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Abstract. Robot grasping depends on the specific manipulation sce-
nario: the object, its properties, task and grasp constraints. Object-task
affordances facilitate semantic reasoning about pre-grasp configurations
with respect to the intended tasks, favoring good grasps. We employ
probabilistic rule learning to recover such object-task affordances for
task-dependent grasping from realistic video data.

1 Introduction

Robot grasping skills are essential for acting in dynamic environments. Objects
can be grasped in different ways depending on the specific manipulation sce-
nario: the object, its properties, task and grasp constraints. Inspired by the
definition of object affordances – which refers to the properties of an object to
allow actions to be performed on it by a human or other entity, we investigate
the benefits of object-task affordances for task-dependent grasping in a kitchen
environment. Our earlier work on task-dependent grasping [2] shows that, when
combined with probabilistic reasoning and object/task ontologies, they facili-
tate compact grasping models which generalize over object/task categories in a
natural way, while showing robustness to uncertainty and missing information.
Here we propose, as key contribution, a statistical relational learning approach
to learn object affordances for task-dependent grasping.

Let us consider the scenario in Fig. 1. A mobile robot with grasping capabili-
ties must grasp a bottle from the shelf and place it on the table. The environment
constraints (e.g. narrow spaces) and task constraints (e.g. the most stable pre-
grasp gripper pose for grasping the bottle) present a difficult problem which can
be solved using semantic reasoning. If we consider the top, middle and bottom
as semantic parts of the bottle, the best part to grasp it is from the middle,
given that it needs to be placed on the table upright and the top is partially
obstructed by the shelf above. Given such semantic object parts (or pre-grasps),
object properties, and the intended task, we can learn probabilistic grasp-related
rules for our kitchen scenario, e.g., that a bottle affords pick and placing on a
surface by grasping it from the middle. The resulting task-dependent affordances
give the robot the capability to semantically reason about the best pre-grasp and
thus, help the grasp planner. Our experiments show that we can learn reliable
relational affordances from realistic and uncertain video data.
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Fig. 1: Manipulation scenario: grasp the
bottle from the shelf and place it upright
on the table.

Fig. 2: Semantic parts for knife and
cup: yellow-top, blue-middle, red-bottom,
green-handle, and magenta-usable area.

2 Related work

Much recent work focuses on incorporating task constraints in robot grasp-
ing by learning a direct mapping function between good grasps and various
constraints (on actions and geometry), action features and object attributes
[16,22,17,9,10,8]. We extend this work by considering either object categorical
information as an additional feature to predict suitable task-dependent grasping
constraints or a task-dependent setting that uses probabilistic logic and world
knowledge to reason about best pre-grasps.

Affordances have been considered before in robot manipulation. While in [23]
the authors employ estimated visual-based latent affordances, the work in [4]
reasons about grasp selection by modeling affordance relations between objects,
actions and effects using either a fully probabilistic setting or a rule-based ontol-
ogy. In contrast, we employ a SRL approach to learn object affordances which
generalize over similar object parts and object/task categories. Closely related
is the semantic grasping pipeline in [5]. It employs a semantic affordance map
which relates gripper approach directions to particular tasks. We exploit addi-
tional world knowledge in form of ontologies. This allows us to experiment with a
wide range of object categories. Further, to compute plans comprising sequences
of actions and to solve complex manipulation tasks, [1] combines symbolic rea-
soning and learning from demonstrations. In [13] meaningful symbolic relational
representations are used to solve sequential manipulation tasks in a goal-directed
manner via active relational reinforcement learning. Relational Markov networks
have been extended to build relational object maps for mobile robots in order to
enable reasoning about hierarchies of objects and spatial relationships amongst
them [15]. Related work for generalizing over doors and handles using SRL has
been proposed in [18].

However, none of these frameworks solves the problem of learning affordances
for semantic task-dependent grasping. Relational affordance models for robots
have been learned in a multi-object manipulation task context [19]. Differently,
we propose learning pre-grasp configurations using task-category affordances.
Our approach features semantic generalization and can tackle unknown objects.
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This research topic has great importance in robotics as robots aimed at work-
ing in daily environments should be able to manipulate many never-seen-before
objects and to deal with increasingly complex scenarios.

