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Abstract— This paper addresses the problem of robotic
grasp optimization. Due to uncertainty both on the robot
kinematics, motor control and object perception, it is very
hard to analytically compute good grasps and execute them
successfully. Our approach is based on searching for the best
grasp configurations by iteratively optimizing a suitable grasp
criterion. This approach may be compared to human learning
stages where infants learn by trial and error what are the best
grasping strategies. Initial grasps are often unsuccessful, but
after a few trials the system learns to adapt to the uncertainties
in the environment.

I. INTRODUCTION

Robot grasp planning and optimization have been hot top-
ics in the last decade and are still under very active research.
Most of the proposed approaches rely on off-line sampling
strategies: candidate grasps are generated according to some
criteria and then ranked with some quality metric obtained in
simulation environments. Uniform sampling around heuristic
pre-grasps [1], [2], simulated annealing [3], randomized trees
[4] and active learning [5] are state-of-the-art techniques to
generate grasp candidates. However, such approaches often
assume the availability of “perfect” models of the robot kine-
matics, control and object geometry, which does not apply in
practice. The problem is very challenging since it involves
the integration of multiple robot skills: object perception,
motor control, force and tactile sensing, robot kinematics
and dynamics. Each of these skills introduce some sort
of uncertainty either due to noise in sensors or modeling
(calibration) errors. Because of such errors, deterministic
approaches to grasp planning are brittle and prone to fail-
ures. Under uncertainty and systematic errors, more precise
models of the grasping problem can be obtained by learning
approaches. Trial and error approaches can be used to learn
models of the grasping process but exploration and feedback
strategies must be carefully chosen otherwise the problem
may become intractable due to the large dimension of its
state-space. In this work we propose a learning approach
that tries to emulate how humans use their hands to explore,
restrain and manipulate objects, adapting to uncertainties in
the models. We propose the use of Bayesian Optimization
methods [6] to tackle the problem of efficient exploration.
Our work exploits a sequential sampling strategy, where
the results from previous trials convey information to guide
the next samples. We show experimentally that, depending
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Fig. 1. By sampling the grasp input parameter space the system draws the
mapping from grasp input parameters to grasp quality.

on object’s shape properties, sequential decision may re-
duce significantly the number of trials necessary to achieve
quasi-optimal grasps with respect to random search. Despite
being recently used in machine learning applications such
as learning robot parameters [7], learning neural network
weights [8], finding policies for robot path planning [9], etc,
we introduce Bayesian Optimization methods to the robot
grasping problem.

We consider in this work robot hands with the ability to
detect forces and contact points with objects. Most recent
robotic hands have some sort of tactile or force/torque
sensing allowing this ability. In these cases grasps can be
evaluated by a quality metric through the analysis of the
force/torque pairs (wrenches [10]) applied by the hand on the
object. Several of these metrics have been proposed in the
literature, often using some form of wrench space analysis.
The one we use is based on [11] and provides quality
measures for both force-closure [10] and non-force-closure
grasps. Force-closure grasp quality depends on the highest
magnitude wrench that the grasp can resist in any direction.
For non-force-closure grasp the quality depends on how
distant the grasp is to being force-closure. The evaluation of
non-force-closure grasps is not common in grasp planning
literature but we find the additional information obtained
from non-force-closure grasp assessment to be extremely
useful. The proposed method consists in performing consecu-
tive grasp trials, changing the grasp parameters (for instance
hand-object relative pose, hand closure strategy, etc) until
good grasps are achieved. Each grasp trial should use as
much as possible the information obtained in the previous,
ones in order to minimize the number of trials to reach a good
grasp. The objective is to optimize the grasp parameters such
as to obtain the highest quality grasp metric value.

This paper presents our approach and implementation to
the problem of grasp planning through the use of Bayesian
Optimization Methods. Section II will describe the method
in detail. The experimental results obtained are shown in
section III.



