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a b s t r a c t 

Background and Objective: The segmentation of the left ventricle (LV) in cardiac magnetic resonance imag- 

ing is a necessary step for the analysis and diagnosis of cardiac function. In most clinical setups, this step 

is still manually performed by cardiologists, which is time-consuming and laborious. This paper proposes 

a fast system for the segmentation of the LV that significantly reduces human intervention. 

Methods: A dynamic programming approach is used to obtain the border of the LV. Using very simple 

assumptions about the expected shape and location of the segmentation, this system is able to deal with 

many of the challenges associated with this problem. The system was evaluated on two public datasets: 

one with 33 patients, comprising a total of 660 magnetic resonance volumes and another with 45 pa- 

tients, comprising a total of 90 volumes. Quantitative evaluation of the segmentation accuracy and com- 

putational complexity was performed. 

Results: The proposed system is able to segment a whole volume in 1.5 seconds and achieves an average 

Dice similarity coefficient of 86.0% and an average perpendicular distance of 2.4 mm, which compares 

favorably with other state-of-the-art methods. 

Conclusions: A system for the segmentation of the left ventricle in cardiac magnetic resonance imaging 

is proposed. It is a fast framework that significantly reduces the amount of time and work required of 

cardiologists. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The diagnosis of cardiomyopathies is recognized primarily as a

undamental requirement for the patient throughput. A crucial step

n the analysis of cardiac function is the identification of the endo-

ardium, the inner border of the left ventricle (LV). With this in-

ormation, important medical features can be determined, namely,

he left ventricular volume and the ejection fraction, which are

mongst the most used parameters in the diagnosis and progno-

is of heart diseases. 

Quantitative assessment raises as a natural stage towards the

iagnosis, in which magnetic resonance imaging (MRI) is consid-

red the gold standard in the assessment of left ventricular func-

ion as a non-invasive image modality. However, to accomplish

uch quantitative assessment in MRI, an accurate segmentation of

he LV is mandatory. 

In the majority of the clinical setups, the segmentation of a

agnetic resonance (MR) volume is manually performed by car-
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iologists, in a time consuming and demanding process. A typi-

al magnetic resonance (MR) volume comprises 8–15 slices, and

equires roughly 13–17 landmark points to delineate the LV con-

our. Furthermore, this manual intervention is required in the end-

iastolic and end-systolic phases of the cardiac cycle [1] , which

eans a total of more than 200 points have to be manually intro-

uced by cardiologists in order to proceed with the diagnosis. This

eans that a (semi)automatic segmentation method that reduces

he amount of work required is highly desirable. 

In this paper, we address this problem using a fast dynamic

rogramming (DP) methodology inspired in [2,3] . This approach is

ased on two main assumptions about the LV border: (1) that it

s approximately circular in each MR slice; and (2) that it is (at

east partially) associated to edges in the image. The segmentation

f each MR slice is performed in polar coordinates and involves

he following steps. First, an edge map is built so that its valleys

oughly correspond to location of the LV border. Second, a Dynamic

rogramming algorithm is applied to determine the optimal path

long the edge map, which corresponds to the delineation of the

V contour. 

The paper is organized as follows. Section 2 describes related

ork in the field. Section 3 details the methodology and the con-
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tributions herein proposed. Section 4 describes the experimen-

tal setup and a comparative study with state-of-the-art related

approaches is performed. Concluding remarks are addressed in

Section 6 . 

2. Related work 

Although there are several methods dedicated to the MRI seg-

mentation, the problem is still open, motivating not only several

surveys available in the literature [4,5] , but also several challenges,

e.g. , MICCAI 2009 and 2011, resulting in a LV segmentation chal-

lenge consensus paper [6] . In fact, the automatic endocardial de-

lineation is a task that is far from being straightforwardly accom-

plished. In the following, we describe the challenges of this task

and how they have been tackled in the related literature. 

2.1. Challenges in the MRI segmentation of the LV endocardium 

One of the main challenges associated with this problem is the

fact that some parts of the LV border may not always be associ-

ated with image edges. This caused by the presence of the gray

level inhomogeneities, due to the blood flow, and by the presence

of papillary muscles and trabeculations, or wall irregularities, in-

side the heart chambers, that have the same intensity profile as

the endocardium. As such, some image features such as intensity

and gradient do not represent the real contours near the papillary

muscle. Motivated by the fact that clinicians consider the papil-

lary muscle trabeculations within the LV cavity [1] , this could be a

source of inaccuracies in automatic segmentation algorithms. Sev-

eral works have been published to tackle this issue, e.g. , by com-

puting the convex hull of the contour [7,8] or by adopting morpho-

logical operations [9,10] . 

The segmentation of the apical and basal slices also faces ad-

ditional challenges [11] . The apical slices are difficult to segment

because the MRI resolution is too coarse to provide detailed and

good visualization of small structures at the apex. Regarding the

basal slice, there exists large LV shape changes near the base of

the heart due to its vicinity to the atria. 

Other issues include: unpredictable end of the LV cavity, vicinity

of the diaphragm, large shape variability, and tissue motion and

haziness [4] . 

2.2. Image based methodologies 

As mentioned above, the presence of papillary muscles, as well

as the trabeculations provide gray level inhomogeneities in the en-

docardium contour. To tackle this challenge several works have

been published in the attempt to segment the endocardium of

the LV. One class of approaches is based on a threshold opera-

tion [12] to separate outer and inner regions of the contour. How-

ever, DP is one of the most common choices for data-driven en-

docardial/epicardial border detection. This class of approaches is

rooted in the work of Geiger et al. [13] and used in several works,

e.g. [2,7,14–17] . It searches for the optimal path ( i.e. , the contour)

by using a cost matrix that assigns a low cost to the object bound-

ary. The design of the cost matrix itself is a challenging task and

plays a core role in DP based approaches, which motivated re-

search on this subject. In [7] , a threshold based approach is pre-

sented, in which the optimal threshold is found by computing

the mean gray value of the maximal edge pixels. These pixels are

found by generating orthogonal lines radiating from the epicar-

dial center and collecting, for each line, the gray intensity of the

pixel with highest edge value ( i.e. , maximal edge) within the epi-

cardial contour. A methodology termed iterative multigrid dynamic

programming (IMDP) is introduced in [2] . Here, the contours of the
V in ultrasound image sequences are assumed to be one dimen-

ional noncausal first order Markov random fields. The DP is run in

 multigrid fashion, i.e. , first with a coarse resolution, followed by

 refining stage that estimates the segmentation by searching in a

maller range, using a thinner resolution. To obtain the cost ma-

rix, they model the intensity values of the tissues surrounding the

entricle border. DP has also been used to extract the myocardium

egion in [17] . First, they identify the endocardium border by us-

ng a classifier to label the LV cavity pixels and applying a convex

ull operation on that region. Then, the image is converted to polar

oordinates and transformed into a cost matrix based on the gra-

ient along the radial direction. Finally, DP is applied to determine

he epicardial border. In order to obtain a closed contour, they it-

ratively extend the cost matrix by replicating the initial part until

hey find an end point that intersects with the contour. 

