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Abstract—In the last decades, in order to make the process-
ing of a scene more efficient, biologically inspired approaches
have been proposed. Visual attention models are being studied
and actively developed in order to reduce the complexity and
computational time of the existing methods. We propose a
biologically inspired model that combines a single pre-trained
CNN architecture with an artificial foveal visual system that
performs simultaneously the classification and localization of
objects in images. This model is based on the fact that only a
small part of the image is processed with high resolution at each
time so we load a foveated image in the network and successively
employ feed-forward passes to determine the class labels and then
via backward propagation determine the object possible locations
according to each semantic label. By directing the attention to the
center of the proposed location we mimic the human saccadic eye
movements. In the results obtained we used the ILSVRC 2012
validation data set in a Googl.eNet CNN. We demonstrate that for
non-centered objects the gain of the classification performance
between iterations is significant showing that when mimicking
the human visual behaviour of foveation, saccades are needed to
integrate the information at each time.

I. INTRODUCTION

The amount of information and visual stimuli that reaches
the eyes is quite high, so the resources available by the human
brain fail to process all of this visual perception information
simultaneously [1]. For this reason, it is essential to process
and interpret only the relevant stimuli. When an image is
observed, the fixation region is projected onto the fovea
and sampled with high density, while the periphery, on the
other hand, is sampled at a lower resolution. There are also
biological mechanisms that allow an active exploration [2] of
the surroundings, namely the selective visual attention that
gives priority to certain elements in a scene. These two aspects
result in less information being processed by the brain at
any given time but it requires the eyes to move constantly
to integrate the information of the entire scene.

Likewise, computers also need to process information in
real time, which requires a huge expenditure of resources. In
the last decades, in order to make the processing of a scene
more efficient, biologically inspired methods and approaches
have been proposed [3]. These visual attention models are
being studied and actively developed in order to reduce the
complexity and computational time of the existing methods.
Recent advances have been made in the field of artificial
intelligence achieved by a new set of techniques known as
Deep Learning. Among the techniques of Deep Learning are

specially the Convolutional Neural Networks (CNNs). In face
recognition or image classification with CNNs, the input image
normally needs to be cropped so that objects are aligned
roughly at the center of the image [4]. It could be advantageous
in these cases to have an attentional model to select meaningful
regions to process when the objects are not centered in the
images. For this reason we propose an iterative foveation
method that improves the classification of non-centered objects
in a image.

In this work we study how to localize objects in a foveated
image, where objects may lie on the periphery of the visual
field. In these circumstances, the accuracy of the classification
is low and a re-centering of the target is required to inspect the
object with the high resolution part of the eye. Following the
work done in [5], we consider the use of a classification CNN
in a feed-forward and a feedback stages. In the feed-forward
stage the network provides a ranked list of possible objects
in the scene. In the feedback phase, these possible objects are
located in the image in a top-down manner through the cre-
ation of a segmentation mask from the saliency map associated
with the predicted class labels. Based on the foveation method
proposed in [6] we considered in our work a foveal visual
system to mimic the human visual information reduction and,
in this way, the images loaded in the CNNs are foveated with
different foveation points and different fovea sizes. Also, in
visual search, humans tend to move the gaze towards objects,
so our model is an iterative way of refining the classification
and localization when performing each foveation step.

The main contributions of this paper are the following: first,
we evaluate the performance of our methodology for a CNN
architecture that can be used in tasks of detection and local-
ization simultaneously when combined with human-inspired
foveal vision. We also tried to understand the relationship
between performance and different aspects: the fovea size,
the segmentation mask threshold used in the localization, the
foveation fixation point to mimic non centered objects and
especially the gain in the performance between feed-forward
passes.

The remainder of this paper is organized as follows: in
section II we overview the related work and some fundamen-
tal concepts behind the proposed attentional framework. In
section III we describe in detail the proposed methodologies,
the artificial foveation system and a top-down, saliency-based
mechanism for class-specific object localization. In section IV,



we quantitatively evaluate our contributions. Finally, in section
V, we wrap up with conclusions and ideas for future work.

II. RELATED WORK

Visual perception arises when light is captured by the eyes
and projected onto the retina. The human eye does not contain
all the same visual acuity and the resolution of the captured
image is much higher in the fovea, a small central region of
the eye, decaying drastically as it approaches the periphery [7].
This non-uniform distribution leads to the need of moving the
eyes towards the most important parts of the image in order
to process them. There are also anatomical mechanisms for
information selection, there are also functional mechanisms,
such as attention, used to reduce the amount of information
to be processed by higher cognitive levels of the brain. In the
literature there are several types of computational foveation
methods that attempt to replicate this human visual behavior:
geometric [8], filtering-based [9] and multi-resolution methods
[10].

