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Abstract—The impressive results of applying deep neural
networks in tasks such as object recognition, language trans-
lation, and solving digital games are largely attributed to the
availability of massive amounts of high quality labelled data.
However, despite numerous promising steps in incorporating
these techniques in robotic tasks, the cost of gathering data
with a real robot has halted the proliferation of deep learning
in robotics. In this work, a plugin for the Gazebo simulator is
presented, which allows rapid generation of synthetic data. By
introducing variations in simulator-specific or irrelevant aspects
of a task, one can train a model which exhibits some degree
of robustness against those aspects, and ultimately narrow the
reality gap between simulated and real-world data. To show a
use-case of the developed software, we build a new dataset for
detection and localisation of three object classes: box, cylinder
and sphere. Our results in the object detection and localisation
task demonstrate that with small datasets generated only in
simulation, one can achieve comparable performance to that
achieved when training on real-world images.

I. INTRODUCTION

Modern robots can be programmed manually to perform
rather complex manipulation tasks, leading them to thrive in
rigidly constrained environments such as factory plants. Yet,
autonomously interacting with novel objects remains to this
day a challenging task due to perceptual limitations in visual
and tactile sensors and environmental constraints such as self-
occlusion [1]. Moreover, in order for robots to transition from
simulated into real-world applications it is important that they
become robust to external disturbances.

Classical machine-learning for computer vision approaches
usually involve extracting some high-level feature representa-
tion from images in order to try to solve the foregoing chal-
lenges. However, the emergence of deep neural networks and
more specifically convolutional neural networks has caused a
paradigm shift, achieving excellent results using raw pixel data
directly, thus avoiding feature engineering. The main issue
with such an approach is usually associated with the large
amount of data required to train these networks. Furthermore,
manually annotating results is a slow and tedious process.
An alternative is to resort to virtual simulations in order to
automate data acquisition and labelling. Simulating a robotic
experiment is generally much faster than real-life execution,
thus accelerating the data acquisition process. However, even
the most sophisticated existing simulator fails to flawlessly
capture reality.

Fig. 1. An example of a synthetically generated scene comprising multiple
parametric shapes, overlaid with automatically generated ground truth anno-
tations

For this reason, learning models that are trained solely on
pure synthetic data tend to overfit the simulated domain and
generalise poorly to the real world.

In this work we explore the concept of domain randomi-
sation, which addresses the aforementioned issue, with the
goal of generating synthetic datasets suitable for training deep
neural network object detectors. We explore several domain
randomisation techniques employed in recent research which
led to promising results with regard to overcoming the reality
gap. Rather than attempting to perfectly emulate reality, one
can create models that strive to achieve robustness to high
variability in the environment. Domain randomisation is a
simple yet powerful technique for generating training data for
machine-learning algorithms. At its core, it consists in syn-
thetically generating or enhancing data in order to introduce
random variance in the environment properties that are not
essential to the learning task. This idea dates back to at least
1997 [2], with Jakobi’s observation that evolved controllers
exploit the unrealistic details of flawed simulators. His work
on evolutionary robotics studies the hypothesis that controllers
can evolve to become more robust by introducing random
noise in all the aspects of simulation which do not have a
basis in reality, and only slightly randomising the remaining
which do.

It is expected that given enough variability in the simulation,



the transition between simulated and real domains is perceived
by the model as a mere disturbance, to which it has to become
robust. This is the main argument for this method. It has
been established that this approach enables achieving valuable
generalisation capabilities.

In contrast with previous approaches which were mainly
applied to end-to-end visuomotor control during grasping
[3], we analyse state-of-the-art object detection deep learning
methods performance when trained mostly on synthetic data.
Being capable of performing object detection is closely related
to the ability to reason about and interact with dynamic
environments (for example [4]).

We provide a set of tools to interact with Gazebo1 [5],
a simulation environment well-known in robotic research,
in order to allow a programmatic generation of scenarios
employing the principle of domain randomisation for posterior
training of deep neural networks. Furthermore, we present
one such example application and study the performance of a
state-of-the-art neural network in a simple three-class object
detection task, when trained on the resulting simulated dataset.

The remainder of this paper goes as follows: in section
II we clarify the main concepts and overview the related
work on deep object detection and domain randomisation. In
section III we introduce a novel domain randomisation plugin
for Gazebo that allows generating large datasets suitable for
training deep object detectors. In section IV we perform a
set of experiments that validate the usability of the proposed
domain randomisation plugin. Finally, in section V we wrap
up with some conclusions.

