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Abstract

Plenoptic cameras capture the directional information of the light distri-
bution from a scene. This is accomplished by positioning a microlens array
between the main lens and the sensor. This configuration obtains multiple pro-
jections for a point in the object space, which allows to retrieve the point’s depth
on a single exposure. In recent years, several studies recover depth and shape
from the lightfield data using several cues. Nonetheless, references regarding the
depth capabilities of a standard plenoptic camera with different zoom and focus
settings are scarce. In this work, we formalize a forward projection model and
consider projection geometry cues to improve a metric reconstruction method-
ology for a calibrated standard plenoptic camera. The metric reconstruction
methodology is used to evaluate the depth estimation accuracy under certain
zoom and focus settings. The reconstruction is applied to new datasets captured
for this purpose with objects placed at depths between 0.05 and 2.00 meters.
The results indicate that these cameras are able to reconstruct accurately points
within the depth range analyzed by appropriately choosing the zoom and focus
depth settings. The zoom is a determinant factor on the reconstruction accuracy
and the focus depth allows to determine the reconstruction depth range.
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1. Introduction

Images obtained using conventional cameras, such as the pinhole camera,
capture the total amount of light that reaches each position of the sensor. In
these cameras, a point in the object space is projected onto a single pixel.
Plenoptic cameras, on the other hand, are capable of discriminating the con-5

tribution of each light ray emanating from a particular point by projecting the
point to several positions of the sensor (orange circles in Figure 1.b).
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Figure 1: (a) Image captured on the sensor of a standard plenoptic camera. This
image has a resolution of 3280 x 3280 pixels. (b) Magnification of red box A in
(a). This image depicts the microlenses images formed in the sensor. The orange
circles show the multiple projections of the corner point of the upper cover of
the car. The corner is projected onto several microlenses because it is beyond
the plane of focus situated on the middle of the car. (c) Microlenses images
obtained after decoding the raw image to the 4D lightfield. The microlenses
correspond to the green box B highlighted in (a).

There are several types of plenoptic cameras like the artificial compound eyes
[1, 2], the wavefront coding systems [3], or the lenticular array based [4, 5]. The
lenticular array based plenoptic cameras consist of a main lens and microlens10

array. In this work, we will analyze the depth estimation accuracy for a lenticular
array based plenoptic camera, more specifically, the standard plenoptic camera
introduced by Ng [6]. The standard plenoptic camera [6] has a higher directional
resolution and produces images with lower spatial resolution [7] when compared
to the focused plenoptic camera introduced by Lumsdaine and Georgiev [8, 9].15

Depth estimation is one of the applications found in the literature since
these cameras allow to retrieve depth from a single exposure. Most of the depth
reconstruction studies consider a camera geometry that resembles a camera
array, usually a single camera mounted on a gantry system [10, 11, 12, 13], or
using simulated environments [14, 12, 13, 15]. Nonetheless, the geometry of20
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plenoptic cameras is more complex. The number of studies recovering depth
using plenoptic cameras is limited [16, 17, 12, 15] and even fewer using standard
plenoptic cameras [15]. Additionally, references regarding the depth capabilities,
i.e. the accuracy of the reconstructed depth of these sensors is also scarce. There
are studies on the depth capabilities for a focused plenoptic camera [16, 17] but25

to the authors knowledge there are no similar studies for standard plenoptic
cameras. The depth estimation and capabilities of these sensors depend on
the world plane in focus by the main lens. Thus, to study these sensors a
combination of camera parameters must be analyzed to assess the reconstruction
estimation accuracy.30

In this work, we define a forward projection model that establishes a rela-
tionship between a point in the object space and the lightfield on the sensor
plane based on the camera model of Dansereau et al. [18]. Analyzing the pro-
jection model, we improve a reconstruction methodology by adding projection
geometry cues. This reconstruction methodology is then used to evaluate the35

depth capabilities of a calibrated standard plenoptic camera for different zoom
and focus settings. The results presented suggest that these cameras are able to
reconstruct accurately points within the depth range analyzed by appropriately
choosing the zoom and focus depth settings. Namely, zoom is a determinant
factor on the reconstruction accuracy and the focus depth allows to determine40

the reconstruction depth range.
Contributions. The contributions of this work are three-fold: (i) definition

of the geometry for standard plenoptic cameras, (ii) analysis of the depth ca-
pabilities of a standard plenoptic camera for different zoom and focus settings,
(iii) and a database to calibrate and assess the reconstruction accuracy of a45

standard plenoptic camera for different zoom and focus settings.
In terms of structure, we present in Section 2 a brief review of camera models

and depth estimation methods considered for plenoptic cameras. In Section 3,
we introduce some concepts found in the literature to contextualize the reader:
the lightfield parameterization, and the back-projection model introduced by50

Dansereau et al. [18]. The forward projection model is formalized and analyzed
in Section 4 while the reconstruction methodologies are presented and compared
in Section 5. The results of the reconstruction at different depths for a calibrated
plenoptic camera under certain zoom and focus settings are presented in Section
6. The major conclusions are presented in Section 7.55

Notation: The notation followed throughout this work is the following: non-
italic letters correspond to functions, italic letters correspond to scalars, lower
case bold letters correspond to vectors, and upper case bold letters correspond
to matrices.

2. Related Work60

Depth estimation was the first application to be studied with a plenoptic
camera prototype [4]. This topic is still an active line of research. Nonetheless,
studies regarding the depth capabilities of these sensors are scarce. In this
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section, we will highlight some studies regarding the properties of plenoptic
cameras and some methods for depth estimation from the lightfield.65

2.1. Plenoptic Camera Studies

The camera models defined for the standard plenoptic camera are very
scarce. Dansereau et al. [18] obtained a camera model by tracing the rays
from the sensor to the object space. In this model, Dansereau et al. [18] as-
sumed that all light rays reaching a given pixel of the sensor cross the center of70

the microlens (pinhole model), and that the corresponding microlens is the one
whose center gets projected closest to the pixel. The main lens was modeled
as a thin lens. Nonetheless, Dansereau et al. [18] did not establish a relation
of the lightfield with a point in the object space. The relationship between an
arbitrary lightfield and a point in the object space appears in a previous work of75

Dansereau et al. [10]. There is another camera model proposed by Johannsen
et al. [19] that considered Plücker coordinates to obtain the projection of a
point on the lightfield in the object space. Nonetheless, these projections are
not related with the lightfield in the sensor plane.

The depth capabilities studies for plenoptic cameras is also scarce. Recently,80

Johannssen et al. [16] and Zeller et al. [17] proposed calibration methods to
improve the depth accuracy of focused plenoptic cameras. Nonetheless, there
are no similar studies for standard plenoptic cameras. The most similar studies
for standard plenoptic cameras correspond to the works of Hahne et al. [20, 21].
These studies estimated depth, depth of field and baselines using different optical85

parameters for the microlenses and for the main lens of a simulated and a
customized standard plenoptic camera. Nonetheless, these works require the
specific knowledge of the parameters of the optical setup and are more focused
on assisting the specification to design a standard plenoptic camera.

