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Abstract. In this work is presented a dataset of humans’ head and eye gaze acquired with Pupil Labs gaze-
tracking glasses and Optitrack motion capture system. The dataset contains recordings of adult subjects in 
dyadic interaction task. During the experiment, the subjects are asked to pick up an object and, based on the 
randomly defined instructions, to place it on the table in front of her/him or to give the object to a person 
sitting across the table. If the object is handed over, the second person takes the object and places it on the 
table it in front of her/him. The dataset is intended to be used to model the behavior of the human’s gaze 
while interacting with another human and implement the model in a controller of a robot for dyadic 
interaction with a humans.  

1 Introduction  
Understanding human movements, actions, and 
intentions are important when two actors (human or 
robot) share a common workspace. In a human-human 
interaction (HHI) this process is called nonverbal 
communication in a dyadic scenario. This form of 
nonverbal communication is partially enabled by action 
observation. One of the main cues in action 
understanding is gaze which can influence observer’s 
selection of motor activities. This explains why the 
attention should be paid to proper modeling of the 
robot’s gaze behavior that needs to be easily 
understandable by humans.  

Nonverbal signals are an integral part of all our 
communicative endeavors. In some cases, they are the 
most significant part of our message. In HHI, 
communication through nonverbal channels also 
influences the coordination of joint activity. We believe 
this is the same in the case of human-robot interaction 
(HRI). So the design of readable human-like behavior 
will support efficient and robust teamwork. Motivated 
by a desire to develop effective robot teammates for 
people, one of our goals is to model human-like gaze 
behavior as an integral part of nonverbal 
communication in HRI.  

In [1] is shown that implicit nonverbal 
communication positively impacts human-robot task 
performance with respect to efficiency, and robustness 
to errors that arise from miscommunication. Authors in 
[2, 3] validated the use of gaze in addition to body 
pose cues as means of predicting human action. Thus 
understanding and effectively using nonverbal cues is 
of great importance to success for robots in 
dyadic tasks. 

The initial step to model gaze behavior is to acquire 
quantitative data of humans' movement during dyadic 
interaction task. For this purpose, we prepared the 
experiment with two humans that have to interact in 
order to accomplish their tasks (Fig. 1.). In this 
experiment, we measured head and eye gaze.  

 

Fig. 1. Interaction in dyadic scenario 
Paper [4] presents a data set that captures the gaze 

patterns of humans solving a recognition task. Eye 
movements were recorded using static gaze tracker, and 
the participants were looking at the content displayed 
on the LCD display. In [5] is presented the MPIIGaze 
dataset that contains 213,659 images collected from 15 
participants during natural everyday laptop use over 
more than three months. Another publicly available 
dataset, called Eyediap [6], contains 94 video 
sequences of 16 participants looking at three different 
targets (discrete and continuous markers displayed on a 
monitor, and floating physical targets) under both static 
and free head motion. All the existing dataset are 
missing the gaze information during the interaction 
scenario. With this work, we tend to bridge this gap and 
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to use it as a base for modeling the behavior of a 
humanoid robot. 

Mutual gaze awareness is important in 
communication and collaboration in group activities. 
Prior works were mainly showing different ways of 
how to analyze gaze cues visually. Some recent studies 
are analyzing the behavior of two users in different 
scenarios by measuring the gaze using head mounted 
gaze tracker devices. Paper [7] gives early work-in-
progress that explores the effects of gaze awareness on 
gameplay, in particular when the gaze of one or more 
players is augmented over the game and revealed to 
others. Authors in the paper [8] presented an 
exploratory study to understand how gaze cues can 
enhance collaboration between two users in front of a 
large shared display.  

This paper presents the dataset of the head and eye 
gaze together with image sequences of eyes and scene 
view collected during the HHI tasks. In Section II is 
explained the task humans have to accomplish during 
which the movements are recorded. Section III describes 
hardware and software setup used to collect the data, 
while Section IV explains the details of the collected 
dataset. The conclusion and the future work is given in 
Section V. 