II. RELATED WORK

In order to fully understand the context in which we can
apply domain randomisation to improve robotic perception we
provide an overview of recent relevant research. We begin by
analysing the rise of convolutional neural networks, a deep
learning framework widely used in image processing tasks,
with an emphasis on object detection architectures. Then, we
present the main advances in the field of domain randomisation
for the generation of large synthetic datasets.

A. Deep Neural Network Object Detection Architectures

As of today, Convolutional Neural Networks (CNNs) are the
state-of-the-art in visual recognition. Several architectures for
CNNs have been proposed recently in part due to ImageNet’s
Large Scale Visual Recognition Challenge (ILSVRC) [6],
which evaluates object detection and localisation performance.
Analogously, the PASCAL VOC challenge [7] focuses on the
same problems, at the outset.

1) R-CNN and Fast R-CNN: A three-step pipeline was
proposed in 2013 [8] in an attempt to improve the state of the
art results in PASCAL VOC 2012, achieving a performance
gain of over 30% in mean Average Precision (mAP) when
compared to the previous best result. Their proposed method
entitled Regional CNN (R-CNN) first extracts region proposals

1http://gazebosim.org/, as of April 11, 2018

from the image, and then feeds each region to a CNN with a
similar architecture to that of [9]. The output of the CNN is
then evaluated by a Support Vector Machine (SVM) classifier.
Finally, the bounding boxes are tightened by resorting to a
linear regression model. The output of their network is a
set of bounding boxes surrounding the objects of interest
and the respective classification. The region proposals are
obtained through selective search [10]. This method cannot
run in real time, because three different models have to be
used sequentially: (i) the CNN to generate image features, (ii)
the SVM classifier and (iii) the regression model to tighten
the bounding boxes. Moreover, each region proposal requires
a forward pass of the neural network. Fast R-CNN [11] ad-
dresses the computational complexity issues, using Region of
Interest Pooling (RoIPool), which leverages the fact that there
is generally an overlap between proposed interest regions.
The high-level idea is to have several regions of interest
sharing a single forward pass of the network. Specifically, for
each region proposal we keep a section of the corresponding
feature map and scale it to a pre-defined size, with a max
pool operation. Essentially this allows us to obtain fixed-
size feature maps for variable-size input rectangular sections.
Thus, if an image section includes several region proposals
we can execute the forward pass of the network using a single
feature map, which dramatically speeds up training times. The
second major improvement consists of integrating the three
previously separated models into a single network. A Softmax
layer replaces the SVM classifier altogether and the bounding
box coordinates are calculated in parallel by a dedicated linear
regression layer.

2) Faster R-CNN: The progress of Fast R-CNN exposed
the region proposal procedure as the bottleneck of the object
detection pipeline. A Region Proposal Network (RPN) is
introduced in [12] and is a fully Convolutional Neural Network
(i.e. every layer is convolutional) that simultaneously predicts
object’s bounding boxes as well as objectness score. The
latter term refers to a metric for evaluating the likelihood
of the presence of an object of any class in a given image
window. Since the calculation of region proposals depends on
features of the image calculated during the forward pass of
the CNN, the authors merge RPN with Fast R-CNN into a
single network. This further optimises runtime while achieving
state of the art performance in the PASCAL VOC 2007, 2012
and Microsoft’s COCO [13] datasets. However, the method
is still too computationally intensive to be used in real-time
applications, running at roughly 7 frames per second in a high
end graphics card (Nvidia R© GTX Titan X).

3) Single Shot Detector: An alternative approach is that of
[14], which eliminates the need for interest region proposal
entirely. Their fully convolutional network known as Single
Shot Detector (SSD) predicts category scores and bounding
box offsets for a fixed set of default output bounding boxes.
SSD outperformed Faster R-CNN and previous state of the
art single shot detector YOLO [15], with 74.3% mAP on
PASCAL VOC07. Furthermore, it achieved real-time perfor-
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mance2, processing images of 512× 512 resolution at 59 FPS
on an Nvidia R© GTX Titan X GPU [14].

