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Abstract— The term ‘body schema’ refers to a computational
representation of a physical body; the neural representation of
a human body, or the numerical representation of a robot body.
In both humans and robots, such a representation is crucial to
accurately control body movements. While humans learn and
continuously adapt their body schema based on multimodal
perception and neural plasticity, robots are typically assigned
with a fixed analytical model (e.g., the robot kinematics) which
describes their bodies. However, there are always discrepancies
between a model and the real robot, and they vary over
time, thus affecting the accuracy of movement control. In
this work, we equip a humanoid robot with the ability to
incrementally estimate such model inaccuracies by touching
known planar surfaces (e.g., walls) in its vicinity through
motor babbling exploration, effectively adapting its own body
schema based on the contact information alone. The problem
is formulated as an adaptive parameter estimation (Extended
Kalman Filter) which makes use of planar constraints obtained
at each contact detection. We compare different incremental
update methods through an extensive set of experiments with a
realistic simulation of the iCub humanoid robot, showing that
the model inaccuracies can be reduced by more than 80%.

I. INTRODUCTION

Humans develop a neural representation of their body (i.e.,
a body schema [1]) through an incremental learning process
that starts in early infancy [2], and likely even prenatally [3],
and goes through continuous adaptations over time, based on
multimodal sensorimotor information acquired during motor
experience [4]: visual, tactile, proprioceptive. This (physical)
body schema is a crucial part of human self-awareness and
it supports the precise control of body movements, coping
with the morphological changes that occur in the body over
time, e.g.: body growth, tool assimilation.

Clearly, endowing artificial agents with similar learning
and adaptation capabilities is a major challenge for cognitive
robotics and it paves the way for the next generation of
robots able to act in complex environments. An accurate
model of the robot structure (i.e., kinematics) are required
for nearly all robotic tasks, to interact with objects and even
more crucially to safely interact with people [5]. A variety
of factors, such as difficult-to-model transmissions, friction,
worn joints and bended rigid bodies, induce changes to the
robot kinematic model over time. As a consequence, robots
need to perform off-line calibration procedures from time
to time in order to preserve their reliableness. However,
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Fig. 1. Simulation of an iCub robot reaching for three different walls in
its workspace.

such procedures are time-consuming, they require to stop
the robot normal operations, and they need to be triggered
by an explicit detection of a miscalibration issue. Online
incremental procedures that can be performed by the robot
during its normal operations are therefore more desirable,
in any robotic application. Humanoid robots, such as the
iCub [6] (shown in Fig. 1), typically rely on on-board
sensors to control their movements, and therefore it would be
best to perform such continuous calibration based on them
without having external devices. Ideally, information from
different on-board sensors should be combined to increase
the robustness and reliability of the calibration (i.e., an
incremental self-body schema adaptation).

In this work we develop an incremental calibration strategy
that is performed automatically by the robot during the
execution of any arm movement that involves contacts on
known planar surfaces, using the Extended Kalman Filter for
adaptive parameter estimation. To do so, we make use of con-
tact (pressure sensitive fingertips) and proprioception (joint
encoders) sensors, commonly present in many humanoid
robots, such as the iCub. Notably, we compare six different
approaches for the update of the body schema from new data
obtained after each contact with a surface, by performing an
extensive set of experiments with a simulated iCub robot.
Interestingly, our techniques are robot-independent, and they
could be used on any robot equipped with joint angle position
sensors and contact sensing capabilities at the end-effector
(e.g.,pressure, force or acceleration sensors).

II. RELATED WORK

Robots and humans need to have an accurate model of
their bodies to be able to reach and manipulate objects. To
do so, robots typically rely on an analytical model which
enables them to perform motion control.

A number of works have been developed in order to make
use of sensory feedback, mainly visual, so as to actively
estimate the robot’s hand pose and visually controlling
reaching tasks [7], [8], [9], [10]. The techniques proposed



in previous works provide an efficient way of controlling
motion towards a specific non-occluded object, but they do
not help the robot to make use of model-based planners
to control more general motions. We can find in literature
methods that compensate for local errors during the robot’s
manipulator trajectory (e.g., using visual servoing) [7], [11],
however, these works do not consider sensorimotor data to
actively learn an internal model representation.

