) is an even number) or just a single voxel is left
empty (when card(Vlo) is an odd number) assuming the
search problem is optimally solvable. The globally optimal
solution is the structure which yields the highest possible
occupation. By the term optimality, we also refer to set of
structures that are completely constructible with Roombots,
unlike the case discussed in Sec. II-D. When the Vlo does not
lead to an optimal solution, we need to search all possible
structures to come up with the best matching structure.

In order to ensure globally optimal solution, the start node
(nS) should be the empty Vlo and in the first iteration all
possible initial placements should be inserted into the search
queue/stack. Eventually, all initial placements lead to the
optimal solutions when card(Vlo)%2 = 0, provided that the
initial placement does not result in non-optimal free space
(i.e. dividing the free space and each new space blob having
odd number of voxels). Further discussion on optimality will
be given in Sec. III-F.2. Thus, we pick a random optimal
initial seed module and start the construction search with that
one. Fig. 5 illustrates two different initial configurations.

E. Construction with Breath First Search

BFS gives a structured baseline to analyze the construction
process. It exhaustively searches for the all possible struc-
tures and stops only when all alternatives are tested. How-
ever, the expansion factor of the search space is very high
exponential. A single Roombots module has 10 surfaces. In
free space, another module can attach to any of the surfaces
in five different ways, resulting in 46 (50 − 4 repetitions
removed) different possibilities (children nodes) in the sec-
ond layer. The number of surfaces increases, resulting in
even higher number of children per parent node in the 3rd
layer. In such an exponential search space, any branch that
can be pruned helps to improve the total computation time.
Hence, we do the pruning with (i) history keeping and (ii)
optimal placement check. The history all of the opened nodes
is recorded and we do not push the child in the search queue
if it already exists in the history. The history is implemented
with map container with unique keys generated for each
structure to optimize the time spent checking if the node
has already been opened. The flow of the procedure can be

seen in Alg. 3. Once BFS ends, the user has a selection of
possibilities listed in highest occupancy order as shown in
Fig. 6.

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.798

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.797

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

4th - Occupancy:0.792

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.769

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.767

300

Fig. 6. Six structures resulting from the construction based on BFS with
ns shown in Fig 5a. Structures are ordered in the occupancy order. Note
that the Vlo has odd number of Voxels for the desired stool structure which
means one voxel remains unoccupied. The user can pick any of the resulting
structure. Even though the 1st structure has a higher occupancy, the 4th
structure would be a better stool in terms of functionality.

F. Construction with Depth First Search

The structure of the DFS is more suitable for the addressed
construction problem particularly when the structure can
be built with Roombots and the optimal solution exists.
Therefore, we implemented DFS with the same structure of
Alg. 3 by only changing the queue to stack. DFS marches
towards goal and stops as soon as the goal state is reached.
If we let the DFS to search all possibilities, the results would
be the same as BFS since they are both exhaustive methods.
However, our DFS implementation is intended to find a quick
solution for large search space. Fig. 7 gives the resulting
structures of the DFS approach.

1) Structures that cannot be built completely: When the
structure cannot be built optimally with Roombots, DFS
cannot terminate since nG does never appear and it searches
for all possibilities like BFS. While the exhaustive search
still continues, the best results can be displayed to the user
and user can stop the search anytime when satisfied with one
of the offered solutions.

2) Pruning method based on optimal placement: We pro-
pose a pruning method for the implemented search algorithm



Algorithm 3 Construction with BFS

Require: Vlo is obtained
1: procedure CONSTRUCTBFS(Vlo)
2: Initialize empty h . h is the history
3: Initialize q with seed module nS . q is the queue
4: while q is not empty do
5: np ← POP(q) . parent node
6: Nc ← GETCHILDREN(np)
7: for (each nc in Nc) do
8: if nc is not in h and optimal then
9: PUSH(nc,q) . child into q

10: PUSH(nc,h) . child into h
11: nG = FINDHIGHESTOCCUANCY(h)
12: return nG

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.756

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.754

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

4th - Occupancy:0.727

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.723

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.720

300

Fig. 7. Construction of modular structures with DFS.

that is mentioned as optimality check on the eight line of
Alg. 3. If the Vlo can be fully filled with Roombots, we can
immediately decide if an opened child will result in non-
optimal solution. If the child is dividing the remaining free
space into more then one 3D blobs, all blobs should have an
even number of voxels. Otherwise, we can prune that branch
by discarding the child.

G. User Feedback

One crucial observation in Fig. 7 is that DFS does not
suggest a nice functional stool. The main reason is that
Vlo has an odd number of voxels and one voxel need to
get discarded. However, the displayed results are only for
one scan (snapshot) of the playdough. In an interactive
continuous case, assuming that the 3D-scanning can be done
much faster, the user can still guide the interface towards
a desired structure (see Sec.III-G). In order to demonstrate
the role of the user feedback, then 3D model is modified to
emulate what the user could do. Applying the modification,
this time the resulting Vlo has an even number of voxels as
seen in Fig. 8 and a functional stool is quickly found by the
search method.