II. BAYESIAN OPTIMIZATION

One of the key points of our method is to define a suitable
exploration strategy able to minimize the number of required
exploration trials to achieve good grasps. To address this
issue we will employ recent results in global sequential
optimization using Bayesian methods [6]. The grasp quality
metric will be maximized through an search strategy that
proposes new trials on regions of the parameter space where
either its expected value (exploitation) or its uncertainty
(exploration) are large. The outline of the proposed method
is as follows:

Let x denote a vector of grasp parameters that we want
to optimize. Depending on the capabilities of the robotic
manipulators these may include the hand-object relative pose,
joint velocities, closure synergies, etc. An initial configu-
ration x0 is defined for the first robot trial. This can be
defined in several ways: either randomly on a certain range
depending on the object state or using heuristics from prior
knowledge. Each robot grasp trial feeds a Gaussian Process
Regression model [12] that models the expected value and
variance of the quality metric. These measures can then be
predicted easily at any point on the state space. To decide
the next point to try, we maximize at each time step a form
of Expected Improvement function (EI) with exploitation-vs-
exploration control [13]. To optimize the expected improve-
ment function we use the DIRECT algorithm [14]. This is
a global optimization method that works by partitioning the
space in intervals (DIRECT stands for DIvide RECTangles),
estimating the Expected Improvement (EI) function in their
center, and choosing, at each time step, the interval where
EI can be maximal for any bound on the function derivative
(Lipschitz constant). The obtained solution will define the
parameters of the next robot trial. This cycle is depicted in
Fig. 2.

Fig. 2. Complete method diagram.

A. Gaussian Process Regression

A Gaussian process allows the information about the
subject of interest to be represented in a way that the learning

agent understands. It is used as a means to describe a
distribution over functions. As a more formal definition, a
Gaussian Process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribution,
[12]. It is completely defined by a mean and covariance
function pair

µ(x) = E [ f (x)] (1)

Σ(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(2)

and is represented as

f (x)∼ GP(µ(x),Σ(x,x′)). (3)

In the current context the random values represent values
from the grasp quality metric function f (x) that the robot
wishes to learn. The mean function is the best prediction of
the true function given what is known. Also it is initially
considered as a zero function since there is no relevant
information at the start of the process, but other priors may
be used if desired. The covariance function is what gives a
sense of proximity or similarity between two points.

A kernel is the general name given to a function K of two
arguments mapping a pair of inputs x ∈ X , x′ ∈ X into R.
In this work the kernel chosen is a Matérn class covariance
function given by

K(r) = (1+

√
3r
l

)exp(−
√

3r
l

) (4)

where
r = |x− x′| (5)

measures the distance between points x and x′and l represents
the kernel length. Resorting to kernel functions allows us to
create covariance functions where the connectivity between
points is directly related with the distance between them. For
more information on kernel functions refer to [12].

The representation of a covariance function is what implies
a distribution over functions. Our goal is to perform the
estimation of f (x) based on the already known function
values. To do this it is a simple matter of conditioning the
distribution over functions to what is already known

F∗|X∗,X ,F ∼ N(µ(x),Σ(x,x′)) (6)

µ(x) = K(X∗,X)K(X ,X)−1F (7)

Σ(x,x′) = K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X ,X∗) (8)

where X∗ is the estimation point set, X is the observation
(known) point set, F is the set of observed function values
and F∗ denotes the estimated function values.

The values K(X∗,X), K(X ,X∗), K(X ,X) and K(X∗,X∗)
are the kernel evaluated between point pairs of the prediction
and observation set.