Body schema learning has been widely studied (check [12]
and [13] for work review on this topic). In robotics, we
can formulate the adaptation of the robot body schema as
a self-calibration problem, where the robot’s internal model
parameters are estimated (learned) online during motor ex-
perience. Some works first attempt to solve the body schema
and hand pose estimation by using either a camera attached
to a moving end-effector matching points in the scene from
consecutive frames [14], or Laser Tracking Systems (LTS) to
track a marker placed on the end-effector in order to secure a
robust calibration [15]. Both cases make use of sensors that
are not usual to humanoid robots.

Contact information was used in [16] to develop an off-
line automatic kinematic chain calibration resorting to self-
touch events, which was proven to be highly effective to
optimize the robot’s model Denavit-Hartenberg parameters.
One setback of [16] is that it does not consider the joint angle
measurements inaccuracies; apart from the requirement of a
robot covered with a sensitive skin.

On-line solutions using on-board cameras have been stud-
ied [17], [18], [19], in which markers are used to easily detect
the end-effector position; the inclusion of additional parts
into the kinematic chain (i.e., tools) has been considered
as well [20]. Methods to perform on-line calibration, e.g.,
during reaching tasks, based on contact information have
also been studied. That is the case in [21] where they set
to improve the robot’s estimate of its configurations using
an implicit Manifold Particle Filter informed by contact
sensors during periods of persistent contact. In addition, goal-
directed strategies in which the robot learns about its internal
model during the execution of a goal-driven task, such as the
ones presented in [22] (goal-directed exploration) and [23]
(goal babbling), have been observed to enhance the body
schema learning, for example, by reducing the time necessary
for robot calibration convergence.

Vicente et al. [24] compare data from the robot’s vision,
and proprioception with a realistic 3D computer graphics
model of the robot [25] in order to estimate simultaneously
the robot’s hand pose and kinematic model, making use of
GPU programming to implement a Particle Filter. Kolev et
al. [26] combine data acquired from proprioception, motion
capture position and orientation, and force sensors, while
interacting with objects in its vicinity, so as to build an
internal simulation of the robot’s configurations exploiting
MuJoCo and estimating the model parameters values that
better explain the visualized results.

We propose a novel approach to adapt the robot’s body
schema using proprioception and haptic sensors, capable
of being executed online during robot’s normal operations.

Information about contacts on known planar surfaces feed
a low computational cost estimation method (Extended
Kalman Filter) enabling real-time body schema adaptation.

III. PROBLEM STATEMENT

A. Body Schema Modeling

The adaptation of the body schema can be seen as an
internal process that occurs in the mind of the robot using
its own perception to achieve a better internal model repre-
sentation of the self. We focus on the calibration of the arms
and hands by exploiting haptic perception on the fingertips.
The body schema, from a robotics perspective, is embedded
as the kinematic chain from the root reference frame to the
end-effector and it is used to derive the forward model (to
predict from the motor commands where the end-effector is
in the 3D task-space): Te = K (θ); and the inverse model (to
anticipate the motor commands to reach a given target in the
3D task-space): θ = K−1(Te). Let us define Te as a 4x4
roto-translation matrix which encapsulates the pose of the
end-effector on the root reference frame. Due to modulation
errors we only get an estimation of the robot kinematics
function (K̂ (·)) based on the joint angles (θ) retrieved:

Te = K̂ (θ), (1)

where K (θ) is the true robot kinematics. However, due to the
existence of calibration errors (bias), the real joints angles
are different from the ones read from proprioception (joints
encoders): θ = θp + β, where θ are the real angles values,
θp are the encoders readings (proprioception) and β are the
angular offsets. To better estimate the robot kinematics we
reformulate Eq. (1) to account for the offsets estimate β̂ :

Te = K̂ (θp + β̂). (2)

The parameter vector and our state (to be estimated
recursively) is defined as follows:

β = [β1β2 . . . βN ]T , (3)

where N is the number of degrees of freedom of the robot’s
manipulator. Assuming the joint offsets to be slowly varying
in time, we define the state-transition model as:

βt = βt−1 + εt, (4)

where εt is a multivariate zero-mean Gaussian noise.