(a)

300
400

y(mm)

200 300

x(mm)

200100
100

200

z(
m

m
)

400

(b)

300
400

y(mm)

200 300

x(mm)

200100
100

200

z(
m

m
)

400

(c)

100

300

y(mm)

200 300

x(mm)

200100

200

100

z(
m

m
) 300

(d)

Fig. 8. (a) Creating an artificial feedback by modifying the 3D model
directly and running the same procedures on the modified model. Resulting
(b) mesh, (c) high resolution voxel space and (d) resulting structure.

TABLE I
COMPARATIVE PERFORMANCE OF THE SUGGESTED METHODS

Object # mod. # hd td (s) td,np (s) tb (s)
Stairs wood (h) 7 15 0.10 0.06 0.19
Stool (Fig. 8) 8 16 0.10 0.14 0.27

Fancy chair (d) 10 38 0.14 0.10 17.9
Armchair 1 (a) 11 58 0.16 19.6 85.4

Stairs LEGO (e) 14 66 0.19 105 1171
Sofa 2 (g) 16 108 0.24 NA NA

Armchair 2 (b) 17 187 0.32 0.24 NA
Bookshelf (c) 20 387 2.70 545 NA

Sofa 1 (f) 25 329 1.91 NA NA

IV. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In order to test the performance of the computational part
of the proposed interface, we created the test set seen in the
Fig. 9 (a)-(h). The common property of all of those models
is that they have an even number of vl and they can be
filled optimally after scaling them to Roombots size. For the
scaling of the models, we have considered smaller mock-up
furnitures rather than the human size because we only have
13 Roombots modules in Biorobotics Laboratory and we
focused more on the physical experiments we can do in the
future. Fig. 9 (i)-(p) shows the resulting Roombots structures
of each model in the test set. The number of modules needed
for each model can be seen in Tab. I. The same table also
reports the computation time for each model when processed
with the BFS, DFS and DFS with no pruning check as well
as number of different structures tested in history (hd) until
finding the solution with DFS. Computations are done on a
PC with an Intel i7-6700HQ CPU and 16GB RAM.

The Tab. I suggests that the proposed pruning method
enables the search to be used in real-time applications in the
Roombots project. The BFS time clearly shows the explosive
effect in computation time since the search space is highly
exponential with respect to the size of the structure. The NA
marks in the table represents that not all possible structures
could be tested in 30 minutes. To put this into perspective:
when the Sofa 1 object is searched for approximately 7 hours,
roughly 12 million structures are tested and BFS was still in
the 11th layer (11 modules placed out of 25 module model).

A. Effect of Initial Module Placement

The location of initial module also effects optimality. For
instance when the stool example given in Fig. 6 is initialized
with the seed module given in Fig. 5b, two results having



(a) (b) (c) (d) (e) (f) (g) (h)

100

200100

200

z(
m

m
)

x(mm)y(mm)

300

0 0
-100

-200

(i)

100

300 400

200

z(
m

m
)

x(mm)y(mm)

200

300

200

400

100

(j)

400

x(mm)

200

150

y(mm)

200
50

400

z(
m

m
)

600

(k)

300200

x(mm)

0

100

100

z(
m

m
)

y(mm)

200

300

400 200

(l)

100

400

200

z(
m

m
)

400

300

y(mm)

200

x(mm)

200

(m)

500

x(mm)

0
0

100
200

z(
m

m
) 300

100

y(mm)

0-100 -500

(n)

600

100

x(mm)

400300

200

z(
m

m
)

y(mm)

300

200 200100

(o)

100

300200

x(mm)y(mm)

200

150 200

z(
m

m
)

100

300

10050

400

(p)

Fig. 9. Different objects used for benchmarking and the corresponding found Roombots structures.

highest occupancy can be seen in 10. Note that the second
option was not available previously, due to the placement
of the seed module. However, DFS already returns the first
solution and global optimality of the solution relies on the
user interaction where user should iterate the playdough
sculpture to achieve the desired structure.

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

1st - Occupancy:0.797

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

2nd - Occupancy:0.796

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

3rd - Occupancy:0.795

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

4th - Occupancy:0.792

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

5th - Occupancy:0.767

300

100

100
200

y(mm)

0 100

x(mm)
0-100

200

-100

z(
m

m
)

6th - Occupancy:0.765

300

Fig. 10. Best two results of BFS when the seed module is taken as shown
in Fig. 5b.