In [18] a threshold based operation is also used, where the

inary masks ( i.e. , thresholded images) are jointly used with the

lobal Circular Shortest Path algorithm (GCSP). It is shown that an

mproved method is achieved by combining the advantages of the

wo above techniques together. Fuzzy logic is used in [14] that

omprises two stages. The first stage accounts for the pixel gray

alues and presence of edges, while the second stage comprises

he determination of cardiac contours that is based on fuzzy logic

ith DP. With these two ingredients, a degree to which each pixel

elongs to the cardiac contour is computed, allowing the image

o be represented by a membership degree matrix. The final step

omprises a graph search on the cost matrix to determine the car-

iac contour. In [15] histogram equalization followed by wavelet

ransform is used to build the cost matrix. The branch-and-bound

lgorithm is used [16] , where the main focus is to reduce the com-

lexity of finding the optimal path that represents the endocardial

order. In [10] , the endocardial border is obtained for each volume

ndependently using a region growing technique called geodesic

ilations [19] . The idea is to merge two regions inside the LV cav-

ty: one located close to the LV center that has a higher intensity,

nd another one located closer to the border, whose intensity is

ower due to the proximity to the muscle tissue. A shortest path

lgorithm is also used in [20] , which averages all the phases over

ne cardiac cycle, and contours in each image can be recovered us-

ng minimum surface segmentation. Spectral decomposition is an-

ther image based approach that has been used to segment the LV

n [21] . It allows them to represent the images independently of

he imaging modality and specifications, from which they employ

 clustering step that divides the images into superpixels of similar

ppearance and their corresponding labels. 

.3. Deformable models 

Another class of approaches regarding object segmentation is

he active contours (or deformable models). The seminal approach

s rooted in [22] , which consists of an optimization problem that

oves a parameterized curve toward image regions with strong

dge information. Related approaches concerning this trend are

haracterized by a geometric representation that covers a large

ariability of shapes, and is currently used in medical image seg-

entation ( e.g. , [23,24] ). 

The deformable model designation stems from the use of elas-

icity theory within a Lagrangian dynamics setting. The above set-

ing, is characterized by forces that are internal to the model,

hich are called internal forces (related to the prior), and the ex-

ernal potential energy functions that are defined in terms of data

f interest in the image ( e.g. , boundary of the object to be seg-

ented). These potential energies are associated to the external

orces that are able to deform the model to fit the desired data.

he energy of the deformable model is supposed to be minimal

hen two conditions are reached: (i) the model is located at the



C. Santiago et al. / Computer Methods and Programs in Biomedicine 154 (2018) 9–23 11 

d  

i  

i

 

c  

t  

o  

I  

e  

a  

i  

i  

a  

o  

w  

t  

d  

o  

m  

m  

s  

a  

d  

m  

e

 

b  

p  

i  

f  

c  

a  

t  

T  

i  

A  

L  

s

2

 

d  

b  

p  

p  

a  

t  

l  

i  

m  

L  

(  

a  

w  

h  

a  

w  

c  

g  

n

3

 

r  

l  

u  

b  

o  

t  

a  

o  

p  

i  

s

 

t  

M  

l  

s  

c  

t  

e

 

[  

r  

o  

p  

r  

n

 

a  

i  

y  

c  

p  

e  

p  

i  

b

 

s  

t  

l  

a  

l  

t  

m

 

c  

t  

w  

e  

g

 

s  

c

3

 

i  

r  

c

 

l  

c  

t  

d

I  
esired boundary (low external energy) and (ii) has a shape which

s supposed to be relevant considering the shape of the object be-

ng sought (low internal energy). 

The deformable models have been largely used, due to its suc-

ess at segmenting the LV. Since the success of the gradient vec-

or flow (GVF) applied in snakes [25] , this has motivated the use

f deformable model based approaches to segment the LV in MRI.

n [26] , the GVF is used for segmenting the heart in MRI, how-

ver disregarding the consequences of the papillary muscles and

rtifacts. Variations of the GVF have also been proposed, such as

n [24] , where Hough transform is applied to intensity difference

mage to locate the LV centroid with a new external force termed

s gradient vector convolution (GVC). In [27] , an Iterative Thresh-

lding and an Active Contour model with Adaptation (ITHACA)

ere presented to segment the endocardium. In [28] several ex-

ernal forces were studied as extensions of the snake to assess the

istance between computer-generated and the observer’s hand-

utlined boundaries, to perform a systematic comparison. The

ain outcome is that, although there is an agreement between

anual and segmentation algorithms for ejection fraction, the end-

ystolic and end-diastolic volumes are underestimated. Level-set

pproaches have also been used to retrieve the endocardial bor-

er. For instance, in [29] , an energy function based on edge infor-

ation is used with two combined level-set models to obtain the

ndocardial and epicardial borders. 

The introduction of prior models of the LV in the snake has also

een explored. Several alternatives for the LV prior have been ex-

lored in the literature, for instance using elliptic shape prior [30] ,

ntensity based priors [31] , which prevent the papillary muscles

rom being included into the heart myocardium. In [32] a statistical

lassifier is introduced, trained using feature selection that allows

n appropriate weighting of the most relevant features. Also, large

raining sets have been used to build the LV shape statistics prior.

his has been applied not only in MRI [32,33] , but also in other

mage modalities, such as in the ultrasound [34,35] . More recently,

vendi et al. [36] proposed a deep learning approach to locate the

V in the image and compute a shape prior, which is used to con-

train a deformable model to improve its accuracy. 

.4. Contributions 

In this work, we follow the algorithm proposed in [3] for crater

elineation. This approach relies on DP to extract the desired

oundary by analyzing the image in polar coordinates. This ap-

roach is distinct from other methods in the literature in the com-

utation of the cost matrix for the DP algorithm, which is based on

 normalized edge map. We propose to combine this analysis with

he enhancements to the DP algorithm proposed in [2] , which al-

ows significant improvements in terms of computational complex-

ty, without compromising the accuracy of the segmentation. This

eans that the algorithm is able to determine the location of the

V border very quickly and provides accurate medical parameters

namely, the ejection fraction). Furthermore, this approach guar-

ntees that the optimal path provided by DP is a closed contour,

ithout the need to enlarge the edge map, as in [17] , which also

elps improve the efficiency of the algorithm. Finally, we include

n additional step that is specific for cardiac MRI segmentation,

hich consists in automatically updating the information about the

enter and radius of the expected segmentation. This allows the al-

orithm to accurately segment the whole MR volume without the

eed for additional user input. 