Despite the fact that this is a fairly good estimation of the
function it is still somewhat naive. The thought of getting
perfect measurements experimentally is an extremely gullible
approach. Therefore some observational error has to be taken
into account when preforming the estimation. Assuming



additive independent identically distributed Gaussian noise
ε with variance σ2

n leads to

F∗|X∗,X ,F ∼ N(µ(x),Σ(x,x′)) (9)

µ(x) = K(X∗,X)(K(X ,X)+σ
2
n I)−1F (10)

Σ(x,x′) = K(X∗,X∗)−K(X∗,X)(K(X ,X)+σ
2
n I)−1K(X ,X∗) (11)

where I is the identity matrix.
This estimation of the mean function provides us with the

robust estimation of the real function that we need. It also
provides a measure of the estimation’s uncertainty, which
will be crucial to the robot’s learning.

B. Expected Improvement

With the Gaussian Process providing a model of the
function we wish to learn, the next step is to decide what we
should do to improve our knowledge of this function. This
decision shouldn’t be taken lightly since it is what defines
the learning rate. To achieve this decision we will use the
concept of Expected Improvement [6].

The Gaussian Process provides a global estimation of f (x)
based on what is known at the time. Since we are trying to
find the maximum value of the function f (x) the natural
decision should be to explore regions of the function where
a higher maximum is possible. From this idea we define the
improvement function as

I(x) = max{0, fn+1(x)− f max} (12)

where f max is the current maximum value. The function takes
on positive values when the prediction is higher than the best
value found so far and is set to zero otherwise. Using the
improvement function, the new observation point is attained
by finding the maximum expected improvement point

x = argmax
x

E(max{0, fn+1(x)− f max}|Dn) (13)

where Dn is all that is known at time n

Dn = [ f1, . . . , fn] (14)

and fi is the observed value for trial i. This expected im-
provement can easily be evaluated analytically, [15], through

EI(x)=
{

(µ(x)− f max)Φ(Z)+
√

Σφ(Z) i f Σ > 0
0 i f Σ = 0

(15)

where

Z =

{
µ(x)− f max
√

Σ
i f Σ > 0

0 i f Σ = 0
, (16)

Σ is the covariance function and φ(.) and Φ(.) respectively
denote the probability density function and the cumulative
distribution function of the standard Normal distribution. As
mentioned in the previous section, the uncertainty measure
given by the covariance function Σ plays a huge role on
the decision of the next observation. It enables the balanc-
ing between exploiting and exploring. When exploring, we
should focus on points where the prediction variance is large
in order to minimize the global uncertainty. When exploiting
one’s focus should be the points where the predicted mean

function is high so that a higher and more accurate value of
the global maximum may be found.

Evaluating the expected improvement through (15) bal-
ances the exploration versus exploitation trade-off in an
unruly fashion. A more generalized form of the EI(.) has
to be found in order to directly control this balance. Lizotte
[13] suggests a ξ ≥ 0 parameter obtaining

EIξ (x) =
{

(µ(x)− ( f max +ξ ))Φ(Zξ )+
√

Σφ(Zξ ) i f Σ > 0
0 i f Σ = 0 (17)

where

Zξ =

{
µ(x)−( f max+ξ )√

Σ
i f Σ > 0

0 i f Σ = 0
. (18)

In this work we use ξ =
σ̂2

f
100 where σ̂2

f is the Gaussian process
estimated variance given by

σ̂
2
f = FT K(X ,X)−1F . (19)

For a more detailed reading on this topic refer to [6] and
[13].

Now we have a procedure to represent the current knowl-
edge, to predict the unknown and to accordingly decide what
to do next. Repeating this process will ultimately lead to
learning f (x) very efficiently in terms of minimizing the
number of observations. In the next section we will show
that one more aspect must be considered for the method to
be efficient.

C. Direct Optimization Algorithm

To optimize the Expected Improvement function one needs
to evaluate it at several points. Kernels must be evaluated at
all point pairs possible between the points in the estimated
and observation point sets. While the kernel evaluation is
simple, the number of points in the estimated point set grows
at troubling rates if uniformly sampled through input space.
This point set grows at a rate of nD where n is the number
of samples per dimension and D is the number of input
parameters. So a simple uniform sampling of the space along
all the dimensions in order to find the point with the highest
expected improvement is not a good approach.