B. Observation Model

The observation model relates the system state β with a
single measurement (zk) from the tactile sensors. We assume
that there is a planar surface described by:

x · n− d = 0, (5)

where n = [nx, ny, nz]T define the plane’s normal vector
(||n|| = 1), and d is the plane’s minimum distance to the
robot root frame. In a simulation environment, both n and d
are known a priori. On real robot experiments, vision sensing
can be used to estimate the surface’s pose on the robot
vicinity, e.g., using the Aruco marker [27] or computing a
planar fit on depth point clouds from stereo vision.



When a contact occurs, we are ensuring that the arm’s
end-effector 3D position (xe) respects Eq. (5). However, due
to errors in the kinematic model, each set of coordinates x̂ek
at an instant k, follows the equation:

x̂ek · n− d = αk, (6)

where αk is the error produced by the model inaccuracies.
The observation model is then defined as:

zk(θpk + β̂t) = αk + δk (7)

where x̂ek is retrieved using the forward kinematics (Eq. (2)),
β̂t are the offsets estimation at time instate t and δk is
random Gaussian noise associated to an observation.

IV. APPROACH

We estimate the angular offsets β by exploiting contact
constraints obtained at each end-effector contact with a
surface. The strategy devised can be divided into two steps: i)
a goal babbling exploration towards the target planar surface,
stopping when tactile stimuli in the index finger occurs;
and ii) a learning phase where an Extended Kalman Filter
is fed with multisensory input (i.e., proprioception, surface
characteristics and haptic feedback) adapting the state β.

A. Workspace Exploration

The robot performs a goal babbling movement towards
the desired surface using the joint space (θ) as the input
command. The generation of the babbling movement is based
on the geometric Jacobian (Je(θ)) of the manipulator:

ẋe = Je(θ) · θ̇ ; Je(θ) =

[
Jv
e(θ)3×N

Jω
e (θ)3×N

]
6×N

, (8)

which relates the N joint velocities (θ̇) with the end-effector
task-space velocities (ẋe). The sub-matrices Jv

e(θ) and Jω
e (θ)

describe the linear and angular task-space velocities for a
given θ̇, respectively. To ensure that the babbling movement
is in the direction of the target surface we test the condition:

(Jv
e(θ) · θ̇)T · n ≤ 0, (9)

where n is the surface normal. If the condition is not
satisfied, the motor command is discarded. The exploration
stops when a contact is detected by the haptic sensors.

B. Parameter Estimation - Extended Kalman Filter (EKF)

The estimation of the offsets in Eq (3) can be performed
with an EKF, commonly used for online parameter estimation
(as seen in [28]), assuming that each βi is distributed through
multivariate normal distributions (with mean µ and covari-
ance Σ). Using the dynamics in Eq. (4) and observation
model (Eq. (7)), we get the following EKF equations:

1) Prediction:

βt = β̂t−1 + εt, (10a)

Σt = Σt−1 + Qt, (10b)

2) Kalman Gain and Update:

Kt = ΣtH
T
t (HtΣtH

T
t + Rt)

−1, (10c)

β̂t = βt + Kt(0− zt), (10d)

Σt = (I−KtHt)βt, (10e)

where β̂t and Σt are the current offsets estimation and
covariance matrix, respectively. Qt and Rt are positive semi-
definite covariance matrices and zt and Ht encapsulate a set
of observations. When a contact is detected and the joint
encoders readings are retrieved, we acquire an observation
(zk) as well as Hk = ∇zk(θpk + β̂t). We can rewrite Hk as:

Hk = n · Jv
e(θpk + β̂t), (11)

where Jv
e(θpk + β̂t) is the sub-matrix defined in Eq. (8).