. Proposed methodology 

The goal of the proposed method is to provide a fast and accu-

ate segmentation of the LV in MR volumes. We address this prob-
em by sequentially analyzing the slices (2D images) in a given vol-

me. Starting with an initial guess of the location of the LV in the

asal slice, the proposed algorithm aims to determine the location

f the endocardium in that particular slice. This initial guess is ob-

ained by user input, although this step could be replaced by an

utomatic method, such as using the Hough transform for circles,

r using the approach proposed in [20] . This segmentation is then

ropagated to the next slice as an initial guess, and the algorithm

s applied to this new slice. This procedure is repeated until all the

lices in the volume have been segmented. 

Fig. 1 provides an overview of the proposed approach, illus-

rating the main steps that are performed for a given slice of the

R volume. The methodology herein proposed is based on the fol-

owing two main stages: ( i ) conversion of the original image (MR

lice) into an (inverted) edge map, whose valleys are considered as

oarse candidate positions for the endocardium; ( ii ) computation of

he optimal path along the edge map, which corresponds to a fine

stimation of the location of the endocardium. 

Concerning the first stage, we follow the approach proposed in

3] . Based on an initial guess of the LV center and radius, this algo-

ithm converts the MR image to polar coordinates. Then, a gradient

perator is applied along the radial dimension, in order to extract

ossible candidates for the location of the LV border. Finally, the

esulting gradient image is transformed into an edge map that pe-

alizes pixels with low gradient. 

Typically, edge detection is not a reliable approach in this im-

ge modality (recall Section 2.1 ). An example is illustrated in Fig. 2 :

n the left image, the edge points with higher gradient along the

ellow lines are shown; in the right image, all the edge points (lo-

al gradient maxima along the yellow lines) are shown. The edge

oints in red are outliers whereas the green ones belong to the

ndocardium. In both cases, it is possible to see that many edge

oints are outliers, and that LV border is not always located along

mage edges. Therefore, additional information is required to avoid

eing misguided by these outliers. 

The goal of the latter stage is precisely to extract a curve that

atisfies specific shape constraints while still being able to follow

he valleys of the edge map (i.e., avoid going through pixels with

ow gradient). This trade-off between the constraints and the im-

ge information allows the algorithm to avoid erroneous edges re-

ated to papillary muscles and other misleading structures. The op-

imal curve is then converted to Cartesian coordinates for the seg-

entation of the LV to be obtained. 

Once these two stages are complete, the LV center and radius

an be recomputed from the segmentation. The updated parame-

ers are used to determine if the initial guess was in agreement

ith the segmentation or if a new iteration is required. This it-

rative process allows the algorithm to recover from poor initial

uesses. 

The two stages of the proposed approach are analytically de-

cribed in Sections 3.1 and 3.2 , respectively. The update of the LV

enter and radius in described in Sections 3.3 . 

.1. Computation of the edge map 

In this stage, the goal is to compute an edge map from the orig-

nal MR image, such that its valleys follow the LV border (see top

ight box in Fig. 1 ). Since the morphology of the LV is roughly cir-

ular, this step is performed in polar coordinates, as in [2] . 

In order to obtain a representation of the MR image in po-

ar coordinates, an initial guess of the LV’s center, denoted by

 = [ c x , c y ] 
� ∈ R 

2 , and its size, R ∈ R , have to be provided. Then,

he intensity of a particular pixel ( r, θ ) in the image in polar coor-

inates is obtained by computing 

 P (r, θ ) = I(x, y ) , (1)
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Fig. 1. Overview of the proposed methodology applied to each slice of the MR volume, where c and R denote the coordinates of the center and radius of the LV, respectively. 

Fig. 2. Detection of edge points (bright to dark) along the yellow lines. On the left, 

only the strongest edge point in each line is shown, and on the right all the de- 

tected edge points are shown. Green dots belong to the LV border and red dots 

are outliers. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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where the pixel position correspondence is given by 

x = c x + r cos (θ ) , y = c y + r sin (θ ) . (2)

This transformation does not guarantee that x, y take integer val-

ues, thus we use bilinear interpolation to obtain the value of

I P (r, θ ) (see [37] ). The pairs ( r, θ ) for which I P is defined belong

to the domain D r × D θ , 

D r = 

{
r 1 , . . . , r M 

∈ R : r i = r min + (i − 1)�r, i = 1 , . . . , M 

}
(3)

D θ = 

{
θ1 , . . . , θN ∈ [0 , 2 π ] : θ j = ( j − 1)�θ, j = 1 , . . . , N 

}
, (4)

where �r = 

r max −r min 
M−1 , and �θ = 

2 π
N−1 . The maximum and mini-

mum radii, r max and r min , define the width of the ring within

which we expect to find the LV border. Also note that θN = 2 π =
θ1 , i.e. , the pixels in the left and right borders of I P correspond to

the same positions in the original image. 

Once I P (r, θ ) is computed, a high-pass filter, H , is applied to

obtain the radial gradient image I G (r, θ ) . We are only interested in

computing the gradient along r , and in transitions from bright to

dark, as those depicted in Fig. 2 . The impulse response of the high

pass filter is given by 

H(r) = 

{ 

1 if 0 < r ≤ T 
−1 if − T < r ≤ 0 

0 otherwise , 
(5)

where T is a user defined parameter (in the results section, this

parameter was set to T = 6 ). The radial gradient image is obtained

by applying the convolution operator 

I G (r, θ ) = I P (r, θ ) � H(r) . (6)
otice that I G (r, θ ) takes values in ] − ∞ , ∞ [ , in which: (1) large,

ositive values correspond to edges such as the ones associated

ith the LV border; (2) large, negative values correspond to edges

ith the opposite gradient direction (from dark to bright); and (3)

alues close to zero indicate the absence of edges. 

We wish to transform I G (r, θ ) into a cost map, such that the

esired edges have zero cost and every other possibility has a cost

f approximately 1. To accomplish this, the sigmoid function pro-

osed in [3] is adopted: 

 MAP (r, θ ) = 

1 

1 + exp 

(
λ(I G (r, θ ) − k ) 

) , (7)

here k > 0 controls the inflection point, and λ> 0 controls the

harpness of the sigmoid. In this work, good values for these pa-

ameters were empirically determined to be k = 20 and λ = 0 . 04 . 