B. Different construction materials

Modeling clay is not the only option for our interface.
LEGO R©, wood pieces, any deformable or brick-like material
can be a tangible medium in this work. The test set already
has models made out of LEGO R© and wood pieces. One
selection criteria can be the connection capabilities. For
instance, LEGO R© blocks or wood pieces can only be stacked
on top of each other, but, Roombots modules has docking
surfaces also on the sides. In that regard, playdough can
represent capabilities of Roombots better.

Even active building blocks such as Active Cubes could
have been used. For instance, [24] estimates CAD models
from Voxel model made with robotic blocks. It is almost
the reverse of our problem and could simplify our interface.
There would be no need for the (i) scanning, (ii) initial
voxelization, (iii) rotation search and (iv) large voxel offset
search steps.

C. Hardware demonstrations

We have manually replicated some of the test set models
with Roombots and report the Stool in Fig. 11. We also tested
the reverse process by 3D scanning Roombots structure, as
seen in Fig 11c, and running the algorithm to replicate (or

potentially by changing size scale) the Roombots structure
with another set of Roombot. In that case, active Roombots
blocks are replacing playdough to control yet another set of
Roombots (or even another SRMR).

(a) (b) (c)

Fig. 11. The stool example from (a) playdough to (b) Roombots and further
(c) reverse scanning the Roombots structure.

D. Limitations of the proposed solution

Our demonstrated system has three major limitations: (i)
3D scanning is not real time, thus we only demonstrate the
proof of concept, (ii) it does not use the full potential of
Roombots and assumes them as uniform construction bricks,
(yet we can still demonstrate a large subset of the full
capabilities) and (iii) scaling up the size of desired structures
leads to exponential computation time.

The suggested DFS with history and the pruning check
can solve a reasonably sized search space in real time which
is sufficient for us since we have only 13 modules. However,
scaling up to more than 40-module-structures starts suffering
from computation time and getting a quick solution depends
on the chance. For large free spaces, additional strategies are
needed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we are proposing a novel, tangible human
robot interaction to control the shape of SRMRs. The pro-
posed interface consists of multiple computation steps. The
highest computation load is resulting from the search to
construct the given shape optimally. The attempted solution
space is highly exponential and pruning branches as soon
as possible plays a crucial role to have real-time performing
interface.



The proposed solution can be applied to any lattice type
SRMRs. Having a SRMR with the shape of a single voxel
eliminates the construction step. Thus, large scale scenarios
can be be built very fast. If a SRMR has a more complex
shape, the rule to get new child nodes in the construction
step should be updated according to the new shape. The rest
of the implementation is generic.

Properties inherent to TUIs also apply to this work. For
example, a visually disabled person can control Roombots
using the TUI. He may not make use of the suggested visual
feedback, but, can always touch and feel the final structure
after self-reconfiguration and modify the playdough when
needed.

The future work in this line of research will focus on
incorporating inverse kinematics into the proposed interface
to be able to build more complex structures. Real-time 3D
scanning is an enabling factor for this work. Hence, we will
adopt an automated real time 3D scanning technique. The
final work plan is including passive components to replace
some of the robotic modules to the search algorithm which
would reduce the cost of real systems and possibly boost
upscaling properties of the interface.

ACKNOWLEDGMENT

Authors would like to thank to Ayşe Nur Sunal and
Olguta Robu for creating Play-Doh structures and providing
alternative construction materials. Authors also would like to
thank to M.J. BRUNNER Inc. for granting the permission to
use Fig. 2.

REFERENCES

[1] A. Sproewitz, R. Moeckel, M. Vespignani, S. Bonardi, and
A. J. Ijspeert, “Roombots: A hardware perspective on 3d self-
reconfiguration and locomotion with a homogeneous modular robot,”
Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1016–1033, July
2014.

[2] M. Yim, W. m. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics Automation
Magazine, vol. 14, no. 1, pp. 43–52, March 2007.

[3] S. Bonardi, J. Blatter, J. Fink, R. Moeckel, P. Jermann, P. Dillenbourg,
and A. J. Ijspeert, “Design and evaluation of a graphical iPad applica-
tion for arranging adaptive furniture,” in 2012 IEEE RO-MAN, Sept.
2012, pp. 290–297.

[4] A. Oezgur, S. Bonardi, M. Vespignani, R. Moeckel, and A. J. Ijspeert,
“Natural user interface for Roombots,” in 2014 RO-MAN: The 23rd
IEEE International Symposium on Robot and Human Interactive
Communication, Aug. 2014, pp. 12–17.

[5] M. Mutlu, S. Bonardi, M. Vespignani, S. Hauser, A. Bernardino, and
A. J. Ijspeert, “Natural user interface for lighting control: Case study
on desktop lighting using modular robots,” in 2016 25th IEEE Inter-
national Symposium on Robot and Human Interactive Communication
(RO-MAN), Aug. 2016, pp. 288–293.