A. Visual Attention

The concept of visual attention tries to explain how humans
process the visual information that arrives to their eyes. The
amount of visual information that is received by the eyes
is quite high, about 10% to 10° bits per second [11] so it
would be needed a high cognitive level and a great capacity
of cerebral processing. Since brain resources are limited there
are mechanisms to reduce the amount of information to be
processed simultaneously [12].

Over the years, there have been several attempts to define
visual attention. The most accepted definition solves the lack
of cognitive resources and is called selective attention [13].
This concept consists of processing in more detail only sub-
regions of the visual field, called focuses of attention, which
are determined through selective mechanisms. According to
the mechanism of selective attention the visual stimuli are
ordered and processed in descending order of relevance,
making the attention a sequential process. The most relevant
stimuli are called salient. The relevance of visual stimuli can
be influenced by the spatial location of the objects [14] and
the a priori world knowledge; by certain features of objects
present in the environment (color, size, orientation, direction
of motion) regardless of their location [15]; or by the structure
of certain objects [16].

B. Bottom-up and Top-down mechanisms

According to James [17] the selective orientation of atten-
tion to certain objects or locations is done through bottom-up
and top-down factors. Bottom-up factors are driven by stimuli
generated by features that are discriminative within a visual
scene. Some features are intrinsically more salient in a given
context, for example a black ball in the middle of white balls
(the salient feature is the color). If a feature is visually salient
from the surroundings, it automatically stands out and directs
attention involuntarily. This suggests that the visual features
are perceived in the brain before the attention itself [18]. On

the other hand, top-down factors are generated by a goal to be
performed and are influenced by knowledge, expectations and
goals [19]. Attention driven by these factors is slower because
it requires focal attention.

C. Deep Convolutional Neural Networks

In recent years have emerged new set of learning techniques
known as Deep Learning [20]. These advances, were only
achieved due to the development of more powerful hardware
such as Graphics Processing Unit (GPUs) and the creation of a
very large sets of labeled images (e.g. ImageNet [21]). Deep
Convolutional Neural Networks (CNNs) are a class of deep
artificial neural networks that are biologically inspired by the
visual cortex of mammals. These networks have been widely
used for image classification [22] and object detection [23].
These are based on a cascade of successive layers that apply
different filters to the input data with the objective of extracting
task specific features.

Some of the most used CNN architectures [24], [25] are
inspired by the LeNet [26] network that follows the simple
stacking structure of 7 convolutional layers interspersed with
a pooling layer and then a last fully connected layer to
perform the final classification. Similarly to the work of [5],
we propose the use of a single pre-trained CNN, that combines
covert (classification) and overt (localization) mechanisms of
selective visual attention, with artificial foveal vision.

III. METHODOLOGIES

Our methodology, inspired by Cao’s er al [5], combines
a feed-forward classification with foveal selective mechanism
and a feedback localization according to class labels set as
goals in the visual search. We propose a biologically inspired
foveal attention model that replicates the human visual system
and it is capable of classifying and localizing objects in a
image. This model is based on the fact that only a small
part of the image is processed with high resolution at each
time so we load a foveated image in the network and do a
first feed-forward pass to determine the possible classes of
objects in the image. Then via backward propagation we obtain
several object locations according to each semantic label. By
directing the attention to the center of the proposed location
we foveate again the original image and re-classify and then
we analyze by backward propagation the new locations of the
new semantic labels.

We propose an iterative refinement model that improves
the classification and localization. It can be decomposed into
two phases: first the detection through an artificial foveation
mechanism using the methodology of [6] and subsequent feed-
forward classification, and second the localization by perform-
ing a back-propagation according to top-down information.

A. Artificial Foveal Visual System

In this work, we follow the foveation system proposed in
[6] that tries to replicate the non-uniform distribution of the
receptive fields in humans eyes. This artificial foveal system
is inspired by the Laplacian Pyramid method proposed in [27]
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Fig. 1: Example of images with different foveal visual param-
eters as: foveation point (ug, vg) and fovea size fy.

for image compression, which is extremely fast and easy to
implement and has been applied in real-time image processing
and pattern recognition.

This model consists of 4 steps:

1) First it is created a Gaussian pyramid where each level
has increasing amount of blur and it is generated from
the previous image level. Each subsequent image level
is filtered using Gaussian kernel and scaled down. The
image ¢gr+1 can be obtained through the convolution
of gr with 2D isotropic and separable Gaussian filter
kernels of the form
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where v and v are the image coordinates, K is the
number of levels of the pyramid and o, = 2*~1o; is
the Gaussian standard deviation at the k-th level.