The paper is structured as follows. The next section introduces the relational
problem of affordance learning. Subsequently, our SRL approach is described.
After the experiments section, follow the concluding notes.

3 Problem description and representation

Each scene contains one object and the task to be executed. Its semantic visual
description consists of the task, object parts, category, pose, and containment
together with their probabilities. In a kitchen scenario, the perception algorithm
proposed in [6] can segment objects, distinguish between upright and sideways
poses and label each part with one of the labels: top, middle, bottom, handle
or usable area. This reduces the search space for robot grasp generation, pre-
diction and planning. The object category can be obtained using any object
classifier. However, due to good results for grasping point prediction, we em-
ploy the manifold-based graph kernel approach proposed in [20]. It ensures a
good appearance-based predictor for the object category. The prediction has the
form of a probability distribution on object categories. Our kitchen setup consid-
ers 11 object categories: {pan, pot, cup, glass, bowl, bottle, can, hammer, knife,
screwdriver, cooking tool}. We pick the category with the highest probability to
characterize the object in the grasping scenario.

Further, our kitchen setup includes a set of 7 tasks: {pass, pourOut, pourIn,
pickPlaceInUpright, pickPlaceInUpsidedown, pickPlaceInSideways, pickPlaceOn}.
The task pass refers to grasping and passing the object to a human in the ex-
act same pose, the tasks pourOut and pourIn to the actions of pouring liquid
out of and inside the object, respectively, after grasping it. Tasks pickPlaceIn-
Upright, pickPlaceInUpsidedown and pickPlaceInSideways refer to picking the
object from the current pose and placing it inside a shelf in the upright, upside-
down and sideways poses, respectively. Finally, the task pickPlaceOn is defined
as picking and placing the object on a surface in the same initial pose.

The scene is represented as a set of relational visual observations. For the
scenario in Fig. 1 they are encoded using probabilistic facts, such as 1.0 ::
object(o), stating that an object o is observed with probability 1.0. The ob-
servation object(o) is a logical atom, while object/1 is a predicate symbol of
arity 1. The object identifier o is a constant and represents a ground term. Terms
can also be variables when denoted in uppercase. Ground atoms or facts, such as
object(o) and part(o, p1, top), do not contain variables and represent partic-
ular relations. They possess truth-values. Relational visual observations for our
scenario are illustrated in Example 1. We consider that the task is given and not
observed, thus it has probability 1.0. We represent it as a probabilistic ground
term, e.g., 1.0 :: task(o, t1, pickPlaceOn).

Example 1. Relational representation for our scenario in Fig. 1:
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1.0::object(o).

0.8::category(o,bottle).

0.5::pose(o,upright).

0.9::contains(o,full).

0.5::part(o,p1,top).

0.9::part(o,p2,middle).

0.5::part(o,p3,bottom).

1.0::task(o,t1,pourOut).

1.0::task(o,t2,pass).

1.0::task(o,t3,pourIn).

1.0::task(o,t4,pickPlaceInUpsidedown).

1.0::task(o,t5,pickPlaceInUpright).

1.0::task(o,t6,pickPlaceInSideways).

1.0::task(o,t7,pickPlaceOn).

1.0::affords(o,t1).

1.0::affords(o,t2).

0.0::affords(o,t3).

· · ·
1.0::affords(o,t7).

0.0::impossible(o,t1).

0.0::impossible(o,t2).

1.0::impossible(o,t3).

1.0::impossible(o,t4).

· · ·
0.0::impossible(o,t7).

0.1::grasp(o,t1,p1).

1.0::grasp(o,t1,p2).

0.01::grasp(o,t1,p3).

0.5::grasp(o,t2,p1).

1.0::grasp(o,t2,p2).

0.01::grasp(o,t2,p3).

0.01::grasp(o,t3,p1).

0.01::grasp(o,t3,p2).

0.01::grasp(o,t3,p3).

· · ·
0.5::grasp(o,t7,p1).

1.0::grasp(o,t7,p2).

0.01::grasp(o,t7,p3).