We turn to a more efficient approach trough the use of the
Direct Optimization algorithm, [14]. This algorithm uses a
small number of initial predictions to decide how to DIvide
the feasible space into smaller RECTangles. The end result is
a high discretization of the target function near the function
maxima and a low discretization elsewhere.

The Direct algorithm starts by normalizing the function
domain into a unit hyper-cube with center c1

Ω̄ = {x ∈ RN : 0≤ x≤ 1}. (20)

The algorithm works in this normalized space, only reverting
to the original space when making function calls. After
evaluating the function at f (c1) it is time to make the first
division of the hyper-cube. The cube is divided into smaller
cubes centered at c1±δei, i = 1, ...,n where δ is one third of
the cube length and ei is the ith unit vector. Direct choses to



leave the best function values in the largest space. As such
the first dimension to be divided is chosen by means of

ωi = min( f (ci +δei), f (ci−δei)), 1≤ i≤ N. (21)

The dimension with the smallest ωi is divided into thirds and
the process is repeated for all dimensions on the resulting
center hyper-rectangles.

With the hyper-cube division done it is time to find which
of the newly generated rectangles/cubes may be potentially
optimal. For the optimality test, we test each of the rectan-
gles/cubes for the existence of a Lipschitz Constant K̂ > 0
that allows

f (c j)− K̂d j ≤ f (ci)− K̂di,∀i, (22)

f (c j)− K̂d j ≤ fmin− ε| fmin| (23)

where ε > 0 is a positive constant, fmin is the current best
function value and c j and d j are respectively the center
of the tested hyper-rectangle/cube and a measure of the
dimension of the same rectangle/cube. In (22) we test if the
possible variation of the value f (c j) when traveling inside
the respective hyper-rectangle/cube may reach a minimum
value when applying the same variation scale to all other
f (ci) navigating on the respective ith rectangle/cube. On the
other hand (23) tests if the possible minimum reached on the
jth rectangle/cube is of interest when compared with fmin.
The term ε| fmin| makes sure that the improvement to the
minimum value is non trivial.

Now that we know S, the set of all the potentially optimal
rectangles/cubes, the only remaining step is to divide all
members of this set, evaluate the function at the center of
the resulting rectangles/cubes and update fmin. An interesting
fact is that when dividing an hyper-rectangle, the algorithm
always chooses to divide along the longest dimension(s) to
ensure that the rectangles shrink on every dimension.

The Direct algorithm repeats the previous operations (ex-
cept the initialization) until S is empty, meaning no more
divisions are of interest. When this stage is reached the fmin
is the global function minimum. Since we are looking to
maximize the expected improvement function, it is only a
matter of suppling Direct with negative values of EI(.).

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments performed during the course of this
work were done in a simulation environment through the
OpenRave simulator [16]. The environment consisted of a
manipulator arm, the Barrett hand, and a few objects as
shown in Figures 3 and 4.

B. 1D exploration with Bayesian Optimization

We will now show some 1D scans made by changing
the grasp’s initial position along the approach axis inside
a bounded region near the object. The grasp parameter x
to optimize in this case is simply the distance of the hand
to the object. The goal of these scans is to give a better
understanding of how the Gaussian process and the Bayesian

Fig. 3. The experimental setup used for validating the proposed metric.

Fig. 4. The objects.

methods interact. Also to be shown is how the system
behaves when the initial random sample is one of the best
possible or one of the worst possible. Fig. 5 depicts the
latter. It represents the sequence carried out by the method
to sample a sphere, when the initial random sample does
not even touch the object (top left plot). In red we can
see the GP mean function which is the best estimation of
the metric function at this time, the dashed lines depict the
estimation variance at each function point, the red dots are
the values collected from the robot trials. The blue function
represents the EI function that classifies the function space
in terms of exploration interest. Even with the setback caused
by the bad initial random sample, it only takes 2 iterations
of the method in order to find a possible maximum (top
right plot). Acknowledging the fact that a region that may
contain the maximum has been found, the system focuses
the search in it’s neighboring points (bottom left plot).
Once this region has been exploited, the system resumes it’s
exploration efforts to assure there are no more regions that
may contain better values of f (x). After confirming that it
has found the function maximum value the exploration stops
(bottom right plot).

