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Abstract. The estimation of object’s weight is a very challenging prob-
lem due to limitations on tactile technology and robust and fast con-
trollers that can adapt to friction state changes. In this article we study
the weight estimation using skin-like tactile sensors, which provide ac-
curate 3 dimensional force measurements on the finger tips of Vizzy, a
robot with human-like hands. The sensor reading from the fingertips are
analyzed and segmented in order to find the most adequate stages of
the movement for the computation of the weight. The analysis is based
on the difference of the load force between the grasping and holding
up stages, which provides a good estimation of the object’s weight for
different objects and various repetitions of the experiments.
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1 Introduction

Humans are able to execute manipulation actions that aim at adapting the grip-
ping force while grasping objects, using rough weight guesses from vision as
initial estimation, followed by tactile afferent control loop that provides robust
and precise grasp such as the precision grip. The capability of a fast adaptation
using the tactile sensors relies on the high density of tactile afferents (about 140
afferents/cm2) in the fingertips and the specialized action-phase controllers [3],
which allow to sense accurately large areas of the objects when compared to the
current technologies for robotic hands tactile sensing. Nevertheless, studies on
grip control and slippage detection for robotic hands have shown the plausibil-
ity of haptic feedback for robots in simplified experimental setups. In addition
to the technological limitations, adaptive object manipulation requires robust
switching control algorithms and independent-mode controllers that provide a
fast response, and at the same time model unstable states such as grasping in
the presence of dynamic friction. All these challenges are closely related to the
weight estimation of objects by humanoid robots in uncontrolled environments,
which is the long-term objective of our work.

http://vislab.isr.tecnico.ulisboa.pt/
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Fig. 1: Example of the initial robot configuration before the execution of a pre-
cision grip experiment for weight estimation

In this article we address the weight estimation of objects, by executing ma-
nipulation actions with the humanoid robot Vizzy [4], which has two hands very
similar to their human counterparts. Fig. 1 shows the robot right at the begin-
ning of a weight estimation experiment. Although the robot was mechanically
designed for power grasps, Vizzy is able to execute precision grips for medium
size objects. We focus on the weight estimation of objects during the execution
of precision grips, using skin-like tactile sensors at the fingertips [5]. The sensors
provide an estimation of the force from the changes in the magnetic field, con-
sidering three main elements: (i) a 3 dimensional hall effect sensor, (ii) a magnet
and (iii) a silicon cover for the magnet. The changes in magnetic field due to
the deformation of the silicon part are mapped onto 3 dimensional forces, which
provide the tactile perception to the silicon cover. These 3 dimensional forces
estimated by the sensor are analyzed over time in order to find the different
stages of the precision grip execution. The sequence of stages is as follows: (1)
initial positioning of the hand around the object,(2) object grasping and lifting,
(3) holding, (4) returning the object to the initial position and (5) returning
the robotic hand to the initial position. These stages are segmented for all the
sensors that touch the object, and the estimation of the weight of each object
was based on the assumption that the difference between the forces exerted by
the robotic hand in the stages 2 and 3 along the three directions sum up to
the weight of the object (i.e. the change in the load force due to gravity). In
addition, we consider that the friction force keeps a constant value during the
stages 2 and 3, which is valid if there is no relative movement between the object
and the sensors (no slips nor oscillations). Therefore, the friction component of
the force is removed by calculating the difference between the forces in stages 2
and 3.

We evaluate the weight estimation algorithm on two objects with different
size and shape, and also increasing the weight of the objects by adding water.
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The results show that the tactile sensor provide good estimation of the weight
while having skin-like skills.

2 Related Work

Recent developments in tactile sensing such as BioTac1, OptoForce2 and the skin-
line magnetic-based [5] sensors have opened the door to explore the challenging
area of grip control [7,1] and slippage detection [6] for robotic hands. Since au-
tonomous grip control using tactile sensors is still an open research problem due
to technology limitations and development of controllers that are able to operate
in different conditions such as the changes between static and dynamic friction.
A robust set of controllers should be able to switch between states and adap-
tively change the control reference in order to manipulate autonomously objects
with different materials and shapes. Thus, the autonomous weight estimation is
a very challenging problem that has to consider physical properties (i.e. static
and dynamic friction), autonomous switching between control modes and the
contact points on the object. Thus, the weight estimation of objects is usually
done in simplified settings where for instance the object shape fits very well the
gripper shape and the robot arm is carefully designed for the weight estimation
by following the moving crane approach [2]. In that work, the manipulation ac-
tion is a power grasp where the friction problems are not present, but the authors
are able to estimate online the object weight in a very short time (0.5-0.7secs.).
In [2], the voltage signals of the load cell (sensors) are analyzed offline in order
to characterize the different manipulation stages. Then, associations between
the voltage response and the manipulation stages lead to an ad-hoc algorithm
for the segmentation of the signal. Finally, the average value of the signal in
the selected interval is utilized to learn the parameters of a regression function
that maps load cell voltages onto weights. As in [2], we analyze the signal re-
sponse over time and identify the manipulation stages. However, we address a
more challenging manipulation problem, the two-fingertip precision grip of a hu-
manoid robot hand, where the friction issues arise. In the following we describe
the characteristics of the hand.

