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Summary
Background: Traditional rehabilitation ses -
sions are often a slow, tedious, disempower-
ing and non-motivational process, supported 
by clinical assessment tools, i.e. evaluation 
scales that are prone to subjective rating and 
imprecise interpretation of patient’s perform-
ance. Poor patient motivation and insuffi-
cient accuracy are thus critical factors that 
can be improved by new sensing / processing 
technologies.
Objectives: We aim to develop a portable 
and affordable system, suitable for home re-

habilitation, which combines vision-based and 
wearable sensors. We introduce a novel ap-
proach for examining and characterizing the 
rehabilitation movements, using quantitative 
descriptors. We propose new Movement Per-
formance Indicators (MPIs) that are extracted 
directly from sensor data and quantify the 
symmetry, velocity, and acceleration of the 
movement of different body/hand parts, and 
that can potentially be used by therapists for 
diagnosis and progress assessment.
Methods: First, a set of rehabilitation exer-
cises is defined, with the supervision of neu -
rologists and therapists for the specific case of 
Parkinson’s disease. It comprises full-body 
movements measured with a Kinect device 
and fine hand movements, acquired with a 

data glove. Then, the sensor data is used to 
compute 25 Movement Performance Indi-
cators, to assist the diagnosis and progress 
monitoring (assessing the disease stage) in 
Parkinson’s disease. A kinematic hand model 
is developed for data verification and as an 
additional resource for extracting supple-
mentary movement information.
Results: Our results show that the proposed 
Movement Performance Indicators are rele -
vant for the Parkinson’s disease assessment. 
This is further confirmed by correlation of the 
proposed indicators with clinical tapping test 
and UPDRS clinical scale. Classification re-
sults showed the potential of these indi-
cators to discriminate between the patients 
and controls, as well as between the stages 
that characterize the evolution of the dis-
ease.
Conclusions: The proposed sensor system, 
along with the developed approach for re -
habilitation movement analysis have a sig-
nificant potential to support and advance 
traditional rehabilitation therapy. The main 
impact of our work is two-fold: (i) the propo -
sition of an approach for supporting the 
therapists during the diagnosis and monitor-
ing evaluations by reducing subjectivity and 
imprecision, and (ii) offering the possibility of 
the system to be used at home for rehabili-
tation exercises in between sessions with 
doctors and therapists.
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1. Introduction
Traditional rehabilitation techniques for 
Parkinson’s disease (hereinafter, PD) [1] as-
sessment are based on clinical assessment 

tools and evaluation scales, such as Hoehn 
and Yahr (HY) [2] and Unified Parkinson’s 
Disease Rating Scale (UPDRS) [3]. Those 
scales are descriptive (qualitative) and only 
the doctor can assess them. Over the past 

years, progress in data-analysis and sensing 
technologies [4] opened new possibilities 
for improving conventional rehabilitation 
practice. However, introducing novel tech-
nologies into medical protocols is still 



Methods Inf Med 1/2017 © Schattauer 2017

2 S. Spasojević et al.: Sensors-based System for Movement Analysis

RE
H

A
B

challenging, mainly due to: (i) high equip-
ment cost; (ii) system complexity and relia-
bility; (iii) need for a technical support dur-
ing therapy sessions; (iv) lack of correlation 
between clinical and technical perform-
ance indicators and (v) lengthy and ardu -
ous process to obtain the clinical licenses.

Marker-based motion capture (mocap) 
systems [5] are often used for movement 
acquisition during rehabilitation sessions, 
because of their ability to deliver accurate 
measurements, in spite of their extremely 
high costs. Other alternatives include the 
attachment of different sensors to the pa-
tient’s body [6, 7] or hand (data glove) and, 
more recently, low-cost marker-free mocap 
systems such as the Kinect and Xtion 
[8 –10]. The performance of lower-cost sys-
tems has been tested and shown to possess 
a satisfactory accuracy for the application 
in the rehabilitation therapy [10 –13]. 
While some examples of Kinect-based re-
habilitation systems are described in 
[14 –17], little attention has been devoted to 
the specific case of PD [18, 19]. Recently, 
authors in [18] have studied the Kinect ac-
curacy for measuring movements of Park-
inson’s patients, but they did not imple-
ment automatic movement analysis. They 
compared the Kinect to the VICON mocap 
system through a set of rehabilitation exer-
cises. Their results suggest similar temporal 
accuracy between the two systems when 
measuring the movement duration and 
spatial accuracy regarding the upper body 
movements. Their general conclusion is 
that the Kinect has the potential to be used 
for movement analysis in PD and a promis-
ing application in the future for home reha-
bilitation. To raise the patient’s motivation 
during therapy, some studies have intro-
duced virtual environments into data ac-
quisition and processing procedures for PD 
[19, 20]. The main limitations with the use 
of virtual environments and rehabilitation 
games are the lack of official safety-evi-
dence and proof of clinical effectiveness.