The edge map, e MAP ( r, θ ) ∈ [0, 1] is now normalized, and its

alleys correspond to rough candidate positions of the LV border.

ig. 3 illustrates the whole pre-processing stage, from the original

R image, I ( x, y ), in Cartesian coordinates, depicted in Fig. 3 (a),

o the final edge map, e MAP ( r, θ ), in polar coordinates, depicted in

ig. 3 (d), whose valleys follow the path of the LV border, shown

n yellow. 

.2. Contour estimation 

The second stage of the algorithm aims to perform the delin-

ation of the LV boundary (bottom right box in Fig. 1 ), computed

rom the output of the previous stage. More specifically, the goal is

o find a curve that follows the valleys of the edge map, e MAP ( e.g. ,

he yellow line depicted in Fig. 3 (d)). 

In the original Cartesian coordinates, a popular approach to ad-

ress this problem is the following: find a parametric curve, ̂  x (s ) =
(x (s ) , y (s )) , which is a function of the curve parameter, 0 ≤ s ≤ 1,

uch that 

 

 = arg min 

x 
E(x ) , (8)

here E is a cost function analytically defined as 

(x ) = 

∫ 
s 

E int (x (s )) + E ext (x (s )) ds. (9)

he first term in (9) is an internal energy ( i.e. , the prior), typically

mposing a smoothness constraint. The second term corresponds to

he external potential energy function that is defined in terms of

he image data, e.g. , the edge map e MAP defined in Section 3.1 . This

pproach is commonly used in the deformable contours literature

38,39] . 

In this paper, we wish to address a similar problem but in dis-

rete polar coordinates. Recalling that the edge map, e MAP , can

e viewed as a M × N matrix, the goal is to determine the curve
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Fig. 3. (a) Original LV image, I ( x, y ); (b) image in polar coordinates, I P (r, θ ) ; (c) image gradient, I G (r, θ ) ; and (d) edge map, e MAP ( r, θ ). The yellow line corresponds to the LV 

segmentation. The green and red lines correspond to the minimum and maximum radius, respectively, and the blue line and arrow help illustrate the conversion to polar 

coordinates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 = [ r (1) , . . . , r (N) ] 
� 

( i.e. , a sequence of radius values), such that

( j) ∈ D r corresponds to the LV radius for angle θ j (recall (3) and

4) ). Similarly to (8) , the curve ̂  r is obtained by computing ̂ r = arg min r E(r ) 
s.t. r(1) = r(N) 

r( j) ∈ D r , j = 1 , . . . , N 

(10) 

he constraint r(1) = r(N) is required to guarantee that ̂ r is a

losed curve in Cartesian coordinates. In this case, the cost func-

ion E(r ) is defined as 

(r ) = 

N ∑ 

j=1 

E int (r( j)) + E ext (r( j)) , (11)

here the image-related term is given by 

 ext (r( j)) = e MAP (r( j) , θ j ) , (12)

nd the prior term, 

 int (r( j)) = d(r( j − 1) , r( j)) (13) 

= 

{ 

0 if | r( j) − r( j − 1) | = 0 

η if | r( j) − r( j − 1) | = �r 
∞ otherwise 

(14) 

s used to impose a smoothness constraint on curve r , by pe-

alizing large variations in consecutive pairs (r( j − 1) , r( j)) , with

 int (r(1)) = 0 . 

By replacing (12), (14) into (11) , the global cost function can be

ewritten as 

(r ) = e MAP (r(1) , θ1 ) + 

N ∑ 

j=2 

(
e MAP (r( j) , θ j ) + d(r( j − 1) , r( j)) 

)
. 

(15) 

ote that this cost function is a sum of local cost functions. There-

ore, the optimal cost can be recursively computed through DP

40] . 

Let E j (r i ) denote the optimal cost of reaching a specific po-

ition, ( r i , θ j ), in the image, starting in the first column ( θ1 ).

his cost can be recursively computed using the optimal costs for

eaching the positions in the previous column 

 j (r i ) = e MAP (r i , θ j )+ min 

ρ∈D r 

[ 
d(ρ, r i ) + E j−1 (ρ) 

] 
. (16) 

owever, there is a global constraint, expressed in (10) , which

emands that r(1) = r(N) . In order to satisfy this constraint, the

roblem defined in (10) can be subdivided into M subproblems:

or each subproblem, we choose a different initial value for r(1) ∈
 r , and impose that the optimal path starts in this position. This

s achieved by changing the first column of the edge map to
 MAP (r i , θ1 ) = ∞ , ∀ r i � = r(1) , i = 1 , . . . , M (all the paths that do not

egin in r (1) will have infinite cost). Then, the following two steps

re performed: 

1. Forward step : Compute the optimal costs of all the curves that

start at θ1 and end at θN , using (16) , and, for each local mini-

mization problem (second term in (16) ), store the correspond-

ing radii 

φ(r i , θ j ) = arg min 

ρ∈D r 
d(ρ, r i ) + E j−1 (ρ) . (17) 

2. Backward step : Trace back the optimal path that ends at r(N) =
r(1) , by using the radii stored in the previous step 

r(N) = r(1) (18) 

r(τ − 1) = φ(r(τ ) , θτ ) , τ = N, . . . , 2 (19) 

The Algorithm 1 summarizes the process of applying DP to find

lgorithm 1 Determining the best LV contour candidate starting

t r (1). 

for all r i � = r(1) do 

E 1 (r i ) = ∞ 

end for 

forward step 

for j = 1 to N do 

for i = 1 to M do 

compute E j (r i ) using (16) 

compute φ(r i , θ j ) using (17) 

end for 

end for 

backward step 

select ending point r(N) = r(1) 

for j = N to 2 do 

r( j − 1) = φ(r( j) , θ j ) 

end for 

 candidate LV contour starting at a specific position, r (1). 

This process is repeated for all possible starting point r(1) ∈ D r .

hen, the path with the lowest global cost (computed using (15) )

s selected as the proposed segmentation. 