2.2. Depth Estimation90

Recent approaches on depth estimation from the lightfield [10, 11, 12, 13, 14]
consider the epipolar plane images (EPIs) geometry [22]. These works consider
a lightfield acquired using a camera geometry that resembles a camera array.
According to Bolles et al. [22], the slope of the lines found in the EPIs relate
to the depth of a point in the object space. Hence, the point correspondence95

problem is now a problem of finding lines in the EPI. Dansereau et al. [10]
estimated the slopes of the lines in the EPIs using image gradients while Wan-
ner et al. [12] uses a structure tensor analysis. In Wanner et al. [12] a fast
denoising method is used to obtain a dense disparity map from a limited region
of the full 4D lightfield. Monteiro et al. [14] considered a different optimization100

scheme (SALSA [23]) to integrate the sparse estimates. The performance is
improved by considering periodic boundary conditions. These methods do not
handle occlusion explicitly and have a small disparity range. Diebold et al. [11]
increased the allowed disparity range by shearing the lightfield, and handled
occlusion by integrating the estimates using a specific metric. Recently, Lüke105

et al. [13] proposed a method for depth estimation based on the local gradient
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of the 4D lightfield for a given ray. Other approaches consider virtual cameras,
the surface cameras (SCams) [24], that collect rays of the lightfield intersecting
at a point in the object space. These collections of rays can be used to identify
correspondences, detect occlusions or surface characteristics [24, 25]. There are110

other methods for depth estimation from lightfield, for more detail please refer
to Johannsen et al. [26]. Nonetheless, the setup of a standard plenoptic cam-
era, namely the geometry introduced by the main lens and the microlens array,
introduces a more complex geometry that still requires studies assessing metric
reconstruction.115

Regarding standard plenoptic cameras, Ng et al. [6] described a different
approach that allows to recover relative non-metric depth from defocus. More
recently, Tao et al. [15] proposed to unify different cues obtained from the EPI
(defocus and correspondence) to estimate depth. As in the work of Ng et al.
[6], this estimate corresponds to a relative depth and not absolute depth. The120

depth is given relatively to the world focal plane. In a more recent work, Tao
et al. [27] included shading to recover shape. By considering the shading cues,
the method improved shape estimation for specular surfaces.

3. Lightfield Parameterization and Back-Projection

In this section, we will highlight some key aspects found in the literature125

that are relevant to the contributions presented in Sections 4 and 5. Namely,
we will briefly detail the lightfield parameterization, and the back-projection
model presented by Dansereau et al. [18].

3.1. Two-Plane Parameterization

The lightfield [28, 29] is a simplification of the plenoptic function [30] that130

considers static monochromatic light rays with constant radiance along the ray.
The lightfield can be described using a two-plane parameterization which rep-
resent a ray by its intersection with two planes.

In this work, we use a two points representation [31] to define the lightfield
(i, j, k, l) on the sensor plane while a point and a direction representation is135

used to define the lightfield (s, t, u, v) in the object space. In the object space,
(s, t) corresponds to a point in an arbitrary plane and (u, v) to a ray direction
(Figure 2). While in the sensor plane, (i, j) corresponds to the point in the
image sensor defined in the local reference frame of the corresponding microlens
and (k, l) corresponds to the point in the microlens plane. The parameterization140

with a point and a direction is equivalent to a local two-plane parameterization
using two points considering a unitary distance between the two planes.

To retrieve the two-plane parameterization from the image sensor (raw im-
age in Figure 1.a) a decoding process is necessary, like the one introduced by
Dansereau et al. [18]. The decoding process consists on defining the pixels on145

the image sensor that belong to a given microlens. The pixels that belong to a
given microlens are considered to be the ones nearest to the projection of the
microlens center on the image sensor. For more detail on the decoding process
please refer to [18].
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(a) (b)

Figure 2: (a) Two plane parameterization for rays starting from a point m using
a point and a direction. Each of these rays correspond to different views of a
point, i.e., they are samples of the lightfield. (b) The intersection of a ray with
the two planes (s, t) and (ug, vg) define a geometry that allows to determine the
direction of the ray. The plane Π defines the position of the rays while the plane
Γ defines the direction of the rays.

3.2. Back-Projection150

Consider that we have an arbitrary point m = [x, y, z]
T

. Note that m is
defined in the camera coordinate system. Let us define a plane Π that comprises
the origin of the different rays Ψ = [s, t, u, v, 1]

T
in the object space. The center

of this plane corresponds to the origin of the camera coordinate system. Using
the different positions (s, t) of the rays in this plane and their directions (u, v),
the relation between a point and the lightfield in the object space is defined as
in the work of Grossberg and Nayar [32]xy

z

 =

st
0

+ λ

uv
1

 , λ ∈ IR , (1)

with u = x− s
z and v = y− t

z . This equation allows to propagate the position in
the rays originated at m to an arbitrary plane at distance λ from the origin of
the camera coordinate system. Note that equation (1) generalizes a normalized
pin-hole camera: by setting s = 0, t = 0 and (u, v) ∈ IR2 one obtains a pencil of
lines. Therefore, by allowing (s, t) ∈ IR2, one can represent an infinite number155

of normalized pin-hole cameras.
Now, let us consider the relation between the lightfield in the sensor plane

with the lightfield in the object space. The model proposed by Dansereau et
al. [18] allows to map the lightfield on the sensor plane Φ = [i, j, k, l, 1]

T
to

the lightfield in the object space Ψg = [s, t, ug, vg, 1]
T

using the matrix Hg. Ψg160

defines a lightfield using a two-plane parameterization with two points, where
(ug, vg) correspond to the intersection of the ray with a plane Γ parallel to
and at a distance d from the plane Π. (ug, vg) are global coordinates defined

6



relatively to the origin of the camera coordinate system. Thus, the lightfield in
the object space Ψ = [s, t, u, v, 1]

T
defined using a two-plane parameterization165

with a point and a direction can be obtained considering the geometry presented
in Figure 2.b. Ultimately, this leads to the following relationship between the
lightfields in the sensor plane and in the object space

s
t
u
v
1


︸︷︷︸
Ψ

=


1 0 0 0 0
0 1 0 0 0
−1/d 0 1/d 0 0

0 −1/d 0 1/d 0
0 0 0 0 1

Hg

︸ ︷︷ ︸
H


i
j
k
l
1


︸︷︷︸
Φ

. (2)