3 Vizzy’s hand design

In this work is used the robot Vizzy [4] to perform the grasps. Vizzy was designed
as a human assistant for social interaction tasks. Vizzy has an anthropomorphic
upper body with similar degrees of freedom and motion execution skills of a
human. Regarding its hands, the palm and finger sizes and number of limbs are
also similar to an adult person, but having only four fingers capable of grasping
objects. The thumb and index fingers are actuated each one by a single motor,

1 https://www.google.com/patents/US7658119
2 https://optoforce.com/file-contents/OMD-20-SE-40N-DATASHEET-V2.2.pdf?

v14

https://www.google.com/patents/US7658119
https://optoforce.com/file-contents/OMD-20-SE-40N-DATASHEET-V2.2.pdf?v14
https://optoforce.com/file-contents/OMD-20-SE-40N-DATASHEET-V2.2.pdf?v14
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while the middle and ring fingers are coupled to one motor. The motor of a finger
is coupled to a pulley, that pulls a fishing line string. The fishing line string is
attached from the pulley to the last limb of the finger, such that the motion of
one motor moves in an under-actuated manner the three limbs of each finger.
In this work we only used two fingers: thumb and index, in order to perform
the precision grasp. Regarding the sensors, the thumb has three sensors and the
rest of the fingers have four sensors each. The sensors are presented in orange in
Fig.2 and the ones used in this experiment are numbered from 1 to 4.

Fig. 2: Indexes of the force sensors in Vizzy’s hand

These tactile sensors [5] are composed by a soft elastomer body with a small
permanent magnet inside. Below the magnet there is a magnetic field sensing
element (i.e. Hall-effect sensor). When an external force is applied on the elas-
tomer, the relative magnet position changes and the Hall-effect sensor detects
the magnetic field variation, that can be converted in a measure of the applied
force. An air gap is left between the elastomer and the magnetic sensor in order
to increase the sensitivity for small forces. The use of a 3-axis Hall-effect sensor
allows the detection of the magnetic field variations along the 3 axis, meaning
that the sensor is capable of measuring the force magnitude and direction in
3D. The presented tactile sensors are dependent on the contact area, that is
unknown. The feedback of the measured Hall sensor provides the magnetic field
vector. To achieve the force vector, some assumptions of the contact area are
needed during the calibration process. The sensors are calibrated for a contact
with a plane surface perpendicular to the Z axis of each sensor. The 2 sensors
near the fingertips are covered with same elastomer piece but each sensor has its
own individual calibration, made with a planar surface on top of that sensor.
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4 Experiment setup

The experimental tests were performed using two different objects (plastic con-
tainers) with similar shapes and surface characteristics but slightly different sizes
(Fig. 5). In order to increase the variability of the test objects regarding the vari-
able of interest, these objects were used in two different configurations: empty
and partially filled with water. The movement executed by the robotic arm dur-
ing data acquisition can be divided into a series of sequential steps described in
the Introduction(1).

Fig. 3: Test objects: object 1 (left) and object 2 (right).

(a) Stage 1 (b) Stage 2 (c) Stages 3 and 4

(d) Stage 5 (beginning) (e) Stage 5 (end)

Fig. 4: Movement phases: 1-initial position; 2-object grasping and lifting; 3-
holding; 4- landing the object; 5- return to the initial position.

At the beginning of the test (stage 1, on Fig. 4a), the palm of the robotic
hand was placed perpendicularly to the surfaces of the object where the contact
would be established. The initial position of the object and the hand was defined
according to two main criteria. On the one hand, there was no initial contact
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between them in order to assure that the sensors would not detect any significant
force at this stage of the sequence. On the other hand, the relative position of the
thumb and the finger had to be optimized in a way that the grip forces exerted
by these fingers were approximately perpendicular to the surface of the object
and parallel to the palm of the robotic hand. This was achieved by setting
the thumb to an abducted position and the index finger in opposition to it.
According to the GRASP Tanoxomy [1], this type of grasp corresponds to a
precision grasp with pad opposition, which is naturally executed by humans to
grasp small objects. The optimization of the initial relative position of the hand
and the object has proven to be critical for the success of the grasp, particularly
to prevent oscillations in posterior stages of the movement and to guarantee
the appropriate contact between the sensors and the object. The following stage
of the movement (stage 2, on Fig. 4) consisted in the movement of the thumb
and the finger against the surface of the object without changing significantly
their initial configuration. The final position of the fingers at this stage was
tuned to optimize the compromise between minimizing the potential occurrence
of slipping events during the lifting phase while not inducing any significant
degree of deformation in the object. The following stage of the sequence was the
lifting and holding of the object (stage 3, on Fig. 4). During these phases, the
most relevant issue was to minimize the motion artifacts resulting from small
oscillations of the object, which was accomplished by controlling the velocity of
the movement of the robot’s joints. Finally, both the objects and the robotic
hand were returned to their initial positions (stages 4 and 5 on Fig. 4 ). and the
robotic hand also returned to the configuration described in the first stage. The
sequential movement was repeated over several trials for each one of the objects
and the acquisition of the data from the sensors was performed using the Arduino
Nano board. The raw data consisted of the magnitude of the forces along the
three directions measured in each sensors reference frame. Matlab was used for
real-time visualization and monitoring of the results as well as post-acquisition
signal processing and extraction of the results.