Notice that running Algorithm 1 (A1) for all starting positions

ay be costly, depending on the number of possibilities, M . Alter-

atively, Dias et al. [2] proposed to alleviate this by only running

1 two times (2-loop algorithm). They assume that the optimal

ath close to j = N/ 2 is not influenced by the initialization, r (1).

hus, for whatever starting position they choose in the first run,

ay r(1) = r min (blue curve in Fig. 4 ), the optimal value for r ( N /2)

ill always be the same. Under this assumption, they simply re-

rder the two halves of the edge map, as illustrated by the colored
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Fig. 4. 2-loop algorithm [2] . The blue line depicts the solution of A1 with initial position r(1) = r min ; the red line depicts the solution of A1 on the reordered edge map 

with initial position r ′ (1) = r(N/ 2) ; the green dashed line represents the ground truth segmentation. The yellow and magenta rectangles and black arrows illustrate how the 

reordering of the edge map and the optimal path works. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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rectangles in Fig. 4 (center), and run A1 a second time, starting at

position r ′ (1) = r(N/ 2) , where r ′ = 

[
r ′ (1) , . . . , r ′ (N) 

]� 
denotes the

optimal path on the new (reordered) edge map. To obtain the solu-

tion for the original edge map, the two halves of r ′ are rearranged

back to the original order (red curve in Fig. 4 (right)). This way,

the complexity of the algorithm is reduced, allowing the segmen-

tations to be obtained significantly faster and independently of the

choice of M . 

Once the optimal (or sub-optimal) path has been computed, the

LV segmentation in the original Cartesian coordinates, denoted by

x , is obtained by transforming the coordinates of each point in r

as follows 

x ( j) = c + r( j) 
[

cos θ j , sin θ j 

]� 
, j = 1 , . . . , N. (20)

3.3. Automatic estimation of the c and r parameters 

The algorithm described above provides a path r ∈ R 

N that de-

fines the contour of the LV along the edge map, e MAP . However,

this path provides a good estimate of the LV border under the

premise that the LV is roughly a circle with a specific center, c ,

and radius, R ∈ D r (recall (2) and (3) ). In most cases, these param-

eters are provided by using the segmentation obtained in the pre-

vious slice, which may be inaccurate. Consequently, the resulting

LV segmentations may not be correct. This section describes how

the estimates of R and c are refined based on the “optimal” path r

(see Fig. 1 ). 

The initial premise that the LV is roughly a circle on the MRI

slice means that the path r is expected to be roughly a horizon-

tal line along the edge map, e MAP . Moreover, if the initial estimate

of the LV radius, r , is accurate, then the straight line should be lo-

cated along the middle of the edge map, as shown in Fig. 5 (a). An

example of the segmentation obtained from inaccurate estimates

of R and c is depicted in Fig. 5 (b). On one hand, an inaccurate es-

timate of the center c leads to a sinusoidal curve along the edge

map, instead of a straight line. On the other hand, an expected ra-

dius smaller (larger) than the actual LV radius leads to a curve that

is closer to the bottom (top) part of the edge map (see Fig. 5 (b)).

In the extreme case, the segmentation may not be able to follow

the actual LV contour, as shown in the figure, leading to a path

that follows the border of the edge map. Thus, it is necessary to

update the estimates of R and c . This can be achieved through the

analysis of the path, r , as follows. 
Let r̄ be the average distance of the contour to the center esti-

ate c 

¯
 = 

1 

N 

N ∑ 

j=1 

r( j) , (21)

here r ( j ) is the j th component of r . The estimate of the expected

V radius is updated by 

 ← r̄ . (22)

Now, let p ( j) ∈ R 

2 be the position of the j th contour point, as-

ociated to r ( j ) and θ j , in Cartesian coordinates 

 ( j) = c + r( j) 

[
cos θ j 

sin θ j 

]
, (23)

nd let c be defined as the centroid of those points, 

 = 

1 

N 

N ∑ 

j=1 

p ( j) . (24)

he updated estimate of the LV center is obtained by 

 ← c . (25)

This update scheme allows the path, r , to iteratively converge

owards the LV border even when the initial estimate of its center

nd radius are inaccurate. Consider the example of the inaccurate

nitial estimate depicted in Fig. 5 (b). Applying three iterations of

he update scheme described above leads to the results shown in

ig. 6 . In this figure, it is possible to see that, in each iteration, the

egmentation becomes more similar to a straight line in the polar

oordinates space (bottom images) and gets closer to the correct

V segmentation in the original image (top images). 

. Evaluation 

.1. Experimental setup 

The proposed method was evaluated on two public datasets of

ardiac MRI sequences [11,41] . The first dataset, denoted by D1,

onsists of 33 sequences acquired from 33 healthy and diseased

ubjects [11] . Each sequence comprises 20 volumes, covering one

ardiac cycle. The number of slices in each volume ranged from 5

o 10, with a spacing of 6–13 mm. Each slice is a 256 × 256 image,

ith a resolution of 0.93–1.64 mm. A ground truth (GT) of the LV

egmentation in each slice is also provided. In total, dataset D1 has

 total of 5011 images with the corresponding segmentations. The
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Fig. 5. Examples of the segmentation obtained from (a) an accurate and (b) an inaccurate estimate of the LV radius, R , and center, c . For each case, we show the original 

MRI slice (top), the MRI slice in polar coordinates (bottom left), and the edge map (bottom right). The red circles are the initial estimate of the center and radius (top left 

and right) and the yellow curves show the corresponding segmentations obtained using the proposed algorithm. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 6. Example of the updated estimates of c and R , and corresponding segmentations. The first column shows the initial center and radius estimate and the following 

columns show new iterations of the update scheme. The red circles depict the center and radius estimates and the yellow curve shows the corresponding segmentation. The 

red arrows correspond to the center update. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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econd dataset, denoted by D2, consists of 45 sequences, also com-

rising healthy and diseased subjects, that were used in the MIC-

AI 2009 LV segmentation challe.g. [41] . Each sequence has 20 vol-

mes, over one cardiac cycle, and 6–12 slices, which are 256 × 256

mages with a resolution of 1.25–1.56 mm. In this dataset, GT seg-

entations are only available for the end-diastolic and end-systolic

rames. In total, dataset D2 has a total of 805 images with the cor-

esponding segmentations. 

The evaluation of the proposed algorithm was achieved using

wo different metrics: 

1. The volumetric Dice coefficient, d Dice , which measures the per-

centage of overlap between the proposed segmentation and the

GT. Let S � denote a binary volume with the proposed segmenta-

tion (1’s inside the LV) and S GT be the corresponding GT. Then,

d Dice = 2 

V (S � ∩ S GT ) 

V (S � ) + V (S GT ) 
, (26) 

where V ( · ) counts the number of voxels with value 1, and

S � ∩ S GT is the intersection between the two segmentations. A

segmentation with d Dice = 1 is a perfect match with the GT,

whereas d Dice = 0 means the two segmentations do not even

intersect. 
2. The average perpendicular distance, d AV , between the proposed

segmentation and the GT, expressed in mm. 