The second case that will be shown is the opposite case.
Fig. 6 shows the sequence followed by the method while
sampling a star prism when the initial random sample is one
possible maximum (top left plot). As the function is still
completely unknown to the system, excluding the random
sample, it is impossible for it to realize that the first sample
is actually a possible maximum and so it proceeds with
the exploration. After 3 iterations the system finally realizes
the potential of the first sample (top right plot) examining
the neighboring region (bottom left plot). The exploration
is resumed and 2 more interest areas are found before the
systems stops (bottom right plot).
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Fig. 5. 1D scan of a sphere, computed by sampling along the input
parameter.
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Fig. 6. 1D scan of a star prism, computed by sampling along the input
parameter.

C. 2D exploration with Bayesian Optimization

Let’s now scan the object in the 2-dimensional space.
The results are shown in figures 7 to 9. The parameters
to optimize are now the distance to the object (x) and the
vertical offset with respect to the object’s center (y). Also
in order to test the method’s performance under the worst
possible conditions, we assume that the observations are
noisy.

As shown in table I, it is clear that the number of necessary
trials is different depending on the object. Also depicted in
table I are the number of trials needed in order to find a value
that differs from the global maximum by less than 5%, 10%
and 20% respectively from left to right.

Although only stoping when the expected improvement
no longer displays interesting values, the method could have
settled for much less samples and still provide a fairly good
approximation of the global maximum.

D. Bayesian optimization versus random sampling

We now make a base comparison between the performance
of the Bayesian optimization method and random sampling
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Fig. 7. BW Metric values of grasps in a wine glass, computed using the
Bayesian Optimization method.
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Fig. 8. BW Metric values of grasps in a mug, computed using the Bayesian
Optimization method.
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Fig. 9. BW Metric values of grasps in a star prism, computed using the
Bayesian Optimization method.

TABLE I
NUMBER OF SAMPLES TAKEN FOR EACH OBJECT.

Object Bayesian Optimisation
- Total 5% 10% 20%

Sphere 551 14 14 14
Wine Glass 306 31 19 19

Cylinder 485 39 20 20
Mug 331 55 55 1

Cuboid 564 1 1 1
Rotated Cuboid 388 59 59 59

Star Prism 402 105 105 31



on parameter space. This comparison is done by measuring
the evolution of the best value found by each algorithm
along a sequence with 60 iterations when performing 2D
exploration.
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Fig. 10. Comparing the evolution of best value found when sampling a
sphere with the Bayesian aproach versus the random sampling method.
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Fig. 11. Comparing the evolution of best value found when sampling a
mug with the Bayesian aproach versus the random sampling method.

Figures 10 to 12 represent the results of some of these
experiments. They show the evolution of the best value found
by each method when sampling a sphere, a mug and a
star prism respectively. The Bayesian method (black) clearly
converges faster than the random sampling method (red) to
the maximum function value even for a complicated objects
such as the mug (non-convex). The same figures also show
that the Bayesian method displays a very small variance
when compared to the random search method.

IV. CONCLUSIONS

This work proposed a methodology to compute optimal or
close-to-optimal grasps on a diversity of scenarios. We have
shown that it is possible to create a robotic grasping system
that “feels” the object and gradually searches for the optimal
grasp, through the use of Bayesian Optimization methods.
We showed that these methods can be more efficient than
random search of the parameter space. We also showed that
they provide a measure of the system’s global uncertainty.
This measure can be interpreted as how much do we actually
understand the complete system.
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Fig. 12. Comparing the evolution of best value found when sampling a
star prism with the Bayesian aproach versus the random sampling method.
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