3.1 Object category-task (CT) affordances and constraints

We define an object-task affordance as the task afforded by an object cate-
gory considered in our robot grasping setup. We keep in mind the manipulation
capabilities of the gripper mounted on a robotic arm, in our case a KUKA
LightWeight Robot (LWR) with two fingers [21]. Fig. 3 illustrates a set of 46
common sense affordances marked with X in the form of a table. They allow
us to relate object-task concepts based on human experience and inspired by
AfNet: The Affordance Network (www.theaffordances.net). By looking at the
table, we can extract possible object-task affordance pairs which can be encoded
as logical rules. For example the rule affords(X, T)← bottle(X), task(T, pass)
states that a bottle indicated by variable X affords the passing task indicated by
variable T. The set of affordances can be extended to include new object or task
categories.

We can further make abstraction of fine-grained object categories by plugging
in an object category ontology as in Fig. 4 (top). The super-categories in the
ontology are defined based on the object functionality, and are represented by:
{kitchenContainer, dish, openContainer, canister, container, tool, object}. For
example, the super-category dish subsumes the categories bowl, glass and cup.
Similarly, tasks can be grouped in super-tasks such as: {pickPlaceIn, pickPlace,
pour, task} (Fig. 4 bottom). The super-task pour refers to the action of pouring
the liquid in or out, while the super-task pickPlaceIn subsumes the tasks pick-
PlaceInUpright, pickPlaceInUpsidedown and pickPlaceInSideways. The benefit

www.theaffordances.net
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containercontainercontainercontainer

affordances
task/object
affordances
task/object
affordances
task/object

open containeropen containeropen containeropen container
canistercanister

tooltool
task/objecttask/objecttask/object dishdish kitchenkitchen

canistercanister

cup glass bowl pan pot bottle can hammer knife screwdr cooking

passpass ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pourpour
in ✓ ✓ ✓ ✓ ✓ - - - - - -

pourpour
out ✓ ✓ ✓ - - ✓ ✓ - - - -

upright ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - -

p&p
in upsidedown ✓ ✓ ✓ - - - - - - - -

p&p
in

sideways - - - - - - - ✓ ✓ ✓ ✓

on ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 3: Object-task affordances are marked by X, constraints by −.

of exploiting ontological structure is that we can make abstraction of the fine-
grained object categories and tasks. Ontologies are symbolic high-level knowledge
which allows a compact representation of the affordance model by generalizing
over similar object and task categories in a natural and straightforward way. As
a result, they allows us to experiment with a wide range of objects and better
deal with missing, uncertain or inaccurate information.

Ontologies can be translated into deterministic logical rules and directly used
by our learner. For example, supercategory(X, container)← category(X, bottle)
states that “any bottle is a container”, pour(T)← pourIn(T) specifies that “any
task of pouring liquid in to fill some object is a pouring task”. The argu-
ments X and T are variables and indicate the object identifier and task, re-
spectively. We can then generally state that any container affords the task of
pouring, i.e., affords(X, T)← container(X), pour(T). However, this is not al-
ways true, as pouring liquid in a canister is an almost impossible task, even
for a human. We encode such constraints via the impossible/2 predicate. The
rule impossible(X, T)← canister(X), pourIn(T) states that a canister does not
afford the task of pouring in. Constraints are marked in Table 3 by −.

A first goal of this work is to improve robot grasping by learning relational
object-task affordances and constrains from data. This is done by specifying two
separate learning problems. The CT affordance learning problem is indicated by
keeping as learning target the affords(X, T) predicate, while the CT constraint
problem via the target predicate impossible(X, T).