Medical parameters, namely the end-systolic and end-diastolic

olumes (ESV and EDV) and the ejection fraction (EF), were also

omputed and compared with those obtained with the GT. Finally,

e also show the results excluding “bad” segmentations ( d AV > 5

m), along with the corresponding percentage of “good” segmen-

ations, following the evaluation strategy used in the MICCAI 2009

V segmentation challe.g. [41] . In both datasets, the evaluation was

btained using a custom Matlab code, and not the code available

or the MICCAI 2009 challenge. 

In the following section, we demonstrate results using: (1) the

lgorithm A1 without the automatic update of c and R described

n Section 3.3 , (2) A1 with automatic updates (A1 + AU), and 3) the

-loop (2L) algorithm with automatic updates (2L + AU). 

.2. Results 

The evaluation of the proposed method is divided into four

arts: 

1) Computational performance ( Section 4.2.1 ), which compares the

performance and running time of the algorithm; 
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Fig. 7. Computational performance: (left) the Dice coefficient and (right) the time spent per 100 iterations, T. In the top row, different values of M were tested, using N = 361 

(fixed); in the bottom row, different values of N were tested, using M = 120 (fixed). 
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Table 1 

Statistical evaluation of the 2L algo- 

rithm in the segmentation of the LV 

in 33 sequences of cardiac MRI [11] , 

using the GT masks to create the 

edge maps. 

Dice (%) AV (mm) 

2L + AU 97.6 (0.9) 0.3 (0.4) 
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2) Segmentation using the GT ( Section 4.2.2 ) establishes an upper

bound on the accuracy of the algorithm; 

3) Influence of the initialization on the performance of the algo-

rithm ( Section 4.2.3 ), which assesses the sensitivity of the al-

gorithm to the initial guess of the LV center and radius; and 

4) Segmentation of the LV ( Section 4.2.4 ), in which we show the

results for the two datasets described in Section 4.1 . 

The following subsections present the results obtained in each

part of the evaluation. 

4.2.1. Computational performance 

The computational complexity of the algorithms A1 and 2L de-

pends on two main parameters: M and N , which determine the

size of the edge map. These two parameters influence the perfor-

mance of the proposed approaches both in terms of time spent

per 100 iterations, T, and the quality of the segmentations. The

computational performance of the algorithm was evaluated on the

dataset D1, on a MATLAB implementation, running on an Intel (R)

Core(TM) i7 CPU at 2.93 GHz. 

Fig. 7 shows the Dice coefficient and T for different values

of M = {20, 30, ..., 170, 180}, assuming N = 361 fixed, and N =
{ 91 , 181 , 361 , 541 } , assuming M = 120 fixed. It is possible to see in

the top right corner that, as expected, the complexity A1 depends

linearly on the value of M , whereas the complexity of L2 does

not depend on M . Consequently, the time required to run A1 may

be significantly larger than that of L2. However, in terms of seg-

mentation quality, the difference between these two approaches

is almost negligible. The value of the Dice coefficient reaches a

plateau at around M = 100 , with the maximum being achieved at

M = 120 . Larger values of M only decrease the speed of the overall

algorithm, without affecting its accuracy. Regarding the number of

columns in the edge map, N , both algorithms have a similar be-

havior: the time per 100 iterations increases linearly with N , al-

though at very different scales, while the Dice coefficient stabilizes

for N ≥ 181, with a maximum reached at N = 361 . 
.2.2. Segmentation using the GT 

In this section, the proposed algorithm is applied to segment

inary masks that correspond to the GT segmentations, in dataset

1. Contrary to real world images, in this analysis the edge asso-

iated to the LV border is well defined and the valleys of the edge

ap accurately follow the desired path. 

There is an inherent bias to this experiment, but the goal of

his analysis is twofold. First, it establishes an upper bound on the

ccuracy of the algorithm. Since the edge maps obtained with the

T masks are ideal, the performance of the algorithm in the corre-

ponding cardiac MRI images will always be worse. Second, it al-

ows studying if the algorithm is able to deal with all the different

V shapes ( e.g. , elliptical LVs). 

Table 1 shows the statistical results obtained with the 2L+AU

lgorithm. It is possible to see that, given the GT masks, the algo-

ithm has a very high average Dice coefficient and low average dis-

ance to the GT, which mean it is able to fit the LV border very ac-

urately. From these results, we can conclude that the performance

f the algorithm depends almost exclusively on the ability of the

dge map to capture the LV border. 

Fig. 8 further illustrates that the algorithm is able to segment

mages in which the LV border is not exactly circular, even though

hat is a premise of the proposed approach. 

The penalty coefficient, η, used to determine the optimal path

long the edge map (recall Eq. (14) ) allows us to control the flex-

bility of the model to fit non-circular shapes. If η is set too high,

t may constrain the segmentation too much and prevent the al-
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Fig. 8. Examples of segmentations in non-circular LV shapes. 
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orithm from following the desired path, thus it will not be able

o fit non-circular shapes. On the other hand, if this value is too

ow, it could lead to a segmentation with an irregular border. In

hese studies, the penalty coefficient was empirically chosen to be

= 0 . 05 , which grants enough flexibility to the model while en-

uring that the segmentation border is smooth, and this was the

alue used in the remaining tests. 

Additionally, a different experiment was also performed, in

hich the ground truth binary masks were segmented using a cir-

le. The idea of this study is to further validate the underlying as-

umption that the LV has a circular shape, by evaluating the qual-

ty of the segmentations using circles. In order to fit a circle to the

round truth, we computed the centroid of the ground truth mask

s the estimate of the circle center, and the average distance of the

round truth points to the centroid as the estimated radius. The

orresponding segmentations have an average Dice coefficient of

2.3% ± 2.6%, and an average distance of 1.3 mm ± 0.5 mm. These

esults demonstrate that a circle is a good approximation of the LV

order in most images. 

.2.3. Influence of the initialization 

As mentioned above, the proposed algorithm requires an initial

uess of the center and radius of the LV in the image it is trying

o segment. This is a potential source of variability, since different

nitializations may lead to different results. This section aims to

etermine how dependent the performance of the algorithm is on

he initialization. 