We evaluate 3 strategies for new data incorporation:
1) Aggregation of Multiple Observations: Coupling to-

gether a varying number of contact constraints (k) before a
filter update step (t). The number of observations coupled in
this manner influence matrices Ht and zt dimensions:

Ht =
[
Hk−n · · · Hk−1 Hk

]T
, (12a)

zt =
[
zk−n · · · zk−1 zk

]T
, (12b)

where t is the instant when we perform an estimation step.
The number of contact detected up until t is n+1. Using only
one observation (n = 0) we have Ht ≡ Hk and zt ≡ zk.

2) Estimation Differential Entropy Evaluation: Upon each
contact, we get zt and Ht and compute the predicted
next step estimation covariance matrix Σt. Following the
approach used in [29], we decide to incorporate the new
data if the current estimation differential entropy decreases
when compared with the previous estimation:

1

2
loge

|Σt−1|
|Σt|

> 0, (13)

and discard new data that does not bring innovative infor-
mation. Here |.| denotes a matrix determinant and Σt−1 is
the current estimation covariance matrix.

3) Anti-Windup Control (A-W): A common problem in
recursive parameter estimation is windup in the system state
covariance matrix Σt during periods of poor excitation. This
phenomenon happens when some eigenvalues of Σt increase
uncontrollably to large values when highly correlated data
is incorporated, making the filter oversensitive to noise and
with long transients when relevant data is obtained, leading
the system to incorrect estimates. In [30] a technique is
described in order to avoid windup associated to recursive
estimation methods, such as the Recursive Least Squares
(which can be recast into a EKF). They propose controlling
the parameter random walk covariance matrix, Q(t), so as to
get Σt to achieve a constant pre-defined covariance matrix,
Pd, thus avoiding it to get unacceptable large eigenvalues.
We use the same technique adapted to the EKF framework:

Q(t) =
PdHtH

T
t Pd

R(t) + HT
t PdHt

. (14)



TABLE I
FINAL ESTIMATION MEAN (µ) AND STANDARD DEVIATION (σ) VALUES.

Estimation method One Surface Three Surfaces

µ[◦] σ[◦] µ[◦] σ[◦]
7C (a.) 5.05 1.76 3.36 1.41
SC (b.) 4.85 2.42 2.30 1.00

SC-E (c.) 5.08 1.34 5.00 2.06
VC-E (d.) 3.53 2.28 2.41 1.02

SC-AW (e.) 4.63 1.70 2.67 0.80
SC-EAW (f.) 4.11 1.66 2.20 0.74

Without calibration (β̂ = 07×1) 11.74 - 11.74 -

V. EXPERIMENTAL SETUP

The algorithms developed are tested in an iCub simulator
[31] which is provided with proprioception, visual and tactile
sensors. To communicate with the simulator we use the
YARP middleware [32]. The simulation setup is composed
of three reachable surfaces with a priori known parameters
(n and d), relative to the robot’s root frame, which provide a
rich environment for the robot to acquire contact constraints:
n1 = (

√
2
2 , 0,

√
2
2 ) and d1 = −

√
2

8 m, n2 = (
√
2
2 ,
√
2
2 , 0) and

d2 = −3
√
2

10 m, n3 = (0,−1, 0) and d3 = −0.05m. For the
first set of experiments, we make the robot constantly reach
for the surface described by n1 and d1. We then perform a
second set of experiments where the contact events alternate
between all three surfaces. Figure 1 shows the simulated iCub
robot reaching for these surfaces.

We control the robot’s left arm and define its left index
fingertip to be the manipulator’s end effector. The angular
offsets on the seven DoF of the iCub’s left arm are artificially
simulated and the index finger joints are fixed. We define
β =

[
−11, 11,−7,−17,−7,−17, 7

]T
deg, whose values

have the same order of magnitude of the calibration errors
we typically encounter on the real robot. All simulations are
performed relative to these offsets, except for the last set of
experiments, where we use 2 different artificially introduced
offsets sets in order to test the strategy robustness.