The distance between the planes Π and Γ in the object space is set arbitrarily.
Hence, throughout the remainder of the work we will consider the distance
equal to one (d = 1). The lightfield on the sensor plane corresponds to a virtual
lightfield obtained after the decoding process in [18]. This lightfield follows the
same notation of Dansereau et al. [18], that considered (k, l) as the indices
of the microlenses and (i, j) as the relative indices of the pixels within each
microlens. The matrix H allows to map rays defined in pixels and microlenses
indices to rays defined by a position and a direction in metric units. H is a
matrix containing intrinsic parameters

H =


hsi 0 hsk 0 hs
0 htj 0 htl ht
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (3)

The lightfield in the object space, Ψ, is defined on the plane Π (Figure
2.a). The lightfield obtained in the object space is characterized by rays whose170

directions have not been modified by the camera optics. The model presented
by Dansereau et al. [18] is not explicitly a projection model in the sense that it
does not relate the rays Ψ with a specific point in the object space. Combining
this model with a point using equation (1), one obtains a back-projection model
from image to object space.175

3.2.1. Radial Distortion

The camera model proposed by Dansereau et al. [18] considered a radial
distortion model to compensate for the lens distortion caused by the microlens
and main lens optics that cannot be described using equation (2). This model
compensates for the lens distortion by modifying the coordinates (ug, vg) of the180

lightfield in the object space. For the parameterization using a point and a di-
rection the radial distortion compensates the distortion modifying the directions
(u, v) of the rays in the object space according to the distance to a distortion
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center that defines the central ray ruv. Let Ψu
uv denote the undistorted direc-

tions (u, v), the distorted directions Ψd
uv are given by185

Ψd
uv =

(
1 +

M∑
n=1

kn r
2n

)
(Ψu

uv − ruv) + ruv (4)

where r = ‖Ψu
uv − ruv‖ is the distance from a given ray (u, v) to the central

ray, k1, . . . , kM are the radial distortion coefficients, and M is the number of
coefficients considered to model the radial distortion. In this work, we will
consider M = 4 radial distortion coefficients. The distortion center is considered
to be different from the optical axis of the camera. For details on how to190

rectify the lightfield coordinates refer to [18]. For the following sections consider
that whenever Ψ or Φ are represented without superscripts, we are considering
undistorted coordinates.

Let us introduce additional concepts found in the literature which are going
to be necessary in the following sections. The lightfield on the sensor plane195

allows to define two types of image representations, namely microlens and view-
point images [6]. A microlens image (Figure 1.c) results from the rays that cross
the center of a specific microlens, i.e., by fixing the microlens coordinates (k, l).
A viewpoint or sub-aperture image (Figure 6.d) is obtained by selecting and
combining the rays that reach the same pixel of each microlens, i.e, by selecting200

the pixel (i, j) of each microlens (k, l). In this case, the coordinates (i, j) are the
indices of each viewpoint image and the coordinates (k, l) encodes the position
of the pixel in the viewpoint image.

4. Projection Model

The projection model maps an arbitrary point in the object space, m =205

[x, y, z]
T

, to the lightfield on the sensor plane, Φ, knowing the intrinsic matrix

H. Rewriting equation (1) as [x, y]
T

= [s, t]
T

+ z [u, v]
T

and replacing the
lightfield in the object space Ψ with the lightfield on the sensor plane Φ using
the mapping defined in equation (2), one obtains:

[
x
y

]
= Hst

ij

[
i
j

]
+ Hst

kl

[
k
l

]
+ hst + z

(
Huv
ij

[
i
j

]
+ Huv

kl

[
k
l

]
+ huv

)
, (5)

where the intrinsic matrix H is partitioned in four 2× 2 diagonal sub-matrices210

Hst
ij =

[
hsi 0
0 htj

]
, Hst

kl =

[
hsk 0
0 htl

]
,

Huv
ij =

[
hui 0
0 hvj

]
, Huv

kl =

[
huk 0
0 hvl

] , (6)
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and two 2 × 1 vectors hst = [hs, ht]
T

and huv = [hu, hv]
T

. Rewriting these
equations relatively to (k, l), one can represent the projection model for a point
m by

 k

l

 =

 f (i; m,H)

g (j; m,H)

 =

 −i hsi + z hui
hsk + z huk

+ x − hs− z hu
hsk + z huk

−j htj + z hvj
htl + z hvl

+ y − ht− z hv
htl + z hvl

 . (7)

Note that f (i; m,H) and g (j; m,H) are mappings from IR → IR, affine on the
variables i and j. Since the point m ∈ IR3 and the intrinsic matrix H ∈ IR5×IR5,215

the coordinates of the lightfield in the sensor plane (i, j, k, l), in general cannot
be all integers. Equation (7) shows that a point in the object space defines lines
on the spaces defined by each pair of coordinates (i, k) and (j, l). The space
defined by these pair of coordinates is called the ray-space. These equations
consider that the point m is defined in the camera coordinate system.220

Unlike common projection problems, as in the pinhole camera model, in a
standard plenoptic camera a point m in the object space can have multiple
projections. In other words, the camera samples rays of the plenoptic function
by having multiple projection centers. Thus, we want to maximize the number
of projections obtained from the projection model.225

4.1. Set of Imaged Points

A point in the object space projects into a line in the ray-space (i, k) and (j, l)
(black line in Figure 3). The projection defined in equation (7) has 4 unknowns
(i, j, k, and l) and 2 equations, which is not enough to define the rays Φ on
the sensor plane without any knowledge of the lightfield. Thus, we assume that230

the lightfield size is known. In a real camera one has a finite lightfield size that
implies a finite number of rays Φ obtained for the projection of a point m.

Using the lightfield size and considering the discretization that occurs at the
image sensor, we can assume integer values for the microlenses and determine
the corresponding pixels. Nonetheless, according to the slope of the projection235

lines we can skip some projections since we are restricting the coordinates k,
and l to be integers (red pixels in Figure 3.a). The same occurs if we assume
integer values for the pixels and determine the corresponding microlenses. Since
we want to maximize the number of projections, we evaluate the slope of the
projection lines to determine which coordinates are more discriminative, the240

pixels or the microlenses.
Considering the linear mappings k = f (i; m,H) = mk i + bk and l =

g (j; m,H) = ml j + bl, the slope of the projection lines m(·) corresponds to
the disparity between viewpoint images, and its inverse corresponds to the dis-
parity between microlens images. Slope m(·) can also be identified in equation245

(7) as the factor multiplying i or j. Notice that the slope is constant for points
at the same depth. b(·) is the k- or l-intercept. To simplify our presentation, let
us consider that the optical setup is point symmetric, i.e. the setup has square
pixels and equally spaced microlenses in both vertical and horizontal directions.
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(a) (b)

Figure 3: Rasterization method used to obtain the projections of a point m for
the (i, k) coordinates for different slopes of the projection line i = f−1 (k; m,H).
The red pixels correspond to the projections skipped by assuming integer values
for the microlenses k.