2 Dyadic interaction task  

Findings in neuroscience [9] suggest that the human 
motor control combines state estimation, feed-forward, 
and multiple feedback loops operating at different 
speeds. Its structure is highly modular and is believed to 
rely on the combination of motor primitives to generate 
complex movements. 

Authors in [11] used coupled dynamical systems 
for the realization of coordinated complex movements 
of the robot's upper body when performing reaching 
and grasping motion in the presence of obstacles. The 
computational model of the eye–arm–hand coupling is 
based on human motion data collected with subjects 
performing a prehensile motion with obstacle 
avoidance. The coupling between dynamical systems 
is learned from the experiment with a single human 
performing reaching and grasping tasks. Paper [11] 
shows the experiment with a human performing 
bimanual movements and with two humans each 
performing reaching movements at the same time. In 
the case of dyadic interactions, the results indicated 
that co-actors synchronize the timing of their 
movements, although the task in itself is discrete 
and non-rhythmic.  

With this experiment, we want to create a basis for 
research on how to integrate this coupling in robot’s 
motor control system, in scenarios where both human 
and robot, share the same space and objects during task 
execution. For that purpose, the participants are asked 
to assemble a pair of towers inside a circle on the paper 
in front of them. Both towers are assembled from 3D 
printed objects of different shape or color as shown in 
Figure 2. The objects are marked with numbers 1-3. 

The numbers are used to define the position of the 
object in the tower.  

 

Fig. 2. Objects for assembling the tower. 

In the beginning, two stacks of three objects are 
placed next to each participant. A stack of objects is 
positioned below the table top in order to occlude them 
from the other person. Next to the stack of objects is 
given a paper with the desired order of the objects to 
build the tower. (Fig. 3.). 

When the assembly of towers starts, the participants 
are asked, one at a time, to pick the first object from the 
stack. If the number of the object matches the number in 
their next level of the tower, they should use the object 
for their tower. Otherwise, they are instructed to give, 
i.e. handover the object to a teammate. Thus, there are 
two types of actions the participant can execute: (i) intra-
personal action (pick and place an object on its tower, 
i.e. placing action) or (ii) inter-personal action (pick and 
handover an object, i.e. giving action). 

 
Fig. 3. Illustration of the initial stack of objects and the task 
given to the participants. 

The towers are defined such that in the case of a 
handover, the object given to another participant is 
always the matching object for her/his next level in the 
tower. After an object is positioned in one of the towers, 
the turn is taken by a second participant. The actions are 
repeated until all the objects are used and both towers are 
assembled. Illustration of the progress of the task with 
the order and the type of action is given in Figure 4.  

Once the assembly is finished, the new task and the 
new initial stack of objects is prepared and given to the 
participants. Each pair of participants had to repeat the 
task four times, i.e. to assemble four different pairs of 
towers.  
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Fig. 4. Example of turn-taking order (left and right participant) 
and type of actions (pick and place or pick and handover) for 
assembling two towers.  

The four tasks are defined in a way that there is always 
a different number of giving actions. This is to prevent the 
subjects to predict the action ahead of time. The goal here is 
to record a natural, unbiased human gaze behavior. The first 
task has two giving and four placing actions, the second 
task has six giving and no placing actions, the third task has 
no giving and six placing actions and the fourth task has 
four giving and two placing actions. Thus, during the 
experiment two participants performed together twelve 
giving and twelve placing actions. 

3 The Data Acquisition Setup  

When observing or scanning immediate surroundings, 
human eyes make jerky saccadic movements and stop 
several times, moving very quickly between each stop. 
The speed of movement during each saccade cannot be 
controlled, and the eyes move as fast as they are 
able [12]. To capture such eye movements, in this 
experiment both participants were wearing Pupil-Labs 
binocular gaze trackers [13].  

During the performed actions, participants’ head gaze 
was recorded using Optitrack motion tracking 
system [14]. Hardware and software setup used to 
acquire dataset is illustrated in Figure 5.  

 

Fig. 5. Experiment hardware and software setup. 