3.2 Object part-category-task (PCT) affordances

Further, depending on the object properties, its parts and task, the object should
be grasped in different ways. To reason about good pre-grasp configurations given
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object
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bottle,
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pickPlace pour

p&pIn p&pOn

p&pInUpright p&pInUpsidedown

"put can in box" "put cup on table"

pass

pourOutpourIn

"put cup in  cupboard"

"put water in cup"

"empty cup"

"pass cup to human"
p&pInSideways

Fig. 4: Object category ontology (top) and task ontology (bottom).

the intended task, we use semantic object parts. Similar to object categories,
pre-grasps can be associated to specific tasks. Each task activates grasping affor-
dances according to associations between object categories, object parts and grip-
per poses. Besides object category-task associations, the second goal of our work
is to learn object part-category-task relations. While the first are general pair-
wise affordances, the second are grasp-related triplets that may rely on the first.
For example, the rule grasp(X, T, P)← affords(X, T), pickPlaceInUpsidedown(T),
glass(X), pose(X, upsidedown), part(X, PId, bottom) states that a glass X in the
upside-down pre-grasp pose affords the task T of picking and placing inside
the cupboard in an upside-down post-grasp pose by grasping it from the bot-
tom. The PCT affordance learning problem is specified via the target predicate
grasp(X, T, P). We can make abstraction of fine-grained object categories and
tasks by plugging in the object category and task ontologies here as well. Most of
the times we can state that any dish in an initial upside-down pose can be picked
and placed inside a cupboard in any pose by grasping it from the bottom, i.e.,
grasp(X, T, P)← affords(X, T), pickPlaceIn(T), dish(X), pose(X, upsidedown),
part(X, PId, bottom). Thus, the introduction of super-categories and super-tasks
reduces considerably the number of rules rendering much more compact model
which are easier to interpret.
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3.3 The affordance learning problem

Using the visual observations introduced in Example 1 one can learn several
affordances, e.g., that the bottle affords pick and placing on a surface in the
initial upright pose and, in this case, it should be grasped from the middle or
from the top (from the bottom the gripper might hit the shelf below, from the
top with a smaller probability since the bottle is full and a bit difficult to grasp),
that it affords pouring out, and, in this case the bottle should be grasped from
the middle (from the bottom the gripper might hit the shelf below, from the
top it is rather difficult even for a human to pour out). Further, constraints can
be also inferred, e.g., the bottle cannot be poured in liquid or placed upside-
down. In order to do so, we assume to have labeled examples: object category-
task relations specified via the target predicate affords/2, object category-
task constraints via impossible/2, and object part-category-task affordances
indicated by the target predicate grasp/3.

Ground target predicates or learning examples for each problem are illus-
trated in Example 1. Each learning problem is tackled in turn. Every learning
example is a fact labeled with a target probability. In our scenario, target atom
1.0 :: affords(o, t1) states that bottle o allows pouring out with maximum
probability and is a learning example for the CT learning problem. Target label
1.0 :: grasp(o, t1, p2) is a learning example for the PCT problem and asserts
that the bottle can be grasped by the middle part p2 with probability 1.0. The
resulting set of probabilistic ground facts from all the scenarios corresponding
to one learning problem represent input data for our probabilistic rule learner.
For example, for the CT affordance problem, the learner takes as input features
all grounded object, category, pose, containment and task predicates and target
affords/2 predicates, while for the PCT affordance problem it takes, in addi-
tion as input features all grounded parts and as targets the grasp/3 predicates.
In our learning from entailment setting, probabilistic ground targets are positive
learning examples. ProbFOIL+ derives negative examples automatically by tak-
ing combinations of possible values for the target arguments. A sampling step is
performed such that the number of negatives balances the number of positives.

4 Approach: probabilistic rule learning

Given the representation of our input and output we employ probabilistic rule
learning for affordance learning. The learned probabilistic rules would have the
form x :: target← body, where the target is represented, for example, by the
predicate affords(X, T) in the CT affordance learning problem and the body is
represented by the set of pre-grasp configurations w.r.t the object category, pose,
containment and task. The set of rules obtained are used to predict grounded
target predicates. We proceed with learning from entailment since our examples
are facts that are probabilistically entailed by the theory. This setting is incor-
porated in the probabilistic rule learner ProbFOIL+. It combines the principles
of the rule learner FOIL with the probabilistic Prolog called ProbLog [11] and
is capable of learning probabilistic rules from probabilistic ground input facts.
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Because ProbFOIL+ is a natural probabilistic extension of ILP and rule learning
with respect to probabilistic data, we employ it to learn relational affordances.
ProbFOIL+ generalizes FOIL, nFOIL [14], mFOIL [12] and ProbFoil [7]. Its
output is a probabilistic classifier in the form of a set of generalized rules that
returns a probabilistic target atom.