B. Domain Randomisation

Domain randomisation was employed in the creation of sim-
ulated tabletop scenarios to train real-world object detectors
with position estimation. The work of [16] aims to predict the
3D position of a single object from single low-fidelity 2D RGB
images with a network trained in a simulated environment.
This prediction must be sufficiently accurate to perform a
grasp action on an object in a real-world setting. This work’s
main contribution is proving that indeed a model trained solely
on simulated data generated using domain randomisation was
able to generalise to the real-world setting without additional
training. Moreover, it shows that this technique can be useful
for robotic tasks that require precision. Their method estimates
an object’s 3D position with an accuracy of 1.5 cm, succeeding
in 38 out of 40 trials, and was the first successful transfer from
a fully simulated domain to reality in the context of robotic
control. Furthermore, it provides an example of properties
that can be easily randomised in simulation, namely object
position, colour and texture as well as lighting conditions.
Their model uses CNNs trained using hundreds of thousands
of 2D low resolution renders of randomly generated scenes.
Specifically, the authors employ a modified VGG-16 archi-
tecture [17] and use the MuJoCo3 [18] physics simulation
environment. When we started developing our software tool,
MuJoCo was proprietary software, and was therefore not
considered as an option to perform the test. Instead we created
an open-source tool for domain randomisation in Gazebo
which is a better fit software in robotics, due to its widespread
utilisation and integration with ROS 4.

In [19] the concept of domain randomisation was applied to
object synthesis instead of scene randomisation. This work’s
goal was to learn a mapping from a set of observations (depth
images) of a scene and output a feasible grasp. The grasp is
defined as the centre of the gripper and its orientation, which
results in 6-D grasp space, or 4-D if it is an upright grasp.
In a similar setting to their previous work [16], the authors
proposed a data generation pipeline for training deep learning
methods in the task of object grasping. This method includes
procedurally generating novel objects. Millions of unique ob-
jects are created by the concatenation of small convex blocks
segmented from 3D objects present in the popular ShapeNet
dataset [20]. Specifically, over 40,000 3D object meshes were
decomposed into more than 400,000 approximately convex
parts using V-HACD5. The latter is an open-source library
for decomposing 3D surfaces into near convex sub-units.

Each of these parts is used as a primitive building block
for generating objects. A random number of primitive meshes
is chosen and combined such that there is an intersection
with at least another mesh. The position and scale of each

2Note that the term real-time is respective to common image capture rates.
3http://www.mujoco.org, as of April 11, 2018
4http://www.ros.org/, as of April 11, 2018
5https://github.com/kmammou/v-hacd, as of April 11, 2018

primitive mesh is randomised and the final object scale is
also recalculated in order to fit the distribution of object sizes
present in the original real-world objects dataset.

Their method was evaluated in simulation with a set of
previously unseen realistic objects achieving a high ( ≥90%)
success rate. It demonstrates the use of domain randomisation
tools in order to generate a large dataset of random unrealistic
objects and generalise to unseen realistic objects. However it
should be mentioned that their experiments are all performed
in a simulated environment. The knowledge transfer between
domains in this case refers to the transition from procedurally
generated unrealistic object meshes to 3D models of real-life
objects.

Recent research [3] has explored a similar tabletop scenario
with the objective of performing a simple pick and place
routine with an end-to-end control approach, using domain
randomisation during the data generation. The authors intro-
duced an end-to-end (image to velocity) controller that is
trained on purely synthetic data from a simulator. The task
at hand is a multi-stage action that involves the detection of
a cube, picking it up and dropping it in a basket. To fulfil
this task, a reactive neural network controller is trained to
continuously output motor velocities given a live image feed.

James et. al. [3] report that without using domain randomi-
sation it was possible to fulfil the task 100% of the time in
simulation. However, the performance degrades to 72% in the
real-world setting if the model were to be directly applied. This
work further analyses relevant research questions, namely: (i)
What is the impact on the performance when varying the
training data size?, (ii) which properties should be randomised
during simulation?, and (iii) which are the additional features
that may complement the image information (e.g. joint angles)
and improve the performance? To answer these questions, the
authors assessed the importance of each randomised properties
in the simulated training data, namely removing object clutter,
the presence of shadows, randomisation of textures, the change
in camera position and joint angle features. The main obser-
vations from the experiment results are as follows: (i) It was
possible to obtain over 80% success rate in simulation with a
relatively small dataset of 100,000 images, but (ii) to obtain
similar results in a real-world scenario it was needed roughly
four times more data, (iii) training with realistically textured
scenes as opposed to randomising textures also results in a
drastic performance decrease, and (iv) not moving the camera
during simulation yields the worst performance in the real-
world scene as the cube is only grasped in 9% of the trials
and the task finished in 3%.