Our previous study [21] introduced an 
approach for full-body movement analysis 
(gait and large-range upper body move-
ments) based on Kinect data (3D coordi-
nates of the skeleton joints) to support 
diagnostic evaluations in PD. However, a 
full assessment of the PD requires more 
sophisticated measurements, such as fine 

hand movements. Consequently, we have 
extended our previous work with hand 
movement analysis, based on the sensory 
information provided by a data glove, to 
support the monitoring of PD.

In recent years, various types of wear-
able sensors have been developed and pro-
posed for measuring and evaluating hand 
movements: accelerometers [22 – 24], gyro-
scopes [25, 26], magnetic sensors [27– 29], 
force sensors [30, 31] and inertial sensors 
[32]. These sensor systems can only mod-
estly contribute to the hand movement as-
sessment. Specifically, the use of one or two 
isolated sensors in motion acquisition li-
mits the movement quantification, due to 
the limited amount of the collected data. 
Data gloves address this shortcoming by 
integrating multiple sensors in one single, 
more sophisticated, device. Most data 
glove-based systems have a wired connec-
tion between the glove and the PC for stor-
ing data, which can interfere with the pa-
tient’s motion and degrade their comfort 
[33 – 36]. A wireless system, with five sen-
sors embedded in the data glove is examin-
ed in [30]. However, that study is very li-
mited by the low number of sensors for 
hand movement analysis and omission of 
the finger joint motion tracking.

Rehabilitation studies for neurological 
disorders usually focus on the analysis of 
particular body functionalities, such as 
postural control [19], gait [37, 38], upper 
body movements [39] or even the observa-
tion of a specific joint [40]. Our work in-
corporates both the analysis of the full-
body functionalities, and hand movements. 
After acquired sensor data, the next chal-
lenge consists in defining suitable features 
that can be used to characterize the move-
ments in the different subject conditions. 
We denote such features as Movement Per-
formance Indicators (hereinafter, MPIs) for 
assisting both diagnosis and monitoring. 
The MPIs we propose build upon domain-
specific knowledge provided by doctors 
and therapists as well as data analysis. 
Amongst others, we propose a new MPI for 
upper body rehabilitation, the symmetry 
ratio, widely used as a validity criterion for 
models in biomechanics and motor control 
[41, 42]. In fact, it has been shown that the 
symmetry of kinematic speed profiles is an 
exclusive result of neurological mechan-

isms [43, 44], without any interference 
from changes of conditions or variables of 
the performed task.

For the hand movement assessment, we 
have used the wireless Cyber Glove II, a de-
vice with eighteen sensors that output joint 
angular data [45]. Although this system is 
relatively costly, we have tested it in this 
study as a proof of concept, towards the de-
sign of an affordable version of this data 
glove for application in the rehabilitation 
practice. To the best of our knowledge, 
there are no studies using the Cyber Glove 
II for quantification of hand movements in 
PD assessment [46]. We thus propose an 
affordable, reliable and portable sensor sys-
tem along with an approach for analyzing a 
patient’s movement, with the potential to 
be used as a support for the conventional 
rehabilitation therapy (both during diag-
nosis and progress monitoring) and home 
rehabilitation. In addition to symmetry 
ratio in upper body movements, we pro-
pose new hand MPIs, extracted from the 
data glove sensor signals (abduction sensor 
data) and the developed hand model (vel-
ocity and acceleration parameters).

2. Methods
2.1 Proposed System Structure

▶ Figure 1 shows the block diagram of the 
proposed rehabilitation system. The archi-
tecture is general, but in our experiments, 
we have used a Kinect sensor and a data-
glove for measuring full-body / fine-hand 
movements respectively, as detailed in the 
following paragraphs.