To illustrate the influence of the initialization, a specific exam-

le image was randomly chosen (see Fig. 9 top left corner). In or-

er to determine the influence of the initial guess of the LV center,

e fixed the initial guess of R and performed the segmentation for

ifferent values of center c , around the true LV center. More specif-

cally, the A1 + AU algorithm was applied 61 × 61 times and, in each

est, the initial guess of c was one of the 61 × 61 pixels inside the

ed square shown in Fig. 9 top left corner. The corresponding Dice

oefficient is shown in Fig. 9 top right corner, with a color code

n which greener is better. It is possible to see that the algorithm

erforms better when initialized close to the true LV center, as ex-

ected. However, the figure also shows that there are distinct re-

ions within which the accuracy of the segmentation is homoge-

eous. Furthermore, the green area is very large, which means that

he algorithm is able to converge to the correct segmentation even
f the initial guess of the center is not very accurate. The four bot-

om plots in Fig. 9 show examples of the segmentation obtained

y initializing the center within four different regions (identified

y the letter (a)–(d) in the top row) It is possible to see that in

b)-(d), the algorithm is either misguided by papillary muscles (as

hown in (b) and (c)) or by the right ventricle (as shown in (d)).

or the entire (green) region to which (a) belongs, the algorithm is

ble to obtain the correct segmentation of the LV. 

A statistical evaluation was also performed to determine the

uality of the segmentations as the initial guess of the center

oves away from the true LV center. The results are depicted in

he boxplots in Fig. 10 , where we compare the Dice coefficient

gainst increasingly larger initial center guess errors. The distance

etween the true center and the initial guess was divided into

 bins: 0–5, 5–10, 10–15, 15–20, 20–25, 25–30 pixels. For each

in, random perturbations to the true center were generated so

hat each of the 5011 images in the dataset D1 was tested us-

ng 5 different initial center guesses with the corresponding error.

hus, each bin corresponds to a total of 5 × 5011 = 25 , 055 exam-

les. The figure shows that the algorithm achieves good segmenta-

ion results with errors up to 10 pixels. For larger errors, its per-

ormance rapidly decreases, because the segmentation tries to fit

ther edges in the image, as shown in the examples in Fig. 9 . 

Regarding the initial guess of the LV radius, R , the tests showed

hat the algorithm is very robust. It is able to accurately segment

he LV even if the initial guess of R is very different from the true

V radius, with an average Dice coefficient of 91.54 ± 0.06 for initial

adii R = 4 , . . . , 34 mm. This is ensured by limiting the values of

 max and r min , used to convert the image to polar coordinates (re- 

all equation (3) ). Since we know that the LV radius is anatomically

ounded ( e.g. , within the values r min > 1 mm and r max < 34 mm in

he dataset D1), it is possible to constrain the size of the segmen-

ation, despite having erroneous estimates of R . Fig. 11 shows an

xample of an initial guess of R = 4 mm and its evolution through-

ut the iterations of algorithm A1 + AU, where it is possible to see

hat the algorithm converges to the correct segmentation despite

he wrong initial estimate. 

.2.4. Segmentation results for two cardiac MRI datasets 

Table 2 shows the statistical results of the three approaches

iscussed in this work for the dataset D1. Regarding the accu-

acy of the segmentations, all the approaches have a similar per-
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Fig. 9. Performance of A1 + AU for different initial guesses of the LV center. The initial guesses are each of the pixels inside the red square (top left), and the Dice coefficient 

of the corresponding segmentation is shown on the top right. (a)–(d) show different examples of the segmentations obtained when choosing the initial center identified by 

the corresponding label and color in the top images. The green contour (top left) is the GT. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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formance. Nonetheless, the performance of A1 + AU is better than

2L+AU, which in turn is better than A1. However, if we also take

into account the time required to segment each volume, then the

2L+AU approach is considerably more attractive than the other

two. 

Statistical results of the proposed segmentations are com-

pared to state-of-the-art methods in Table 3 for the two datasets.

These methods use other approaches to obtain the segmentations,

namely image-based methods [46,50,51] , deformable models with

or without shape information [11,20,42–45,47–49,52] , and a com-

bined deep learning and deformable model approach [36] . The re-
ults in Table 3 show that the proposed method is able to achieve

omparable results to all the other state-of-the-art approaches. It is

mportant to note that the proposed system uses very little shape

nformation compared to most of the other approaches. 

Fig. 12 shows a comparison between the medical parameters

ased on the proposed segmentations and based on the GT in the

ataset D2. This figure shows that they are highly correlated, al-

hough there is a systematic underestimation of the ESV and EDV

hat is linear with the increase in volume. Since the behavior is

imilar in both phases of the cardiac cycle, the resulting EF is very

imilar to the EF obtained with the GT segmentations. This means
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Fig. 10. Statistical evaluation of the influence of the initial guess of the LV center 

in the algorithm’s accuracy. 

Table 2 

Statistical evaluation of the proposed approaches in the dataset 

D1, with 33 × 20 volumes. For each algorithm, the table shows 

the results for all the segmentations (dashed entries in the “% 

Good” column) and excluding segmentations with AV > 5 mm. 

Each entry shows the mean value and standard deviation. 

Dice (%) AV (mm) % Good Time 
Volume 

(s) 

A1 82.2 (9.1) 2.8 (1.4) – 11.2 

85.6 (6.1) 2.2 (0.6) 87.2 

A1 + AU 83.5 (9.1) 2.6 (1.3) – 55.4 

86.1 (7.0) 2.1 (0.6) 89.7 

2L + AU 82.8 (11.2) 2.7 (1.7) – 1.5 

85.9 (8.3) 2.1 (0.7) 88.8 

Table 3 

Performance comparison with state-of-the-art approaches. Dashed entries 

mean the information was not provided. 

Dataset D1 [11] 

Dice (%) AV (mm) % Good Time 
Sequence 

(s) 

Ehrhardt [42] 1 83 (NA) 1.8 (0.7) – –

Santiago [43] 79 (8) 3.5 (1.4) – –

O’Brien [44] – 1.4 (0.2) – –

Andreopoulos [11] – 1.4 (1.3) – 456 

Pham [45] 2 90.5 (2.6) – – –

2L + AU 85.9 (8.3) 2.1 (0.7) 88.8 30 

Dataset D2 [41] 

Dice (%) AV (mm) % Good Time 
Sequence 

(s) 

Huang [46] 89 (4) 2.2 (0.5) 79.2 –

Gopal [47] 84 (4) 3.7 (0.6) – –

Avendi [36] 94 (2) 1.8 (0.4) 96.7 –

Queirós [48] 90 (5) 1.8 (0.5) 92.3 11 

Constantinides [49] 86 (5) 2.4 (0.6) 80 60 

Hu [50] 89 (3) 2.2 (0.4) 91 154 

Liu [51] 88 (3) 2.4 (0.4) 91.2 129 

Uzunbas [52] 82 (6) 3.0 (0.9) – 45 

Jolly [20] 88 (4) 2.3 (0.6) 95.6 60 

2L + AU 86.0 (6.3) 2.6 (0.7) 82.1 30 

1 Uses only 25 of the 33 sequences available for testing. 
2 Uses only 10 of the 33 sequences available for testing. 
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Fig. 11. Example of the segmentation obtained (red) with an erroneous initial guess of t

interpretation of the references to color in this figure legend, the reader is referred to the
hat even though the volumes are underestimated with the pro-

osed segmentations, the method is able to accurately compute

he corresponding EF, which can then be used to diagnose cardiac

unction. 