The ProbFOIL+ algorithm directly generalizes the mFOIL rule learner. It
follows a typical sequential covering approach where the outer loop of the al-
gorithm starts from an empty set of clauses and repeatedly adds clauses to the
hypothesis until no more improvements are observed with respect to some global
scoring function (e.g. accuracy, recall or F1-measure). The clause to be added
is obtained in a greedy manner by performing beam search using m-estimate
such that it maximizes a local scoring function using a refinement operator.
Each clause is learned in a greedy manner by performing beam search using m-
estimate as a local scoring function. What sets ProbFOIL+ apart from mFOIL is
its support for probabilistic data by generalizing the concepts of true/false pos-
itive/negative to a probabilistic context. In addition, it performs an additional
step of parameter learning that allows it to learn rules that express probabilistic
relationships.

While ProbLog and Prolog assume that the rules are definite clauses, in
ProbFOIL+ we use probabilistic rules. We note that all facts for such rules are
independent of one another, and the probability is determined by the rule learn-
ing algorithm. ProbFOIL+ uses versions of standard scoring functions for rule
learning. As the global scoring function, which determines the stopping criterion
of the outer loop, we use F1 measure. The local scoring function is based on the
m-estimate, a variant of precision that is more robust against noise in the train-
ing data. Both metrics are based on the number of examples correctly classified
as positive (true positives) and the number of examples incorrectly classified as
positive (false positives) which are upgraded for use in a probabilistic setting.
While in a deterministic setting, each example ei has a 1/0 target classification,
in ProbFOIL+ it has a probability value pi. This means that every example
contributes pi to the positive part of the dataset and (1 pi) to the negative
part of the dataset, which generalizes the deterministic setting with pi = 1 for
positive and pi = 0 for negative examples. ProbFOIL+ defines we define the
positive part of a dataset of size M as P =

∑M
i=0 pi and the negative part as

N =
∑M

i=0 1− pi. The same approach generalizes the predictions of a model
to the probabilistic setting where a hypothesis H will predict a value pH,i for
example ei instead of 0 or 1. In this way the rule learner uses a probabilistic
version of the true positive and false positive rates of the predictive model. If
H overestimates the target value of ei, that is, pH,i > pi then the true positive
part will be maximal, that is, equal to pi. The remaining part pH,i − pi, is part
of the false positives. If H underestimates the target value of ei then the true
positive part is only pH,i and the remaining part pi − pH,i contributes to the
false negative part of the prediction.

In order to avoid learning large hypotheses with many clauses that only have
limited contributions, ProbFOIL+ uses a significance test, used also by mFOIL.
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It is a variant of the likelihood ratio statistics. As a local stopping criteria for
finding a viable next candidate, the clause must have a refinement that has a
higher local score than the current best rule, has a significance that is high
enough (according to a preset threshold), and has a better global score than the
current rule set without the additional clause.

As input we provide ProbFOIL+ with the target predicate to be learned
(e.g. affords/2) and a description of the refinement operator in terms of mode
declarations. For example, task(+,+, c) indicates that the first two arguments
should be variables that already exist in the clause, and the third argument is to
be replaced by a constant. ProbFOIL+ then proceeds by iteratively extending
the clause with one literal, pruning the least promising candidates at each step,
until no more improvement can be made.We refer to the ProbFOIL+ paper for
more details.

5 Experiments

We experiment on task-dependent robotic grasping datasets for kitchen-related
scenarios introduced in [2]. We consider two datasets to quantitatively investigate
the robustness and power of generalization of ProbFOIL+ for learning grasping
affordances. The synthetic dataset denoted SSY N considers flawless detection of
objects from 3D meshes. The object points are distributed uniformly on the ob-
ject surface according to their size by applying the midpoint surface subdivision
technique. The object pose, its parts and object containment are manually la-
beled, while the object category is estimated using the global similarity classifier
in [2]. The dataset is synthetic and actual grasps are not executed. It contains
41 objects belonging to all categories in our ontology and 102 grasping scenar-
ios. This synthetic dataset serves as an upper-bound comparison scenario to the
other realistic scenarios and allows an extensive evaluation of the generalization
capabilities of the affordance learner.