2) Secondly those gj images are up-sampled to have the
same resolution.

3) Then it is created a Laplacian pyramid by saving the
difference between adjacent Gaussian level.

4) Finally, to mimic a high resolution in a f; size and a
lower in the rest of the retina we multiply each level
of the Laplacian pyramid by exponential kernels of the

form
k(u,v, fi) = e =Tk O<k<K. (2
where f, = 2Ff, is the exponential kernel standard

deviation at the k-th level. The foveation point which
defines the focus of attention is represented by (ug, vo).
In our work we want to vary this parameter to analyze
the effect of non centered objects in an image. In figure
1 we represent different resulting images from our foveal
visual system with different fovea sizes f, and foveation point
(UO,’UQ).
B. Image-Specific Class Saliency Extraction
According to Simonyan’s findings [28] it is possible to
obtain an image-specific class saliency map via a back-
propagation. Given an image I and a class ¢ the CNN class
score S.(I) is highly non linear therefore it is useful to

approximate that with a first-order Taylor expansion in the
neighborhood of I as

S.(I)~ GIT+b 3)
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Fig. 2: Different saliency maps for specific class labels ob-
tained by back-propagation in a top-down manner.

where b is the bias of the model and G, = BSBCI(I) can be

viewed as a measure of how likely pixels of image I are im-
portant for the classification of a class ¢ and therefore can give
help us localize that class in the image. The pixel derivatives
are found by back-propagation until the first input image layer.
The back-propagated error values are the difference between
the output of the CNN softmax layer and the desired output
that corresponds to assign 1 to the input associated with the
specific class we want to localize and assign O to all the other
inputs. GG, defines the class specific salience map on image 1.
Since the images used are RGB a single class saliency value
for each pixel M.(i,j) is obtained by taking the maximum
magnitude of G, across all colour channels [,

M. (i, j) = maxjergs|Ge(i, J, 1)]. 4)

C. Weakly Supervised Object Localization

The object localization is obtained by computing the seg-
mentation mask by selecting the pixels of the saliency map
M, with a value higher than a certain threshold, ¢h, and set
the rest of the pixels to zero. A tightest bounding box covering
the stain of non-zero saliency values is computed resulting in a
guess of the localization of the object. Considering the center
of the bounding box found we foveate again the original image
and do the re-classification and re-localization of the image.

IV. RESULTS

Following the work developed in [6] that considered only
one feed-forward pass in the network with a centered foveated
image, our main goal is to show that there is a significant gain
in the performance between the first and the second foveation.
Our model can be decomposed in the following steps (also
illustrated in Fig. 3):

1) Resize the image to 227 x 227 and foveate with a specific

fovea size fy

2) Run CNN model with the foveated image and predict

the top 5 class labels with a feed-forward pass
3) For each of the top 5 class labels, compute each local-
ization bounding box with top-down back-propagation
according to a threshold, 0

4) For each of the 5 bounding boxes in the original image
foveate again with the fixation point in the center of
each bounding box and predict again the top 5 class
labels with a feed-forward pass

5) Given the total 25 labels and the corresponding confi-

dences, rank them and choose the top 5 as final solution
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Fig. 3: Schematic of our iterative refinement model of object detection. First a foveated resized image is loaded into the
network to predict the top-5 class labels through a feed-forward pass. Then for each class label, it is computed each bounding
box with a top-down back-propagation according to the threshold selected. Then we apply a second foveation centered in
each bounding box found and predict again the top 5 class labels with a feed-forward. Given this 25 labels with confidences
associated we sort them in descending order, not choosing repeated labels and pick as final solution the top-5. Iteratively we
to a re-localization according to those labels with a feedback pass. In our work we only considered two iterations. The red
rectangles represent the bounding boxes that contain all pixels above the specified threshold, in this case the threshold was
0.75. The red circles represent the focused area simulating the fovea, that was set to fo = 60 in this case. The ground truth

label of the input image is go-kart.

6) For each of the top 5 final class, compute the localization
bounding box with top-down feedback pass

We used the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 validation data set [29], which
comprises a total of 50K test images with objects conveniently
located in the images center. The following results were
obtained with the first 100 images of that data set and the
pre-trained neural network GoogLeNet [25].

According to our foveal visual system, in our experiments
o1 was set to 1, the original image resolution was set to
N x N = 227 x 227 (the size of the considered CNN input
layer) and the size of the fovea was varied in the interval
fo € {0,...,180}. We could have considered 227 as upper
limit, however, the size of the fovea becomes too large and
there is no difference to the original image, and therefore, this
fovea sizes larger than 180 not represent any benefit.