This implies that f (i; m,H) ≡ g (j; m,H). Hence, if
∣∣m(·)

∣∣ ≤ 1, the pixels are250

more discriminative (Figure 3.a) and the microlens are given by the set Pkl

{
[i, j, k, l, 1]

T
: k = f (i; m,H) , l = g (j; m,H) , i ∈ Ni, j ∈ Nj

}
(8)

where Ni = {0, . . . , Ni − 1} ⊂ N+
0 , Nj = {0, . . . , Nj − 1} ⊂ N+

0 , and Ni and Nj
correspond to the number of pixels of the sensor in each of the dimensions i and
j. This is the case where a point m projects to more than one pixel within each
microlens. This occurs, for example, if the point in the object space is near the255

focal plane or in focus by the main lens (Figure 1.b).
On the other hand, if

∣∣m(·)
∣∣ > 1, the microlenses are more discriminative

(Figure 3.b) and the pixels are given by the set Pij

{
[i, j, k, l, 1]

T
: i = f−1 (k; m,H) , j = g−1 (l; m,H) , k ∈ Nk, l ∈ Nl

}
(9)

where Nk = {0, . . . , Nk − 1} ⊂ N+
0 , Nl = {0, . . . , Nl − 1} ⊂ N+

0 , and Nk and
Nl correspond to the number of microlenses in each of the dimensions k and l.260

Since the camera might deviate from this point symmetric behavior, there might
be some cases when we have to consider a correction using a mixture of the sets
Pij and Pkl. For example, by considering k = f (i; m,H) and j = g−1 (l; m,H).
The sets Pij and Pkl describe a rasterization method for representing the lines
defined in equation (7) for each of the coordinate pairs (i, k) and (j, l) in terms of265

discretized indices for pixels and microlenses. This process allows to implicitly
overcome the limitations, detailed in Section 4.2, of the projection equation (7).
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The complete projection model comprises the two sets Pij and Pkl, nonethe-
less, for most depth values the projection rays are obtained using the set Pkl.
The set Pij is only used for points near the camera (see Supplementary Mate-270

rial).

4.2. Analysis of Singularities

The projection equation (7) has singularities. These singularities imply that
some points in the object space have undefined projection rays (unobserved in
the image). More precisely, i = f−1 (k; m,H) or k = f (i; m,H) are infinite for275

some depth values z, continuing with the point symmetric assumption.
The depth values for which the singularities occur are identified by z1s =

−hsi/hui and z2s = −hsk/huk. Extending the definition of the entries hsi,
hui, hsk, and huk to consider the parameters proposed by Dansereau et al.
[18] for the camera model, the singularities occur at z1s = dM fM

dM − fM
, and z2s =280

dM fM (Fs−N Fu)+Fs dµ fM
(dM − fM ) (Fs−N Fu)+Fs dµ

. Where N is the number of pixels in one dimension

for the microlens image, dM is the distance between the microlens plane and the
main lens, dµ is the focal length of the microlenses, and fM is the focal length of
the main lens. Fs and Fu are the spatial and directional sampling frequencies.

Looking more deeply into the singularities z1s and z2s , we can see that z1s285

corresponds to points that lie on the focal plane of the main lens. This can be
derived from the thin lens equation for the main lens and remembering that the
intrinsic matrix H propagates the origin of a ray to a plane that corresponds to
the main lens plane. The depth of the singularity z1s corresponds to the plane
containing the projection centers of the microlens cameras. This singularity oc-290

curs when we apply the linear mapping f−1 (k; m,H). Implicitly, the singularity
implies that the slope m−1

k is undefined. Thus, in Section 4.1, the set Pkl allows
to overcome this limitation. This correction considers that a microlens can be
defined by a range instead of an infinitesimal point which contradicts the initial
assumption that the microlenses are pinholes.295

On the other hand, the singularity z2s corresponds to the depth of the plane
containing the projection centers of the viewpoint cameras. The depth of the
singularity is defined by the optical setup of the plenoptic camera and depends
on several parameters including the sampling frequencies (see inline equation
for z2s). This singularity occurs when we apply the linear mapping f (i; m,H).300

Implicitly, the singularity implies that the slope mk is undefined. However, when
this situation occurs, we use the set Pij . This restriction avoids this limitation
to occur in the projection model defined.

From these analysis, one can see that contrarily to a pinhole camera, a
plenoptic camera can have projections even for points in the object space that305

are at the depths of the singularities z1s and z2s .

Most of the studies in the literature recover depth from the lightfield by
assuming the geometry of a camera array [10, 33, 13]. The common geometry for
the camera array consists of identical parallel cameras with projection centers
forming a regular planar grid. This geometry allows to relate the depth z310
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and the disparity ∆u by ∆u = (f/z) ∆s, where ∆s corresponds to a baseline
measurement, and f to the focal length of the cameras.

The geometry of a camera array cannot be extended simply to a standard
plenoptic camera. Let us consider the particular case of a point in focus by
the main lens of the plenoptic camera. This point is represented by a vertical315

line in the ray-spaces (i, k) and (j, l), leading to projections onto one particular
microlens. Therefore, in the viewpoint images this point in the object space will
appear at exactly the same pixel position, i.e., the disparity for this point will
be zero. Considering the geometry of the camera array, the point appears at
infinity. However, for a plenoptic camera, this point has a well defined depth.320

The depth corresponds to the depth of the world focal plane of the main lens
given by z1s defined in Section 4.2. Thus, a more realistic scenario for the
geometry of a plenoptic camera is a vergent camera array or a rectified parallel
camera array.

4.3. Summary325

In Section 4, we presented a forward projection model defined by the sets
Pij and Pkl. This projection model was derived from the projection equation
(7) considering the linear mappings f (i; m,H) and g (j; m,H) and the goal of
maximizing the number of projections. In summary, the projection model can be
defined using Algorithm 1. For simplicity, we presented the algorithm assuming330

that the optical system is point symmetric. C corresponds to the number of
projection rays obtained.

Algorithm 1: Project scene point m

Input : Scene point: m =
[
x y z

]T
Parameters: H, Ni, Nj , Nk, Nl

Output: Projection Rays: {Φ1, . . . ,ΦC}
1 Compute the slope mi from equation (7)
2 if |mk| ≤ 1 then
3 Rasterize Φi = (i, j, k, l) according to set Pkl ;
4 else
5 Rasterize Φi = (i, j, k, l) according to set Pij ;
6 end

The projection model described in this section is based on the back-projection
model of Dansereau et al. [18]. Although very useful for a compact lightfield
representation, this model does not account for the tangential component of335

lateral distortion and distortion in the direction of the optical axis as in the
work of Johannsen et al. [16] for focused plenoptic cameras.