Fig. 13 shows the Dice coefficient obtained using L2+AU for each

f the 33 × 20 volumes in the dataset. Most of the volumes are

ery well segmented and the poorer segmentations are easily iden-

ified by the few red pixels in the figure. This image also shows

hat the proposed algorithm performs better during the diastolic

hase (approximately frames 1–5 and 11–20) than in the systolic

hase (6–10), which is expected since the edges along the LV bor-

er are clearer in these frames. Most segmentation failures (red

ixels in Fig. 13 ) were either caused by the presence of papillary

uscles (see bottom right example in Fig. 14 ), or because the seg-

entation was pulled towards the LV’s outer border (see bottom

eft examples in Fig. 14 ). These cases are hard to segment using

n edge-based approach, since the strongest edge does not corre-

pond to the desired border. This is a drawback of many of the

orks shown in Table 3 , since they also rely on edge detection. 

Another issue to consider is that the proposed approach seg-

ents the volume slices sequentially. Therefore, when one of the

lices is incorrectly segmented, the error may propagate to the fol-

owing slices. While using 3D shape constraints may be tempting,

erforming the segmentation in a 2D setting also avoids issues due

o misaligned slices, which are common in cardiac MRI [53] . In

hese cases, updating the center and radius estimates has signifi-

ant advantages, since it allows the algorithm to recover from seg-

entation errors. The example in Fig. 15 illustrates this advantage.

he figure shows the segmentation of a particular volume using A1

top row) and A1 + AU (bottom row). In both cases, the initial guess

f the center and radius in the basal slice (left) is the same. It is

ossible to see that the A1 algorithm is not able to accurately seg-

ent the LV. Even though the error is not significant, it escalates

o meaningless segmentations in the following slices. By using the

utomatic update scheme, the A1 + AU algorithm is able to recover

rom these poorer initial estimates. 

. Discussion 

The goal of the proposed method is to provide fast and accu-

ate segmentation of the LV in cardiac MRI. The results showed in

he previous section provide several insights about the proposed

lgorithm. 

First, it shows that the proposed approach, in particular the

L+AU algorithm, is able to obtain good and very fast segmenta-

ions of the LV (see Table 2 ). This is relevant from the cardiologist’s

erspective since it means we are able to provide a good estimate

f the LV border with very little human input. Thus, the total effort

equired to analyze these images is significantly reduced. Even in

pecific cases where the proposed segmentation needs refinement,

sing this algorithm in the clinical setup is still an improvement

ver the traditional manual approach, because the automatic seg-

entations can be obtained quickly. 
teration 3rd iteration 4th iteration

he LV radius, along several iterations of A1 + AU. The green contour is the GT. (For 

 web version of this article.) 
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Fig. 12. Comparison of the medical parameters: ESV (top), EDV (middle) and EF (bottom). Each plot compares the parameters obtained using the proposed segmentations 

and the GT. The left plots show the correlation graph and the right plots show the Bland-Altman comparison. 
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D
ic

e

Fig. 13. Discriminated evaluation of the segmentation of each volume in the 

dataset (33 patients × 20 frames). The colormap indicates the Dice coefficient, in 

which green pixels correspond to good segmentation and red to poor segmenta- 

tions. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Second, the results shown in Section 4.2.2 also demonstrate

hat the underlying assumption that the LV has a circular shape

s not only valid but also strong enough to provide good segmen-

ations. On one hand, fitting a circle to the ground truth segmen-

ations leads to an average Dice coefficient of 92.3% and an aver-

ge distance of 1.3 mm, whereas applying the proposed approach

o the ground truth masks leads to an average Dice coefficient of

7.6% and an average distance of 0.3 mm. On the other hand, we

lso show that the algorithm is flexible enough to allow the model

o fit non-circular shapes ( e.g. , elliptical LV), as shown in the ex-

mples in Fig. 8 . 

Third, the proposed method is able to achieve good segmenta-

ion accuracies even when the initial guess of the LV center is as

ar as 10 pixels away from the true LV center. For larger errors, the
ig. 14. Examples of segmentations obtained using 2L+AU (in red) and comparison with t

ation of the references to color in this figure legend, the reader is referred to the web ve
erformance of the algorithm starts to decrease because it tends to

e attracted to other anatomical structures in the image. 

Finally, the proposed algorithm is able to provide cardiologists

ith fast segmentations of the LV, which has not been a concern

f most works in the literature. Instead, many of the state of the

rt works focus on proposing complex frameworks that typically

equire a significant amount of training data and disregard the high

unning-time figures [11,36,52,54] . 

. Conclusions 

A fast methodology for the segmentation of the LV in cardiac

RI is presented in this work. This approach is built under the

ssumption that the LV segmentation in each slice has approx-

mately a circular shape. We propose to transform the original

R slice into an edge map in polar coordinates, whose valleys

oughly follow the LV border. Then, the delineation of the LV con-

our is obtained using a DP approach. The results show that this

pproach is able to achieve good results, and is able to compete

ith other state-of-the-art approaches, most of which use more

omplex shape assumptions. The proposed approach is also able to

egment a whole volume in 1.5 seconds, i.e. , it provides fast and

ccurate segmentations that would significantly reduce the time

pent by cardiologists in this laborious task. 

The drawback of the proposed algorithm is the fact that it re-

ies on edge detection to identify the position of the LV border.

lthough this is a common approach in the literature, the outer

all of the LV and the presence of papillary muscles may misguide

hese algorithms. Therefore, future work should focus on using a

ore robust approach to compute the edge map, instead of relying

n edge detection. Also, it would be advantageous to replace the

anual initialization step by an automatic approach, such as using

he Hough transform for circles or following the approach used in

20] , as this would lead to a fully automatic method. 
he GT (green). Each image shows one slice from a particular patient. (For interpre- 

rsion of this article.) 
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D
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A
1

U
A+1

A

Fig. 15. Comparison between A1 (top row) and A1 + AU (bottom row). Each column shows a slice of the volume, from the basal slice (left) to the apex (right); the red contour 

is obtained using the automatic algorithm and the green is the GT. The last column shows a 3D view of the volume segmentations and the corresponding color-coded Dice 

coefficient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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