In order to quantitatively assess the performance of our
methodology we considered the classification and localization
error present in the ILSVRC [29].

A. Classification Performance

This classification performance is calculated for each image
comparing the top-5 class labels in the descending order of
confidence with the ground truth. If there is no match it leads

to an error. The overall classification error is the average error
over all images.

In order to understand how the foveation point of the first
feed-forward pass influences the classification error, we made
it vary along a 8 by 8 grid. As the threshold applied to the
segmentation mask does not influence the classification error it
was fixed to 8 = 0.7. However, the size of the fovea was varied
between 0 and 180 so the classification error was calculated for
each position over all f considered. In Fig.4 we can compare
the classification error between first and second feed-forward
passes as a function of the foveation position. Since the objects
of the data set are mainly centered, as we were expecting,
the classification error is smaller in the center. However, we
verified that from the first to the second pass, independently
of the initial foveation point, the error reduces demonstrating
the gain of our iterative model.

In order to understand better how the foveation size affects
the classification error both for centered and non-centered
foveation points we fixed # = 0.7 and varied f; between 0
and 180. In Fig. 5 we verify that the gain between the first and
the second feed-forward classification is not significant when
the foveation is centered, being at maximum 10%. However,
when the foveation is non-centered (average of all foveation
positions) the maximum gain between the two passes is 43%.
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Fig. 4: Classification performance in function of initial foveation point (ug,vg) where dark and bright represent better and
worse performance. The classification error was calculated over all f; and fixing 6 = 0.7
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Fig. 5: Classification Performance in function of the fovea size
fo with 8 = 0.7. The baseline was computed with f, = 227
(the resolution of the input image) to simulate an input image
without any blur corresponding to minimum error

B. Localization Performance

The localization is considered correct if at least one of the
five predicted bounding boxes for an image overlaps over 50%
with the ground truth bounding box, otherwise the bounding
box is considered wrong. The evaluation metric consists on the
intersection over union between the proposed and the ground
truth bounding box.

To understand the effect of the threshold, applied on the
segmentation mask, on the localization performance, we fixed
the fovea size to fy = 70 and varied the threshold in the
interval 6 =€ {0,...,1.0}. As observed in Fig. 6(a) there is
neither gain between backward passes nor differences between
foveate in the center or elsewhere in the image. Localization
tasks depend mostly on the low frequency of the image
signal, thus, when we foveate an image we only remove high
frequencies outside the fovea, however the location of the
object remains detectable. For thresholds smaller than 0.4, the
localization error remains stable. From this point, the evolution
of the error presents the form of a valley obtaining the lowest
localization error for thresholds of 0.65 and 0.7. This shows
that exists a compromise between the threshold not being too
small making nothing salient and being too high making all
the image important for the bounding box. For this reason, we
chose 6 = 0.7 to lead to minimum errors, when varying the
fovea size as illustrated in Fig. 6(b).

V. CONCLUSIONS

In this paper we proposed a biologically inspired framework
for object classification and localization that incorporates
CNNs with human-like foveal vision that mimics the selec-
tive attention mechanisms for information reduction to be
processed by the brain. Our iterative model is composed by
successive feed-forward and backward passes that refine the
classification of objects.

The main experimental goal of this study was to assess the
performance of our framework in tasks of detection and local-
ization of non-centered objects in the images, to resemble real
scenarios. The results obtained for our foveal iterative vision
model are promising. We conclude, on one hand, that when
using a methodology that replicates human visual behavior, it
is necessary to use successive foveations (saccades). This is
because in real scenarios, where objects can be anywhere in
the image, the results show that the classification performance
improves significantly from the first to the second feed-forward
pass. On the other hand, we conclude that the classification
performance reaches a saturation point for a fovea size of
fo = 70. Furthermore, the localization performance does not
improve with iterations. The location only depends on lower
frequencies of the images and, thus, smoothing them with the
foveation does not affect performance.

Our quantitative analysis indicates that for systems with
foveation, which have a higher resolution in a small region
that decays towards its periphery, we do not need the total
resolution of the image to reach maximum performance. Thus,
one can use mechanisms to reduce the resolution of an image,
and it is not necessary to store and process all the information.
However, we emphasize that the goal of this work was to study
the impact of information reduction via space variant blurring
of the original image, on classification and localization tasks
using a state-of-the-art CNN classifier. Therefore, we did not
show any computational gains, since the number of pixels of
the input images were fixed.

In the future, in order to combine the mechanism of human-
like visual saccades with computational gain, we intend to
leverage log-polar like transformations or pyramidal images
representations with more compact neural network architec-
tures trained to classify images more efficiently.
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