5. Reconstruction

In the reconstruction problem, we want to determine the point in the object
space whose rays where projected into specific points of the lightfield on the340
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sensor plane. Let us consider that we have a set of Z rays on the sensor plane
that correspond to a given point m in the object space and that the intrinsic
matrix H is known. This allows to convert the set of rays

{
Φ1, . . . ,ΦZ

}
to a

set of rays
{
Ψ1, . . . ,ΨZ

}
in the object space.

Using the relation between a point m and the plane Π defined in equation (1),
we obtain for the i-th ray, Φi, in the object space x− zui = si and y− zvi = ti,
which in matrix form corresponds to

[
1 0 −ui
0 1 −vi

]xy
z

 =

[
si
ti

]
. (10)

From equation (10), for each ray Φi we obtain a set of 2 equations. The345

reconstruction problem has 3 unknowns to determine, hence, we need at least 2
rays to determine the corresponding point m.

Generalizing the equation (10) for the rays
{
Ψ1, . . . ,ΨZ

}
, and replacing

those rays by the projection rays
{
Φ1, . . . ,ΦZ

}
on the sensor plane, we have

1 0 −h3Φ1

0 1 −h4Φ1

...
...

...
1 0 −h3ΦZ

0 1 −h4ΦZ


xy
z

 =


h1Φ1

h2Φ1

...
h1ΦZ

h2ΦZ

 (11)

where hi corresponds to the i-th row of the intrinsic matrix H. This is a
problem that can be readily solved using a least-squares method. The equations
presented in this section consider that the point m is defined in the camera350

coordinate system.

5.1. Imposing Projection Geometry Cues

The previous reconstruction methodology does not impose any prior knowl-
edge on the correspondences

{
Φ1, . . . ,ΦZ

}
defined in the sensor plane. Hence,

for a given depth of the point in the object space, the reconstruction is as good355

as the precision of the correspondences, maintaining all parameters of the op-
tical system constant. Namely, due to the discretization that occurs at the
image sensor, the projection rays do not define a line in the ray-space defined
by the pair of coordinates (i, k) and (j, l) but a staircase (see Section 4.1, Fig-
ure 3). Therefore, the precision of the correspondences and, consequently, the360

reconstruction is likely to improve if we impose the projection rays in the ray-
spaces to define a line. Let us call these lines in the ray-spaces as the projection
geometry cues.

Let us incorporate the projection cues as a prior knowledge on the cor-
respondences

{
Φ1, . . . ,ΦZ

}
. This can be achieved by considering the point

reconstruction from the lines in each of the ray-spaces (i, k) and (j, l) instead
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of using the point correspondences directly. Namely, rewriting the projection
equation (7) as

(hsi + z hui)︸ ︷︷ ︸
a1

i+ (hsk + z huk)︸ ︷︷ ︸
b1

k + hs + z hu − x︸ ︷︷ ︸
c1

= 0

(htj + z hvj)︸ ︷︷ ︸
a2

j + (htl + z hvl)︸ ︷︷ ︸
b2

l + ht + z hv − y︸ ︷︷ ︸
c2

= 0
, (12)

we define the relation between the point in the object space and the line pa-
rameters θik = [a1, b1, c1]

T
and θjl = [a2, b2, c2]

T
that define the lines in the

ray-spaces (i, k) and (j, l), respectively. From these equations, one can see that,
for a given point, the line parameters are fixed while the coordinates of lightfield
in the sensor plane may vary. The line parameters are obtained by fitting lines to
the collection of coordinate pairs (i, k) and (j, l) of the correspondences in the re-

spective ray-space. Let us define the arrays Φik
i = [ii, ki, 1]

T
and Φjl

i = [ji, li, 1]
T

containing the coordinates (i, k) and (j, l) of the i-th correspondence. The line
parameters can be estimated using a least-squares minimization using the Z
correspondences

θ̂(·) = arg min
θ(·)

Z∑
i=1

∣∣∣θT(·)Φ(·)
i

∣∣∣2
s.t.

∥∥θ(·)∥∥2 = 1

(13)

where (·) represents either of the pair of coordinates (i, k) or (j, l) according to
the ray-space that is being analyzed. These estimates for the line parameters365

θ̂ik and θ̂jl can then be used to estimate the point m

0 0 hui −â1 0
0 0 hvj 0 −â2
0 0 huk −b̂1 0

0 0 hvl 0 −b̂2
−1 0 hu −ĉ1 0
0 −1 hv 0 −ĉ2




x
y
z
λik
λjl

 = −


hsi
htj
hsk
htl
hs
ht

 . (14)

Remember that the line parameters are defined up to a scale factor, therefore,
the scale factors λik and λjl associated with each fitting should also be estimated
to recover the correct coordinates for the point m. This reconstruction method-
ology has 5 unknowns and 6 equations, which allows to obtain a solution for the370

point in the object space using a least squares method, for example. On the
other hand, for the estimation of the line parameters, due to the constraint in
equation (13), we need at least 2 correspondences to determine the 3 unknowns
in each of the ray-spaces. A given correspondence contributes only with 1 equa-
tion for each of the ray-spaces. Notice that the optimization can be simplified375

by dividing the equations (12) by b1 and b2, respectively. This assumes that the
singularity z2s will not occur. In fact, for most of the experiments performed,
this singularity occurs for points behind the camera.
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For clarification purposes, we summarize the reconstruction methodology
using line parameters in Algorithm 2, where we consider Φ(·) as the collection380

of coordinates (·) of the projection rays.

Algorithm 2: Reconstruct scene point m

Input : Projection Rays: {Φ1, . . . ,ΦZ}
Parameters: H

Output: Scene point: m =
[
x y z

]T
1 Obtain θ̂ik by fitting a line to

(
Φi, Φk

)
using equation (13) ;

2 Obtain θ̂jl by fitting a line to
(
Φj , Φl

)
using equation (13) ;

3 Reconstruct m using equation (14)

5.2. Reconstruction Methodologies Comparison

In this section, two reconstruction methodologies were proposed for point
reconstruction. Let us evaluate the difference between the two methods by per-
forming point reconstruction for points in the object space at different depths.385

Hence, let us consider the intrinsic matrix Hg provided by Dansereau et al. [18]
as a result of the calibration of Dataset B. This intrinsic matrix is modified to
obtain the intrinsic matrix H considering the geometry defined in Section 3.1
and considering the distance between the planes Π and Γ is equal to one. The
entries obtained for the intrinsic matrix H are presented in Table 1.390

hsi hsk hs htj htl ht
4.0003e-04 -9.3810e-05 1.5871e-02 3.9680e-04 -9.3704e-05 1.5867e-02

hui huk hu hvj hvl hv
-1.5833e-03 1.9043e-03 -3.4762e-01 -1.5551e-03 1.9014e-03 -3.3817e-01

Table 1: Intrinsic matrix entries considered for evaluating the reconstruction
methods.