The other dataset is obtained with the ORCA simulator [3] which provides
sensors (laser range camera Asus Xtion PRO and the Universal Gripper WSG
50 force sensor), the robotic arm (KUKA LightWeight Robot (LWR)), objects
and interface to a physics engine (Newton Game Dynamics library) for robot
grasping simulation. The other modules that we use on top of ORCA, i.e., object
completion, part and pose detection, category recognition and the tree-based
motion planner (available in the Open Motion Planning Library), are external
to ORCA and interfaced with the simulated robot. The datasets contain 25
objects belonging to all categories, except pot and cooking tool, and 134 grasping
scenarios. We assume all containers empty. Each object is placed on top of a
table. We obtain the dataset SREAL by estimating object pose, category and
its parts safter the point cloud completion. It may have missing parts, when
they are occluded or not detected, or extra parts according to the limitations of
the detection algorithm. The pose and the parts have associated a probability
according to the limitations of the detection algorithms.
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CT affordances CT constraints PCT affordances

Dataset SSY N SREAL SSY N SREAL SSY N SREAL

No rules 40 15 42 41 33 22

Accuracy % 98 98 97 85 95 93

F1 0.86 0.86 0.82 0.83 0.52 0.54

Recall 0.87 0.77 0.77 0.76 0.37 0.58

Table 1: Number of learned rules, accuracy, F1 and recall for fine-grained cat-
egories and tasks. Input features used are object parts, category and executed
task (without pose and containment).

CT affordances CT constraints PCT affordances

Dataset SSY N SREAL SSY N SREAL SSY N SREAL

No rules 51 16 39 52 81 21

Accuracy % 98 98 98 98 97 96

F1 0.89 0.89 0.86 0.84 0.83 0.62

Recall 0.79 0.80 0.77 0.89 0.76 0.52

Table 2: Input information, besides object parts, category and executed task,
includes object pose and containment. Number of learned rules and accuracy
are reported for fine-grained categories and tasks.

Our goal is to investigate if we can recover affordances from labeled data and
to evaluate is these rules are good. In order to do so, we manually inspect the
learned rules for the 3 datasets and compare them against the affordance table.
Besides the number of correct rules recovered, we report recall, F1 measure,
accuracy which are calculated based on classified probabilistic examples. The
goal of this work is to focus on a more qualitative evaluation, and thus, we
use all available data for training. Reported evaluation results are obtained by
optimizing F1 measure on this data.

5.1 Results for object category-task (CT) affordances

We obtain CT affordances by specifying affords/2 as the learning target. This
gives a dataset of 714 examples for SSY N , and 882 examples for SREAL. As
input information we consider two settings. In a first setting we use only ob-
ject category, parts and task in order to asses the importance of the object
category and pose for affordances. In the second setting we include the later
as well. Fig. 5 shows part of learned rules on SSY N for the first input setting
by employing object fine-grained categories. A learned rule in the discovered
set is 0.78 :: affords(A, B)← category(A, cup), task(A, B, pourIn). We obtain
40 rules out of which 38 are fine-grained affordance rules (from 44 possible cf.
Table 3) and an accuracy of 98% as Table 1 shows. We note that our dataset
did not contain positive targets for pot-pourIn and pan-pourIn. The other affor-
dances were not recovered because they depend also on the object initial pose
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a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,cup).                     0.73

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,glass).                   0.54

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,bowl).                    0.67

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,pot).                      0.73

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,bottle).                   0.58