We present next the simulated results for the devised
calibration strategy, comparing all new data incorporation
methods proposed (see subsection V-A), running a total of
ten simulations for each method. For each experiment, we
perform a total of 45 contacts (49 for the 7-contact setting).
After each filter update, we compute the global estimation
root mean squared error (RMSE) relative to the real offsets:

RMSE =

√√√√1

7

7∑
i=1

(β̂i − βi)2. (15)

A. New Data Incorporation Methods

Next, we provide a detailed description of the different
new data incorporations methods which are evaluated in the
results section. These methods are the combination of one,
two or three different strategies mentioned in IV-B:

a) 7-Contact (7C): Upon each contact detection, zk and
Hk are stored in zt and Ht, respectively. The system per-
forms an estimation step after it collects 7 contact constraints
(equal to the number of the iCub’s arm DoFs).

b) Single Contact (SC): Upon each contact event, zk and
Hk are fed to the filter and an update step is performed.

c) Single Contact with Entropy (SC-E): Similar to the
previous technique, but now for each new data obtained
the system computes the predicted next step estimation
covariance matrix and evaluates whether or not the new
observation actively contributes to the estimation differential
entropy reduction using Eq. (13). If the condition is not
satisfied, the new observation is discarded.

d) Varying-Contact with Entropy (VC-E): Equivalent to
the previous method, but each time a new observation fails
to reduce the global estimation differential entropy, instead
of being discarded, zk and Hk are added to the matrices zt
and Ht, respectively. Every time new data is obtained, the
system evaluates if zt and Ht are able to reduce the entropy
of the next step estimation. If so, an update step is performed
regarding all previously stored observations.

e) Single Contact with A-W (SC-AW): Equivalent to the
Single Contact Estimation method, but Qt is controlled with
the anti-windup technique described in Eq. (14), rather than
being a predefined matrix.

f) Single Contact with Entropy and A-W (SC-EAW):
The system discards every new observation data which fails
to reduce the next step estimation differential entropy, and
controls Qt matrix so as to avoid estimation windup from
uncorrelated measures.

VI. RESULTS

We evaluate the results of β estimation for contacts in
a single, and in three different surfaces1. All experimental
results are shown in Table I, which depicts each new data
incorporation strategy global performance, providing the β
estimation error mean (µ) and standard deviation (σ) over
10 experiments after 45 contact events.

A. Contacts over a single surface

We start by evaluating the results of β estimation with
the method 7C. In Fig. 2(a), the mean estimation error µ
(in blue), and the standard deviation σ (in shaded-red) over
the 10 experiments with 49 contact events each (i.e., 7 filter
update steps) can be seen. The estimation error decreases
slowly over each estimation step, and the model inaccuracies
are reduced by 50% (RMSE ≈ 5.87 deg) after 35 contacts.

The results for method SC can be seen in Fig. 2(b),
which show a worse performance. The system keeps a slow
steady error descend during the whole estimation, reducing
the estimation absolute error by 50% after 37 contacts.
Moreover, σ remains relatively high for all t, due to the
slow reaction of the filter against estimation steps taken in
the wrong direction during periods of poor excitation.

We try to improve method SC by evaluating the estimation
differential entropy (Fig. 2(c)) or using the A-W control

1a video can be found in https://youtu.be/EFx0OmRKTQg
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(a) 7-contact estimation (7C).
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(b) Single contact Estimation (SC).
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(c) Single contact with entropy (SC-E).
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(d) Varying-contact with entropy (VC-E).
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(e) Single contact with A-W (SC-AW).
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(f) Single contact entropy and A-W (SC-EAW).

Fig. 2. RMSE (mean and standard deviation) over 10 experiment for each data incorporation method (V-A) for β estimation from contacts on one surface.

technique (Eq. (14)) (Fig. 2(e)). For the first solution (method
SC-E), we conclude that it is able to stabilize the filter per-
formance, since the global estimation σ is reduced compared
to the simple single contact setting (see Table I). However,
this happens at the cost of the filter converging sooner to
a minimum, since it is not able to easily find observations
which reduce the estimation entropy. Furthermore, the esti-
mation error does not increase at any moment, opposed to
the simpler method SC. The later solution (method SC-AW)
achieves a better performance as well, being able to stabilize
the filter. Its key improvements are: i) higher pronounced
error reduction slope up until the 8th contact; ii) its able
to reduce the absolute error by 50% after 14 contacts, also
improving the final solution after 45 contacts (see Table I).