In this experiment, the accuracy at each depth was evaluated by randomly
selecting P = 500 points from the field of view of the plenoptic camera and
computing the reconstruction error after projection and reconstruction using the
two methods described. In this section, we considered an error introduced by
rounding the pixels (i, j) and the microlenses (k, l) to the nearest integer. There
are other alternatives to model the projection error, like for example adding
noise that follows a Gaussian distribution (see Supplementary Material). The
reconstruction error is defined as the distance between the reconstructed point
m̂i and the generated point mi in the object space. The mean reconstruction
error re is defined as

re =
1

P

P∑
i=1

‖mi − m̂i‖ . (15)
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(a) Reconstructed Depth (b) Reconstruction Error

Figure 4: Results from reconstructing randomly generated points at depths
ranging from 0.01 to 2.00 meters. The reconstructed depth is depicted in (a)
while the reconstruction error using the (x, y, z) coordinates is depicted in (b).
(11) corresponds to the point reconstruction and (11) corresponds to the point
reconstruction from line parameters. The dashed vertical lines, from left to
right, mark the −2, −1 and 0 pixel disparities.

The depth values evaluated ranged between 0.01 and 2.00 meters. The recon-
struction error and the estimated depth of these simulations are provided in
Figure 4.

In Figure 4, the point reconstruction using the projection rays (blue region)
start to deviate from the ground truth at 0.65 m while the reconstruction using395

the line parameters (green region) start to deviate from the ground truth at
1.30 m. The deviation is assumed to occur when the mean reconstruction error
re normalized by the ground truth depth is greater than 10%. Figure 4.a shows
that the mean value for the depth estimates using the projection cues are in
accordance with the ground truth for the entire depth range tested. Namely,400

the maximum deviation from the ground truth normalized by the ground truth
depth is 15.0% which is significantly lower than the 55.0% obtained for the
point reconstruction applied directly to the projection rays Φi. Nonetheless, the
standard deviation normalized by the ground truth depth increases significantly
at 1.20 m which makes the depth estimates less reliable. Additionally, one can405

see that the error on the (x, y) coordinates increase more rapidly than the error
on the z-coordinate with the real depth of a point.

As suggested, imposing the projection geometry cues allows to improve the
depth reconstruction. More specifically, assuming the pixels (i, j) and the mi-
crolenses (k, l) are integers, the reconstruction using line parameters allows the410

projection ray coordinates to be real. Let us consider the depth error εz for

a binocular stereo configuration εz = z2

b f εd, where b is the baseline length, f
is the focal length, z is the depth of a given point in the object space, and εd
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corresponds to the disparity error. For a given depth of a point, maintaining all
parameters constant, the depth error can only decrease by reducing the disparity415

error. This can be achieved by increasing the precision of the correspondences,
which is achieved with the reconstruction using the line parameters. From now
on, we will evaluate the depth estimation accuracy using the reconstruction from
the line parameters.

6. Depth Estimation Experiments420

In this section, we will evaluate the reconstruction estimation accuracy for a
calibrated standard plenoptic camera using the methodology defined in Section
5.1 for different zoom and focus settings.

6.1. Camera Parameters

Before proceeding to the evaluation of the reconstruction estimation accu-425

racy, let us analyze two camera parameters that allow to determine the world
focal plane. These two parameters correspond to the zoom step and focus step.

In order to analyze these parameters with the world focal plane, we compared
the camera parameters with the depth of a target object in the world coordinate
system. For this experiment, we acquired a set of images by placing the target430

object parallel to the encasing of the camera and at a regular spacing of 0.05
m from the camera. The target object depths ranged from 0.05 m to 2.00
m. The zoom number (number that appears on the interface of the camera)
was changed also at a regular interval of 0.5 between 1.0 and 8.0. At each
of these configurations, i.e. for a fixed target object depth and fixed zoom435

number, a total of 5 images were taken autofocusing on the target object. In
this experiment, we are just interested in the focus step and zoom step given in
the metadata of the .raw files. The results obtained are shown in Figure 5.

This figure shows that for a particular zoom step configuration, there is a
depth at which the camera is not able to autofocus on the target object (the focus440

step does not change) and, consequently, the world focal plane does not change.
This failure in focusing the target object occurs due to poor detail of the features
in the image. The camera is only capable of focusing the target object, i.e.,
changing the world focal plane, if the zoom step is increased. Additionally, for
extreme conditions of the operating range of the plenoptic camera, for example445

considering zoom step close to 100 and target object depths smaller than 0.4 m,
one can see that the focus step changes arbitrarily among the several attempts
to autofocus on the target object depth. This results in images with no sharp
objects. This situation also corresponds to a failure on focusing the target
object. For focusing at these target object depths, the zoom step should be450

decreased. This allows to conclude that the zoom also plays a role in determining
the world focal plane.
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Figure 5: Camera autofocus given zoom step and target object depth. (a)
The focus step is defined by autofocusing the camera on the target object. (b)
represents the focus step with the depth of a target object for a selection of
zoom steps.

6.2. Reconstruction Estimation Accuracy

Datasets. To evaluate the reconstruction estimation accuracy, we acquired
seven datasets under different zoom and focus settings 1. The zoom and focus455

step settings of each dataset were determined by placing a target object at a
pre-determined depth of the encasing of the camera and autofocusing on this
object. This allows to define a plane in focus by the main lens that is close the
target object. Thus, the focus depth is assumed to be the depth of the target
object. The datasets were collected using a standard plenoptic camera, the460

1st generation Lytro camera. These datasets encompass images for calibration
and depth range assessment. Each dataset is provided with a set of calibration
plenoptic images since the camera parameters are different for each dataset.
The calibration images are different from the depth images to ensure the results
do not suffer from any type of overfitting effect. The calibration plenoptic465

images were captured using a 19×19 calibration grid of 3.18 mm cells placed at
different poses and at different depths close to the target object depth bearing
in mind that a minimum of 10 poses are required. On the other hand, the depth
plenoptic images were captured using two different grid sizes: 19 × 19 grid of
6.10× 6.08 mm cells and 5× 7 grid of 26.50× 26.38 mm cells. The grids for the470

depth plenoptic images were placed parallel to the encasing of the camera and at
a regular spacing of 0.05 m from the camera for depth values ranging from 0.05
to 2.00 m. The two grid sizes are used for the depth plenoptic images since the

1www.isr.tecnico.ulisboa.pt/∼nmonteiro/datasets/plenoptic/cviu2017/
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depth range evaluated is wide and it is necessary to have a reasonable number of
detections to assess the depth accuracy. The smaller grid size was placed up to475

a maximum depth of 1.0, 1.5 and 2.0 m according to the focus depth considered
0.05, 0.50 and 1.50 m. The bigger grid size was placed considering all depth
range evaluated. Table 2 summarizes the properties of the datasets acquired
(for more information see Supplementary Material).