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,can).                     0.63

a"ords(A,B)⇽ task(A,B,pickPlaceOn), category(A,knife).                    0.69

…

a"ords(A,B)⇽ category(A,cup), task(A,B,pickPlaceInUpsidedown).    0.78

a"ords(A,B)⇽ category(A,bowl), task(A,B,pickPlaceInUpsidedown).   0.75

a"ords(A,B)⇽ category(A,glass), task(A,B,pickPlaceInUpsidedown).  0.82

a"ords(A,B)⇽ category(A,cup), task(A,B,pourIn).                               0.78

a"ords(A,B)⇽ category(A,bowl), task(A,B,pourIn).                              0.75

a"ords(A,B)⇽ category(A,glass), task(A,B,pourIn).                             0.81

a"ords(A,B)⇽ supercategory(A,dish), task(A,B,pickPlaceOn).               0.73 

a"ords(A,B)⇽ supercategory(A,canister), task(A,B,pickPlaceOn).          0.54

a"ords(A,B)⇽ supercategory(A,tool), task(A,B,pickPlaceOn).                0.62

… 

a"ords(A,B)⇽ supercategory(A,dish),task(A,B,pickPlaceInUpsidedown).0.82

a"ords(A,B)⇽ supercategory(A,dish),task(A,B,pourIn).                          0.88

Fig. 5: Examples of CT affordances learned for SSY N using object fine-grained
categories (top) and super-categories (bottom).

a"ords(A,B)⇽ task(A,B,pickPlaceOn), supercategory(A,object).                            0.63

a"ords(A,B)⇽ task(A,B,pass), supercategory(A,object).                                        0.77

a"ords(A,B)⇽ task(A,B,pickPlaceInsideSideways), supercategory(A,tool).             0.81

a"ords(A,B)⇽ task(A,B,pickPlaceInsideUpright), supercategory(A,dish).                0.84

a"ords(A,B)⇽ task(A,B,pickPlaceInsideUpright), supercategory(A,canister).           0.86

a"ords(A,B)⇽ task(A,B,pickPlaceInsideUpright), supercategory(A,openContainer).0.87

a"ords(A,B)⇽ task(A,B,pourOut), supercategory(A,canister).                                0.87

Fig. 6: Examples of learned CT affordances for SREAL using super-categories.

and its containment. When we include them, the number of meaningful affor-
dances learned does not increase. The learner discovers more category-task-pose
(specialized CT affordances with the pose refinement), task-pose dependencies,
but not new category-task affordances. This indicates that the pose is not so
relevant for the CT pairs. The extra 2 input features do not notably impact
the evaluation measures, which also proves, that the dataset, even synthetic, is
not perfect. Next, using super-categories, we can summarize the set of 38 fine-
grained affordances with 15 rules, while keeping the same accuracy, recall and
F1-measure. Learned supercategory-task affordances are more general, specif-
ically cup, glass, bowl are replaced by dish, bottle and can by canister, and
hammer, screwdriver, cooking tool and knife by tool. Examples of more general
rules learned are illustrated in Fig. 5.



12 Laura Antanas, Anton Dries, Plinio Moreno, Luc De Raedt

For the realistic dataset we can recover 35 fine-grained affordances out of
39 possible (cf. Table 3 without pot and cooking tool which are not included
in the datasets) for SREAL. We obtain 2 affordance rules for category pot
which is not in the dataset (according to Table 3 one is correct, the other
not), but none for pickPlaceInUpsidedown. This is due to object misclassifica-
tion. We note that 22 of these affordances are summarized by 2 rules, i.e., 0.44 ::
affords(X, T)← task(X, T, pickPlaceOn) and 0.72 :: affords(X, T)← task(X, T, pass).
In the body appears only the task because the rule applies to all categories (11).
This is due to lack of negative examples.

By using super-categories, we can replace the set of fine-grained rule with 7
generalized rules keeping similar evaluation values. The obtained rules are more
general and can apply to new object categories. ProbFOIL+ does not learn again
any rules for task pickPlaceInUpsidedown and pourIn. Examples of general rules
using super-categories for SREAL are illustrated in Fig. 6.

5.2 Results for object category-task (CT) constraints

To obtain CT constraints we give as target predicate impossible/2. It repre-
sents the inverse of affords/2 probabilistically in the sense that what is af-
fordable with a very small probability it is impossible with a high probability.
We note that we obtain 42 constraint rules for SSY N and 41 for SREAL using
fine-grained categories, without pose and containment. When we include the
later 2 features, the model slightly improves in terms of rules, but also accu-
racy. A mistake that the learner returns is the constraint 0.8 :: impossible(X, T)
← task(X, T, pickPlaceInUpsidedown), category(X, cup). This constraint holds
only when the cup is full. If we include pose and containment, this constraint
is removed. Looking at the evaluation results as well, we note that for CT con-
straints the initial pose of the object and its containment play a fairly important
role. By using super-categories the learned affordance model reduces from 42
rules to 13 rules for SSY N while keeping similar accuracy, F1 and recall. For
SREAL we obtain 18 rules instead of 41 with better evaluation values.