5 Results

Figure 5 displays the results obtained in one of the trials performed with the test
object 1, consisting of the magnitude of the three components of the force (Fx,
Fy and Fz) over time, for one of the sensors of the robotic hand. The sampling
frequency used for data acquisition was 20 Hz and each trial lasted for approx-
imately 12.5 seconds, which was enough to perform the previously described
sequence of movements and to obtain an appropriate number of samples in each
one of the stages. The estimation of the weight of each object was based on the
assumption that the difference between the forces exerted by the robotic hand
in the stages 2) and 3) along the three directions sum up to the weight of the
object. Another necessary assumption is that the friction (and resultant force)
is constant during the movement, which is valid if there is no relative movement
between the object and the sensors (no slips nor oscillations). Therefore, the
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Fig. 5: Illustrative example of the results obtained for one trial performed with
test object 1. The graphic represents the magnitude of the three components of
the force (Fx, Fy, Fz) for one sensor over time as the sequence of movements is
executed. The vertical lines along the time axis represent the temporal sequence
of stages that constitute the overall movement: 1) initial position of the robotic
hand; 2) lifting and grasping 3) holding; 4) returning the object to its initial
position (in contact with the table); 5) opening the robotic hand.

friction component of the force is nullified by calculating the difference between
the forces in stages 2) and 3). It was necessary to manually identify stages 2) and
3) for each one of the trials and compute the average force along the directions
X, Y and Z for sensors 1, 2, 3 and 4 during those stages of the movement. The
weight of the object was then estimated as the sum of the absolute difference
between the average load and grip forces measured during stages 3) and 2), re-
spectively 1. The mass was computed according to equation 2, where m stands
for the mass of the object in grams, FTotal is the difference between the average
forces in stages 2) and 3) that was identified as the weight of the object and g is
the acceleration due to gravity. Table 1 summarizes the results of the mass for
objects 1 and 2 in both configurations.

FTotal =

4∑
i=1

[|F 3
x,i − F 2

x,i|+ |F 3
y,i − F 2

y,i|+ |F 3
z,i − F 2

z,i|] (1)

m =
1000FTotal

g
(2)

The experimental results are a reasonable approximation of the actual mass
of both objects with water. However, the standard deviation for these objects
is considerable, which is mainly due to fluctuations in the initial positioning of
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Table 1: Experimental mass of test objects 1 and 2 in both configurations (E-
Empty and W-With Water)
Object Index Object Configuration Mass (g) Experimental Mass (g) Standard Deviation (g)

1
E 40.0 73.8 8.1
W 94.0 94.6 13.8

2
E 26.0 52.0 19.2
W 76.0 78.5 7.4

the object that resulted in a non-optimal contact between the sensors and the
surface of the objects that compromised data acquisition. Moreover, due to tech-
nical constraints, it was not possible to achieve the desired number of trials. On
the other hand, the experimental mass of the test objects in the empty configu-
ration exhibits a significant deviation from its actual value. Since the sequence
of movements was maintained for both configurations, it was verified that, re-
garding the test objects in the filled configuration, the added weight resulted
in more stable contact points and, in general, more reproducible measurements.
This fact contributes for the difference in accuracy observed between the ex-
perimental results for both configurations. Another relevant conclusion is the
systematic overestimation of the mass for both objects and configurations. This
overestimation can be explained by the acquisition of data from two sensors at
each fingertip that do not contact the surface of the object in an optimal po-
sition. In fact, as can be observed in [reference to an image that illustrate the
grasp], the contact is established in an intermediate position between the two
sensors, which represents a deviation from the optimal position (at the center
of the sensor’s surface). Nevertheless, if only one sensor was used under similar
circumstances, an underestimation of the mass would be expected.

6 Conclusions and Future Work

This experimental work allowed us to obtain satisfactory results regarding the
estimation of objects’ weight on precision grips using skin-like sensors integrated
on the humanoid robot Vizzy. However, more accurate and reproducible results
will require an optimization of the experimental protocol concerning the posi-
tioning of the contact points between the sensors and the object’s surface. For
future work, one possible direction would be the adaptation of the data pro-
cessing to achieve an estimation of the weight of deformable objects, for which
the assumption of a constant friction force during the holding stage of the move-
ment is no longer valid. Another relevant direction would be a more autonomous
data processing in order to allow a real-time identification of the stages of the
movement useful for weight estimation. This would be a crucial advancement
towards an online estimation of the objects’ weight, which could ultimately be
used for real-time adjustments of the grip forces in order to avoid the occurrence
of slip events during grasping. The elastomer body that contains the sensor is
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not tailored to measure weight. In an ideal scenario the sensor is at equal dis-
tance to the surface of contact. A spherical shape would be more suitable for
this measurements instead of the one portrayed in Fig.2.
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