Dataset
Zoom
Step

Focus
Depth (m)

Calibration
Depth Range (m)

Calibration
Poses

Depth
Poses

A 982 0.05 0.05 - 0.25 30 45
B 754 0.05 0.05 - 0.35 30 37
C 601 0.05 0.10 - 0.40 14 29
D 600 0.50 0.30 - 0.70 36 51
E 335 0.50 0.30 - 0.80 36 36
F 337 1.50 1.00 - 1.70 48 48
G 100 1.50 1.00 - 1.80 51 8

Table 2: Information regarding the zoom and focus settings of the datasets ac-
quired for calibration and depth range assessment. The last column corresponds
to the number of poses with detected features using the feature detector [34].

Calibration. Let us start by obtaining the intrinsic matrix H and the radial480

distortion parameters, the distortion center ruv and the coefficients k1, . . . , k4
(M = 4), for each dataset. The depth ranges used for the calibration procedure
were defined relatively to the plane in focus by the main lens and considering
the field of view of the camera. The depth range is defined relatively to the
target object depth to have sharper viewpoint images which allow to detect485

more accurately the calibration grid points. The minimum depth value for
the range was defined in order to have the full calibration grid in the viewpoint
images. The number of calibration images is different among the several datasets
to ensure a low ray reprojection error [18] for each dataset (see Supplementary
Material). The maximum root mean-squared error for the ray reprojection error490

obtained during the calibration of the datasets is 0.2447 mm, which shows the
accuracy of the calibration performed.

Feature Detection and Correspondences. For the evaluation of the
reconstruction estimation accuracy, besides the calibration parameters we also
need to know the feature points obtained for each pose of the grids captured in495

the plenoptic depth images. These features are the projection rays from each
of the grid points captured by the camera. The projection rays are obtained by
applying a feature detector [34] to each of the viewpoint images obtained from
the raw plenoptic image. This is similar to the feature detection used during
the calibration procedure. The major difference is that, for the plenoptic depth500

images, the grids may fall out of the field of view and, therefore, the number
of feature points is not constant throughout all grid poses. For a lightfield with
Ni ×Nj ×Nk ×Nl pixels we can generate Ni ×Nj viewpoint images each with
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Nk×Nl pixels. The lightfield size for the standard plenoptic camera used is 11×
11×378×379 pixels. This size is obtained after the decoding process described505

in [18] and removing a border of two pixels in i and j due to demosaicking and
edge artifacts. Thus, among all datasets, a wide range of viewpoint images were
analyzed, more precisely 58 080 viewpoint images. Although many poses were
acquired for assessing the depth range of these cameras, the feature detection
procedure discards many of these poses since there are no identifiable features510

(Table 2). Furthermore, for the depth range considered, some of the datasets
only have features for a few number of depth values. The process of feature
detection makes Dataset C unusable for the smaller grid size, and the Dataset
G unusable for both grid sizes used.

(a) Raw Image

3280× 3280 pixels

(b) Microlenses Images

11× 11 pixels

(c) Detail of Viewpoint

Image
(d) Viewpoint Image

381× 383 pixels

Figure 6: (a) Debayered raw image from a standard plenoptic camera [18] with
zoom (b) to show the effect of the microlens array. The features (k, l) obtained
by the feature detector are shown in red for all calibration grid points (d). The
sub-pixel accuracy is depicted in (c). The contrast is reduced for display.

The selection of a viewpoint image (Figure 6.d) implies the (i, j) coordinates515

of the projection ray, while the output from the feature detector gives us the
(k, l) coordinates. The (i, j) coordinates are integers and the (k, l) coordinates
are real since the feature detector has sub-pixel accuracy (Figure 6.c). The
correspondences are obtained by grouping the projection rays obtained from
each viewpoint image that correspond to the same grid point in the object space.520

Thus, each grid point has a maximum of Ni × Nj feature points. Considering
the lightfield size for the plenoptic camera used, each grid point has a maximum
of 121 feature points.

Camera to World Coordinate System Transformation. The method-
ologies described in Section 5 assume points defined in the camera coordinate525

system. Thus, one needs to know the rigid body transformations between the
world and the camera coordinate systems defined for each of the calibrations.
For each dataset, the transformation is estimated using a Procrustes analysis
[35] between the estimated points in the camera coordinate system and the
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ground truth points in the world coordinate system. The grids captured for530

each set of depth plenoptic images were only moved along the z-axis forming
a parallelepiped. This allows to easily obtain the ground truth points in the
world coordinate system. On the other hand, the estimated points for the grid
points detected in the depth plenoptic images do not form a parallelepiped due
to noise and to the reconstruction capabilities of the camera. Nonetheless, the535

grid points form a planar surface that is present in both coordinate systems.
Hence, one can use this knowledge to remove the estimated points associated
with grid depths that deviate from a planar surface. The estimated points dis-
carded from the Procrustes analysis correspond to grid depths whose fitting
error to a planar surface is above a given threshold. For a given dataset, this540

threshold is defined as the mean of the planar fitting errors for all grid depths
in the plenoptic depth images.
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Figure 7: The estimated (cyan and yellow) and ground truth (black) grid points
obtained for Datasets D and F using a smaller grid are depicted in (a) and (b).
The planar surfaces correspond to grids at the depth limits of the Datasets
D and F and at an intermediate depth value (0.55 m, 1.10 m and 1.50 m for
Dataset D, and 1.10 m, 1.50 m and 2.00 m for Dataset F).

In Figure 7, one can see the result of applying the estimated transformations
to convert the estimated points from the camera coordinate system to the world
coordinate system for three depth values of Datasets D and F using the smaller545

grid. Although the estimated points do not lie in a plane (reconstruction is
done on a point by point basis), one can see that the estimated grids are close
to planar surfaces. Additionally, comparing the grid at depth 1.5 m in each of
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the datasets, one can see that the estimated points are closer to a planar surface
(for Dataset D the root mean-squared error (RMSE) is 6.6 mm and for Dataset550

F the RMSE is 3.0 mm) and also to the corresponding ground truth grid (for
Dataset D the RMSE is 0.2393 m and for Dataset F the RMSE is 0.0448 m) for
Dataset F. Thus, one would expect that increasing the zoom and focus depth
will originate better estimates for points farther from the camera.

Reconstruction Estimation Accuracy. Using the correspondences, the555

calibration parameters (H, ruv, and k1, . . . , k4) and the rigid body transforma-
tions, we obtain an estimate for the grid points in the world coordinate that we
can use to compute the reconstruction error as defined in equation (15). The
reconstruction errors and the estimated depth for the datasets are depicted in
Figures 8 and 9 (additional figures can be found on the Supplementary Mate-560

rial). To make easier the following discussions, we also summarize in Table 3,
the depth ranges identified for each of the datasets as well as the mean and
standard deviation for the normalized reconstruction errors. The normalized
reconstruction errors are obtained by dividing the reconstruction errors by the
corresponding ground truth depths. The depth ranges are identified by deter-565

mining the regions where the mean of the normalized reconstruction errors is
lower or equal to 10%.