The method VC-E is a mixed model combining the en-
tropy evaluation with the method 7C. We enable the filter to
adapt, coupling together a sufficient number of observations
to perform an estimation update step with lower entropy. The
estimation keeps a steady error descend up until the 16th
contact (reducing the model inaccuracies by 50%), slowing
the pace for the next contacts (see Fig. 2(d)).

Finally, in Fig. 2(f), we see the results of combining both
the A-W control technique and estimation entropy evaluation
on a single contact strategy (method SC-EAW). We are
able to notice three key features: i) the system is able to
converge to a lower overall estimation minimum (reducing
the estimation error by 15% compared to the single contact
setting, and 65% overall, after 45 contact events), ii) the
overall experiments σ is 30% lower compared to method
SC, and iii) the system converges faster to a minimum
(requires 10 steps to reduce the model inaccuracies by 50%).
Combining both techniques we are able to get a more stable
and precise filter. Fig. 3(a) helps us to visually compare the
performance of all methods.

B. Contacts over three different surfaces

By broadening the robot spatial exploration in order to
perform contacts on 3 surfaces, we expect an overall better β
estimation performance, since contact constraints obtained in

this manner provide to the filter richer information. Looking
at Fig. 3(b), we are able to visually analyze the different
methods performance in this scenario. We can clearly assess
from Fig. 3(b) that the methods 7C and SC-E are the ones
which benefit less from information acquired from contacts
on 3 different surfaces since they both converge to the
highest estimation errors minima. The 7C setting has a steady
slow error reduction slope due to not being able to quickly
compensate for estimation steps given on wrong directions.
The SC-E estimation converges early (5th contact) to a local
minimum, not being able to easily find relevant observations
from there. The best results are obtained for the single
contact setting with both estimation entropy evaluation and
anti-windup control techniques, reducing both the estimation
error by 45% relative to the single surface scenario (and 80%
overall), and presenting the lowest overall σ value.

Finally, in Fig. 3(c) we see the results of using the
method SC-EAW for β estimation of 3 different artificially
introduced offsets readings (10 experiments for each set).
Up until the 60th contact event, all experiments reach an
estimation minimum; moreover, independently of the true
readings offsets, the filter is always able to reduce the
estimation error to approximately 2.5deg, illustrating the
reliability of the devised strategy.

VII. CONCLUSIONS AND FUTURE WORK
We devise a novel approach for online body schema

adaptation, implemented on the iCub humanoid robot, lead-
ing to subsequent improvements in the end-effector pose
estimation. The robot’s arm offsets estimation is performed
using an EKF fed with contact constraints obtained during
the execution of reaching tasks. We rely on typical humanoid
robot’s embedded sensors (tactile and proprioception). Our
strategy is inspired by the human incremental learning pro-
cess of their own body schema, as we use tactile feedback
in order to enable the robot to learn about its internal model.

One can conclude from our experiments that by making
the robot perform a spatial exploration on an information
richer workspace (i.e., with various surfaces) it is more
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(a) Comparison between all data incorporation
methods using contacts over one surface.
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(b) Comparison between all data incorporation
methods using contacts over three surfaces.
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(c) 3 different offsets sets estimation using the
SC-EAW method and contacts on 3 surfaces.

Fig. 3. β estimation performances comparison between all data incorporation methods and for contacts contacts events over one or three surfaces.

effective in reducing its model inaccuracies. Overall, our
simulation experiments show that we can reduce the model
inaccuracies up to 80% by performing contacts on 3 different
surfaces, and up to 63% for contacts on a single surface.

In future work we intend to test the developed strategy
on the real-world scenario, making use of vision sensing to
extract information about surfaces’ poses. Another possible
direction would be to implement a different adaptive estima-
tion filter from the EKF, like the Unscented Kalman Filter or
the Particle Filter, to cope with deviations from Gaussianity
of the estimated parameters distribution.
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