5.3 Results for object part-category-task (PCT) affordances

The target to be learned is grasp/3. This gives us a dataset of 2093 examples
for SSY N and 2674 for SREAL. We focus on the setting that considers as in-
put information the task, object category, parts and pose, since the part from
which to grasp an object for a given task highly depends on the pose as well, as
tables 1 and 2 show. Experiments using ProbFOIL+ give us a grasping model
of 81 affordance rules for SSY N and 21 rules for SREAL (when pose is consid-
ered). By introducing super-categories the grasp-based models are generalized
from 81 rules to 31 and from 21 to 17, respectively, while keeping a close accu-
racy. A part-category-task affordance learned from SSY N is for example 0.8 ::
grasp(A, B, C)← part(A, C, usable area), supercategory(A, tool), task(A, B, pass).
More learned rules are illustrated in Fig. 7.
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grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,canister), part(A,C,middle). 0.78

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,canister), part(A,C,bottom), pose(A,upsidedown). 0.86

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,canister), part(A,C,top), pose(A,upright). 0.88

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,canister), part(A,C,top), pose(A,sideways). 0.91

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), part(A,C,middle). 0.85

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), pose(A,upsidedown), part(A,C,bottom). 0.85

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), pose(A,upsidedown), part(A,C,handle). 0.86

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), pose(A,upright), part(A,C,top). 0.88

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), pose(A,upright), part(A,C,middle). 0.81

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,dish), pose(A,sideways), part(A,C,middle). 0.83

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,kitchenContainer), pose(A,sideways), part(A,C,handle). 0.84

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,kitchenContainer), pose(A,upright), part(A,C,handle). 0.85

grasp(A,B,C)⇽ stask(A,B,pickPlaceOn), scategory(A,tool), part(A,C,handle). 0.83

grasp(A,B,C)⇽ stask(A,B,pickPlaceInsideUpsidedown), scategory(A,dish), pose(A,sideways), part(A,C,middle). 0.95

grasp(A,B,C)⇽ stask(A,B,pickPlaceInsideUpsidedown), scategory(A,dish), pose(A,upsidedown), part(A,C,middle).0.94

grasp(A,B,C)⇽ stask(A,B,pourIn), scategory(A,dish), pose(A,upsidedown), part(A,C,middle). 0.92

grasp(A,B,C)⇽ stask(A,B,pourIn), scategory(A,dish), pose(A,upsidedown), part(A,C,bottom). 0.94

grasp(A,B,C)⇽ stask(A,B,pourIn), scategory(A,dish), pose(A,sideways), part(A,C,middle). 0.94

Fig. 7: Examples of PCT affordances learned for SSY N using super-categories
and super-tasks.

6 Conclusions

Our previous experiments on robot grasping with respect to the intended high-
level task confirm the importance of high-level reasoning and world knowledge
as opposed to using solely local shape information for robot grasping. The use
of affordances and object/task ontologies plays a key role in obtaining better
robot grasping. In this paper we propose a probabilistic rule learning approach
to learn rule-based affordances that generalize over similar object parts and ob-
ject/task categories and can be used to semantically reason in task-dependent
robot grasping. Our experiments show that we can learn different reliable rela-
tional affordances from realistic data.
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12. S. Džeroski. Handling imperfect data in inductive logic programming. In SCAI,
pages 111–125, 1993.

13. J. Kulick, M. Toussaint, T. Lang, and M. Lopes. Active learning for teaching a
robot grounded relational symbols. In IJCAI, pages 1451–1457. AAAI Press, 2013.

14. Niels Landwehr, Kristian Kersting, and Luc De Raedt. nfoil: Integrating näıve
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