Dataset
Depth Range

(m)
Mean ± STD Error
in Depth Range (%)

Mean ± STD
Error (%)

A 0.35 - 1.30 6.74 ± 5.13 16.67 ± 6.18
B 0.40 - 1.30 7.89 ± 5.96 13.72 ± 9.73
C 0.05 - 0.05 1.34 ± 5.93 25.73 ± 18.12
D 0.60 - 2.00 5.13 ± 3.20 14.01 ± 5.00
E 0.75 - 2.00 5.44 ± 3.30 8.28 ± 4.19
F 0.90 - 2.00 3.68 ± 1.78 5.90 ± 2.03
G 1.50 - 1.85 1.93 ± 0.60 1.93 ± 0.60

Table 3: Depth ranges for the datasets acquired. The depth ranges are identified
as the regions whose mean for the normalized reconstruction errors is lower or
equal to 10%. The mean and standard deviation (STD) for the normalized
reconstruction errors within the depth ranges defined and for all ground truth
depths are also depicted.

Zoom Step Analysis. In Figure 8.a-b, the datasets are grouped by constant focus
depths. Namely, the figure conveys information of datasets with focus depth at
0.05 m. For this focus depth, one can see that the mean reconstruction error for570

points farther from the plane in focus is higher. This is also highlighted by the
difference of the normalized error in the depth range and in the overall depth
analyzed presented in Table 3. Additionally, one can see that the increase in
zoom allows to have a lower reconstruction error for points farther from the focus
depth. In Table 3, one can see that the normalized error in the whole depth575
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analyzed decreases while the normalized error in the depth range is maintained
when the zoom is increased (excluding Dataset C due to the unusually high
normalized reconstruction errors).

Focus Depth Analysis. In Figure 8.c-d, the datasets are grouped by similar zoom
step. Namely, the figure conveys information of datasets with zoom step close to580

336. For this zoom step, the focus depth appears to improve the reconstruction
error for points at depths near the focal plane. In Table 3, this is highlighted by
the change of the depth range that has a normalized reconstruction error lower
or equal to 10%.

Zoom Step and Focus Depth Analysis. In Figure 9, Datasets A, D and F are585

depicted to highlight the reconstruction error by modifying both zoom and focus
settings. In this figure, one can see that the reconstruction error decreases as
the zoom step increases and the depth for which there are features detected also
change. This can also be seen by the decrease on the normalized error for the
whole depth analyzed and by the shift on the depth range with normalized error590

lower or equal to 10% in Table 3.
The lower reconstruction error with increasing zoom can be explained by

considering the depth error of a binocular stereo configuration (see Section 5.2).
The increase in zoom corresponds to an increase in the focal length f which
leads to a decrease on the depth error, which is in accordance with the findings595

in this figure. On the other hand, the focus depth determines the depth at which
the minimum reconstruction error occurs and, implicitly, the depth range. This
can be explained looking at the ray-spaces. Namely, a point in the world focal
plane corresponds to a vertical line in this space, which leads to a smaller error
due to the discretization that occurs at the image sensor (staircase effect). As600

the point moves away from the world focal plane, the line starts to deviate from
this vertical line and the discretization error increases leading to an increase on
the reconstruction error. Notice that the reconstruction method presented in
Section 5.1 reduces but does not eliminate the reconstruction error associated
with discretization.605

The reconstruction results presented in this section are obtained considering
the radial distortion parameters. The mean difference of the estimated points
normalized by the ground truth depth by not including the radial distortion
parameters is less than 1.6% for all datasets analyzed. This difference does not
change significantly the results presented in Table 3 (see Supplementary Mate-610

rial). Thus, we consider that the radial distortion does not play an important
role on the reconstruction estimation accuracy.

The results presented in this section show that the standard plenoptic cam-
eras has a reconstruction estimation accuracy that varies with the zoom and
focus settings of the camera. The zoom is a determinant factor on increasing615

the reconstruction accuracy of these cameras, while the focus depth (as a com-
bination of zoom and focus steps, see Figure 5) plays a role on shifting the depth
range. The depth range analyzed from 0.05 m to 2.00 m can be reconstructed
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Reconstructed Depth Reconstruction Error

(a) (b)

(c) (d)

Figure 8: Reconstruction estimation accuracy with zoom step (first row) and
with focus depth (second row). The first column depicts the reconstructed
depth while the second column depicts the reconstruction error for the esti-
mated points. The first row groups the datasets with focus depth at 0.05 m
(Datasets A, B and C) and the second row groups the datasets with zoom
step close to 336 (Datasets E and F).
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Reconstructed Depth Reconstruction Error

(a) (b)

Figure 9: Reconstruction estimation accuracy with zoom step and focus depth.
The first column depicts the reconstructed depth while the second column
depicts the reconstruction error for the estimated points obtained for datasets
with different zoom and focus settings.

with accuracy by choosing correctly the zoom and focus settings of the camera.

7. Conclusions620

In this work, we extended the camera model of Dansereau et al. [18] to
formalize a forward projection model and improved a reconstruction method-
ology based on multi-view stereo by imposing geometry cues on the ray-spaces
(i, k) and (j, l). These reconstruction methods assume that we have a calibrated
standard plenoptic camera.625

The improved reconstruction methodology was used to evaluate the depth
estimation accuracy under certain zoom and focus settings. This method was
applied to seven datasets acquired with different zoom and focus settings and
with objects placed at depths ranging from 0.05 to 2.00 meters. The depth
accuracy was evaluated through the reconstruction of grid points captured on630

these datasets (using features on viewpoint images). The findings presented
suggest that these cameras are capable of reconstructing points in the depth
range analyzed by appropriately choosing the zoom and focus settings. Namely,
the zoom increase allows to lower the reconstruction error while the focus depth
determines the depth range of the camera. This is the first study, to the best635

of our knowledge, that studies the depth capabilities of a standard plenoptic
camera for different zoom and focus settings.
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Feature detection is an important component of the reconstruction method-
ology. As shown experimentally, the inclusion of projection geometric cues pro-
vided already a significant improvement of the depth reconstruction results.640

Further improvements on feature detection, on the projection model (by in-
cluding other types of distortion), or on the reconstruction methodology, can
be found which could allow extending the range of reconstructible depths for a
specific error bound. The reconstruction analysis can be further complemented
by defining a theoretical error and studying the changes introduced by different645

zoom and focus step settings on the intrinsics matrix H.
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