III. RANDOM WORLDS: A DOMAIN RANDOMISATION
PLUGIN FOR GAZEBO

The main contribution of this work is a set of tools that
integrate with Gazebo under the form of a plugin, that allow
using domain randomisation techniques in order to generate
large synthetic datasets for object detection.

We chose Gazebo as the simulated environment in which to
produce the synthetic data. Gazebo is an open-source physics
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Fig. 2. Synthetically generated scenes comprising basic parametric shapes, with ground truth bounding box overlays created using the proposed Gazebo
plugin.

simulator used in robotics, known for its integration with ROS,
an increasingly popular robot middleware platform. We claim
that the main advantage of using Gazebo as opposed to a
dedicated rendering environment is first and foremost the ease
of integration of simulated robots in experiments.

At its core, our software consists of three separate Gazebo
modules, that allow the user to perform otherwise complex
operations such as generating primitive-shaped objects with
random properties and texture from within the simulated
environment.

Gazebo’s off-the-shelf tools for real-time scene manipula-
tion are insufficient to achieve our goal. For instance, none
offers the ability to move an object during simulation without
GUI interaction. Furthermore, most of the available solutions
depend on ROS, which adds an unnecessary layer of abstrac-
tion and hinders performance. Thus, this work provides an API
which can be used to perform the necessary operations.

S. James et al. [3] demonstrate that the success of their
network is due to employing domain randomisation in a few
concrete properties, specifically relative camera pose, presence
of distractor objects, object texture and scene lighting condi-
tions. Thus, we incorporate the possibility to manipulate these
features into a tool that works on top of Gazebo. Furthermore,
if we want a fully automated dataset generation we must
ensure accurate automatic labelling of training data. This of
course depends on the task at hand, which can include object
detection or direct grasp quality estimation.

We compiled the most important features for a novel tool
to support perceptual domain randomisation-powered dataset
generation, namely, the ability to:

• Spawn, move and remove objects, either with a para-
metric primitive shapes such as cubes and spheres or a
provided 3D mesh;

• Randomly generate textures and apply them to any object.

More specifically, the ability to produce four different pat-
tern types of textures, namely flat, gradient, checkerboard
and Perlin noise [21];

• Manipulate the lighting conditions of the scene;
• Capture images with a virtual camera, possibly with

added noise;
• Obtain 2D bounding boxes from the 3D scene in order to

label data for an object detection task. This is achieved
by sampling points on the object surface and projecting
them onto the camera plane.

The variation of the object textures and position has been
observed in previous work and is considered to be part of the
basic randomisation process.

The spawned objects can be parametric basic shapes, such
as spheres, cylinders or cuboids as well as described by their
Simulation Description Files (SDF)6 specification or unique
identifier, provided they are included in the Gazebo model
path, and their pose can be fully specified.

It was also in our interest to be able to specify custom
textures for each object during run-time, as we have seen that
most related research randomises colour and texture in scene
objects.

Gazebo employs a distributed architecture, providing an
abstraction layer between the physics and rendering engines
as well as sensor data generation. This in turn led us to divide
our plugin in three modules, tasked respectively with changing
objects’ visual properties, interacting with the main world
instance and finally querying camera sensors. We aimed for a
modular design, so that each tool could be used independently.
Thus, each module provides an interface for receiving requests
and replying with feedback messages. The latter can be
leveraged by a client application to create a synchronous scene
generation pipeline, despite the program’s distributed nature.

6http://sdformat.org/, as of April 11, 2018
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IV. EXPERIMENTS

We trained state-of-the-art CNNs for three-class object
detection task using a synthetic dataset generated with the
proposed domain randomisation Gazebo plugin. We have vali-
dated these methods by designing an experiment that replicates
some of the elements seen in recently published research.

A. Synthetic Data Synthesis

Each generated scene consists of a ground plane, a single
light source, a set of models which include cylinders, spheres
or cuboids. The position of these models is constrained to a
grid, but they can rotate freely, provided they are supported
by the ground plane. Partial occlusion is allowed, but the
grid approach prevents collisions. An example of generated
scenes, overlaid with the respective annotations can be seen
in Figure 2. Even though the physics engine is explicitly
deactivated, the object pose should be that of a static scene,
i.e. objects should be in a stable resting position. The scene
generation loop procedure unfolds as follows.