[6] S. Bonardi, R. Moeckel, A. Sproewitz, M. Vespignani, and A. J.
Ijspeert, “Locomotion through Reconfiguration based on Motor Primi-
tives for Roombots Self-Reconfigurable Modular Robots,” in Proceed-
ings of ROBOTIK 2012; 7th German Conference on Robotics. VDE,
2012, pp. 1–6.

[7] H. Ishii, D. Lakatos, L. Bonanni, and J.-B. Labrune, “Radical Atoms:
Beyond Tangible Bits, Toward Transformable Materials,” interactions,
vol. 19, no. 1, pp. 38–51, Jan. 2012.

[8] K. Nakagaki, L. Vink, J. Counts, D. Windham, D. Leithinger,
S. Follmer, and H. Ishii, “Materiable: Rendering Dynamic Material
Properties in Response to Direct Physical Touch with Shape Changing
Interfaces,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’16. New York, NY, USA:
ACM, 2016, pp. 2764–2772.

[9] D. Anderson, J. L. Frankel, J. Marks, A. Agarwala, P. Beardsley,
J. Hodgins, D. Leigh, K. Ryall, E. Sullivan, and J. S. Yedidia,
“Tangible Interaction + Graphical Interpretation: A New Approach
to 3d Modeling,” in Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’00.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 393–402.

[10] R. Watanabe, Y. Itoh, M. Asai, Y. Kitamura, F. Kishino, and
H. Kikuchi, “The Soul of ActiveCube: Implementing a Flexible,
Multimodal, Three-dimensional Spatial Tangible Interface,” Comput.
Entertain., vol. 2, no. 4, pp. 15–15, Oct. 2004.

[11] H. S. Raffle, A. J. Parkes, and H. Ishii, “Topobo: A Constructive
Assembly System with Kinetic Memory,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. New York, NY, USA: ACM, 2004, pp. 647–654.

[12] B. Piper, C. Ratti, and H. Ishii, “Illuminating Clay: A 3-D Tangible
Interface for Landscape Analysis,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’02.
New York, NY, USA: ACM, 2002, pp. 355–362.

[13] H. Ishii, C. Ratti, B. Piper, Y. Wang, A. Biderman, and E. Ben-Joseph,
“Bringing Clay and Sand into Digital Design Continuous Tangible
user Interfaces,” BT Technology Journal, vol. 22, no. 4, pp. 287–299,
Oct. 2004.

[14] S. Johnson and A. P. Thomas, “Squishy Circuits: A Tangible Medium
for Electronics Education,” in CHI ’10 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’10. New York, NY,
USA: ACM, 2010, pp. 4099–4104.

[15] W. Gao, Y. Zhang, D. C. Nazzetta, K. Ramani, and R. J. Cipra,
“RevoMaker: Enabling Multi-directional and Functionally-embedded
3d Printing Using a Rotational Cuboidal Platform,” in Proceedings
of the 28th Annual ACM Symposium on User Interface Software &
Technology, ser. UIST ’15. New York, NY, USA: ACM, 2015, pp.
437–446.

[16] K. Stoy, “Using cellular automata and gradients to control self-
reconfiguration,” Robotics and Autonomous Systems, vol. 54, no. 2,
pp. 135–141, Feb. 2006.

[17] K. Stoy and R. Nagpal, “Self-repair through scale independent self-
reconfiguration,” in 2004 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 2,
Sept 2004, pp. 2062–2067 vol.2.

[18] J. W. Romanishin, K. Gilpin, and D. Rus, “M-blocks: Momentum-
driven, magnetic modular robots,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nov 2013, pp. 4288–
4295.

[19] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3d model
acquisition,” ACM Trans. Graph., vol. 21, no. 3, pp. 438–446, July
2002.

[20] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera,” in Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST
’11. New York, NY, USA: ACM, 2011, pp. 559–568.

[21] S. Follmer and H. Ishii, “KidCAD: Digitally Remixing Toys Through
Tangible Tools,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’12. New York, NY, USA:
ACM, 2012, pp. 2401–2410.

[22] J. Straub, B. Kading, A. Mohammad, and S. Kerlin, “Characterization
of a large, low-cost 3d scanner,” Technologies, vol. 3, no. 1, pp. 19–36,
2015.

[23] S. Patil and B. Ravi, “Voxel-based representation, display and thick-
ness analysis of intricate shapes,” in Ninth International Conference
on Computer Aided Design and Computer Graphics (CAD-CG’05),
Dec 2005, pp. 6 pp.–.

[24] H. Ichida, Y. Itoh, Y. Kitamura, and F. Kishino, “Interactive Retrieval
of 3d Shape Models Using Physical Objects,” in Proceedings of
the 12th Annual ACM International Conference on Multimedia, ser.
MULTIMEDIA ’04. New York, NY, USA: ACM, 2004, pp. 692–699.