The Pupil Labs binocular gaze tracker is in the form 
of glasses equipped with three cameras. Two cameras 
are recording eyes at ~120Hz. A video stream of the 
egocentric view is recorded at 60Hz. The pupil detection 
algorithm does not depend on corneal reflection 

technique [15] and as reported in [13] the gaze tracker 
should work with users who wear contact lenses and 
eyeglasses. However, we experienced difficulties in 
calibrating the glasses with such participants, and we had 
to choose the participants not wearing glasses and 
contact lenses. Before the recording starts, each 
participant first calibrates his/her gaze tracker using the 
screen calibration method. 

Optitrack motion capture system captures passive 
opto-reflective spherical markers at 120Hz. To record 
head gaze we fixate five opto-reflective markers on each 
glasses. Each group of five markers represented one 
rigid body whose position and orientation in the 
reference frame is being recorded.  

Software setup is composed of following applications. 
For gaze data recording we used Pupil Labs Capture. For 
recording the body movements the Motive software 
platform is used. Since we want to capture synchronous 
data of head and eye gaze it was necessary to merge the 
input from two sensory systems. For that purpose is used 
Lab streaming layer (LSL) library [16]. LSL is designed 
to be a system for unified collection of measurement time 
series of various sensing equipment that handles both the 
networking, time-synchronization, (near-) real-time access 
and optionally the centralized collection.  

In order to use LSL, we developed a Motive2LSL 
application that captures the broadcasted position of the 
markers and rigid bodies tracked within Motive software 
platform. Another application we developed is Sync 
capture application that receives the data measurements 
from two Pupil-Labs glasses and Optitrack cameras and 
records those data together with timestamps of the 
measurements into a file with synchronization 
timestamps. 

4 The Dataset 
We have acquired the data of three pairs, i.e. six 
participants. Participants were adults between 25 and 40 
years of age. Acquisitions were performed at the 
Institute for Systems and Robotics, IST, University of 
Lisbon, during January 2018. The dataset contains: 
‒ a video stream of the egocentric view with associated 
timestamps for both glasses, 
‒ pupil data with gaze positions, pupil positions and its 
timestamps,  
‒ position and orientation of rigid bodies representing 
head gaze with its timestamps and 
‒ synchronization file with timestamps of gaze tracking 
and and motion tracking data. 

In each recording, subjects had to perform 6 actions 
in one task, and each pair of subjects had 4 tasks. Thus, 
we collected the 24 actions in dyad scenario, i.e. 48 gaze 
and head motion for each pair (24 observer’s movements 
and 24 performer’s movements). The recordings are 
repeated for three different pair of humans, and thus we 
collected 72 actions and 144 gaze and head movements. 

Figure 6 illustrates the recorded gaze movement of 
the eyes during the experiment for two different actions 
(placing and giving) and for two different roles 
(performer and observer) of the subject. 
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a) Giving action – performer’s gaze 

    
b) Giving action – observer’s gaze 

    
c) Placing action – performer’s gaze 

    
d) Placing action - observer’s gaze 

Fig. 6. Illustration of data set with an example given by an image sequences showing the gaze of a performer/observer during placing 
and giving actions (green circle represent the recorded gaze points, yellow line represent interpolation between recorded gaze points). 
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5 Conclusion 
A multimodal dataset containing eye gaze and head gaze 
movement during placing and giving actions has been 
acquired using gaze tracking glasses integrated with 
motion capture system. Six adult subjects have 
participated in the recording sessions and made their data 
available for research. The acquired data has sufficient 
quality to investigate the behavior of gaze during dyadic 
interaction task. Our next steps will consist in annotating 
specific timestamps in the recorded movement so 
temporal correlations between important events can be 
established. After annotating the data, we will focus on 
modeling of the gaze behavior in interaction scenarios, 
and implement the model on a humanoid robot platform. 
 

This work was partially supported by EU H2020 project 
752611-ACTICIPATE, UID/EEA/50009/2013 FCT project 
and MNTR project III44008. The authors would like to thank 
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