First, we spawn a camera and a random number of paramet-
ric objects No ∈ [5, 10] belonging to one of the following three
classes: cylinder, sphere, box. The position of each object is
randomly chosen from 25 possible cells in a 5 m × 5 m grid.
We perform a request to move the light source and camera to
a random position, where the camera is constrained to move
on a dome surface, with its centre directly above the world
origin, so as to ensure that the objects are in the camera’s
field of view.

Then, obtain the 2D bounding boxes of each object. In order
to achieve this, the proposed plugin is first queried for the 3D
points sampled from the primitive shape, which are further
projected into the 2D image plane. Finally, the bounding box
is computed via min-max over the resulting set of image
projected points. At this point we save the scene annotations
with the object class and 2D bounding boxes.

B. Results

With the aforementioned set of tools it is already possible
to perform some experiments with domain randomisation,
namely for object detection and localisation.

In order to demonstrate the applicability of the proposed
Gazebo domain randomisation plugin, we designed the fol-
lowing experiment. First we generated over 5000 textures
per pattern type. Then, we ran our example client, acquiring
exactly 9,000 images of randomly generated scenes with Full-
HD resolution (1920×1080). The texture generation took little
over 20 minutes, but is heterogeneous with regard to required
time, as Perlin noise is more computationally intensive to
generate. Each simulated scene can be generated in roughly a
second on a standard laptop, with an Intel R© i7 4712HQ CPU
and an Nvidia R© 940m GPU. This means that the full dataset
generation process should take less than 3 hours. The images
were then cropped to 1080× 1080, subsampled to 300× 300
and then fed to two separate state of the art networks for
training, namely SSD and Faster R-CNN. We resorted to an

open-source Tensor-Flow7 GPU-accelerated implementation
of these networks available on GitHub8. The networks were
pretrained on COCO [13] and fine-tuned (i.e. training only
the last layer of the network over 5000 epochs) with our
datasets, comprised by renders from Gazebo and real world
images. Both networks output a classification label for each
detected object instance as well as the respective bounding
box. We tested the trained networks with a small dataset of
242 real-world images acquired in our laboratory that contain
two overlapping groups of objects.

We performed several experiments summarised in Table I,
namely including the real world images in training (121
images for training, 121 for testing and then swapping the
real world images) with random horizontal flips. The networks
are trained to predict the object class and respective bounding
box in the original image. An ensemble of example output is
presented in Figure 3. From Table I we observe the following:
(i) Faster R-CNN performs around 20% better than SSD in
average, (ii) the real-world-only training set performs better
than the other training sets in all but one case, and (iii) the
most difficult object to detect and localise is the cylinder
class. Since the number of simulated images is not large
enough to consider different lighting conditions, training with
the randomised dataset alone is not able to reach the desired
performance on real-world data.

V. CONCLUSIONS

In this work we developed a domain randomisation plugin
for Gazebo that allows generating large datasets in simulation,
which are suitable for training deep object detection and
localisation architectures. The plugin was used to generate
a fully annotated dataset in a format compatible with the
PASCAL VOC 2012 annotation format, and allows to deploy
the classification of new object classes in a straightforward and
easy to program way. Our results in the three object detection
and localisation task are very promising, because with a small
dataset generated only in simulation, we are very close to reach
the performance of real-world images.

Our code is open-source and publicly available on GitHub9.
To our knowledge, such a tool was either non-existent or
publicly unavailable at the time of development.
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Network Simulated Real IoU mAP AP Box AP Cylinder AP Sphere
Faster R-CNN 0 121 0.5 0.88 0.89 0.83 0.91
Faster R-CNN 9000 0 0.5 0.82 0.8 0.75 0.90
Faster R-CNN 9000 121 0.5 0.83 0.82 0.78 0.9
SSD 0 121 0.5 0.7 0.74 0.6 0.76
SSD 9000 0 0.5 0.64 0.7 0.47 0.77
SSD 9000 121 0.5 0.62 0.67 0.4 0.8

TABLE I
EXPERIMENT RESULTS. SECOND AND THIRD COLUMN STATE THE NUMBER OF TRAINING EXAMPLES FROM EACH DATASET. IOU IS THE INTERSECTION

OVER UNION THRESHOLD. THE OVERALL MAP METRIC RESULT IS PRESENTED AS WELL AS FOR EACH CLASS. NOTE THAT FASTER R-CNN IS
CONSIDERABLY SLOWER TO TRAIN.

Fig. 3. Example object detections on our real dataset
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