The Kinect is a low-cost motion sensing 
device that offers a suitable alternative to 
more expensive and complex vision-based 
motion capture systems, used today in the 
rehabilitation practice. The process of the 
data acquisition is based on the visual skel-
eton tracking and collecting the 3D posi-
tions of characteristic joints without mark -
ers. The maximum frame rate for the Ki-
nect is 30 frames per second (30 Hz), but in 
our case due to additional processing re -
quired by data collection, the frame rate 
drops down to 27 Hz. The acquired data 
consist of 3D positions of characteristic 
skeleton joints, along with RGB and depth 
video sequences (▶ Figure 2).
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The Cyber Glove II is a wireless, light-
weight data glove, adaptable for different 
hand sizes and suitable for inclusion in re-
habilitation protocols. The manufacturer’s 
technical documentation reports sensor 
data rate up to 90 Hz and repeatability of 3 
degrees. The glove has eighteen sensors 

giving joint-angle output – metacarpal and 
proximal sensors on each finger, four ab-
duction sensors between each two con-
secutive fingers, wrist yaw and wrist pitch 
sensor placed on the hand wrist and sen-
sors for measuring thumb crossover and 
palm arch (see ▶ Figure 3e).

The Kinect device is calibrated by per-
forming a specific calibration body pose. 
The calibration procedure for the data 
glove consists of a predefined set of exer-
cises to adjust initialization parameters. As 
a second stage, the sensor signals are pre-
processed with low-pass filters aiming at 

Figure 1  
Proposed rehabili-
tation system struc-
ture.
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reducing measurement noise. A temporal 
segmentation algorithm is applied to the 
Kinect sensor signals since the movements 
are collected in the sequence, but each 
movement has to be analyzed separately. 
The MPIs design is detailed in Section 2.3. 
For characterizing the movements, two ap-
proaches have been developed: (i) direct 
extraction of MPIs from the sensors’ sig-
nals and (ii) using a hand model to extract 
indirectly MPIs from the model, explained 
in a more detail in Section 2.3.2. All pro-
posed MPIs are statistically tested in distin-
guishing between groups of interest (pa-
tients / controls and the first three disease 
stages according to Hoehn and Yahr (HY) 
[2]) in the procedure to select the MPIs. 
The patients at advanced stages of PD 
(IV / V modified HY scale) are not able to 
participate in the experiments or wear the 
sensors, due to the severe motor impair-
ments and functional handicaps. In addi-
tion, the movement quantification and 
 inclusion of sensor measurements as a sup-
port to clinical evaluations are more of 
 interest in the earlier disease stages. Classi-
fiers are designed as decision-making sys-
tems to support diagnosis and monitoring 
evaluations. Finally, correlation analysis be-
tween our proposed MPIs and clinical test/
scale has been performed.

Table 1  
Main demographic 
and clinical character-
istics of the patients 
and performed tests.

Age (years), mean (SD)
Range

Gender, number of patients (%)

Modified Hoehn & Yahr stage, mean (SD)
Range, 1– 5

UPDRS motor score (section III), mean 
(SD)
Range, 0 –108

Duration of PD (years), mean (SD)

Time on L-dopa (years), mean (SD)

Daily L-dopa dosage (mg), mean (SD)

Total daily anti-PD dosage (mg), mean 
(SD)

Performed tests, number of patients 
per test

Total sample (n = 30)

 63.57 (8.27)
 47– 83

Males

Females

  2.2 (0.76)
  1– 3

 32.08 (11.13)

 13 – 57

  4.93 (3.95)

  4.21 (3.20)

391.67 (185.72)

725.62 (356.53)

Kinect

Data glove

Data glove + 
tapping

All three tests

24 (80 %)

 6 (20 %)

 6

 9

 9

 6

2.2 Experimental Procedure

2.2.1 Data Acquisition

The experimental group consists of thirty 
PD patients with personal and disease 
characteristics listed in ▶ Table 1. Patients 
participated in one, two or all three tests: 
Kinect and data glove-based tests and clini-
cal tapping test. The number of patients 
per tests is also listed in ▶ Table 1. A con-
trol group is formed by twenty-three sub-
jects without any history of neurological or 
movement disorder. All subjects have been 
examined under the same conditions and 
they have performed full-body and hand 
movements, instructed by a neurologist 
and therapists. The experimental exercises 
(▶ Figures 2 and 3) are well-known in the 
rehabilitation practice, wherein the hand 
movement analysis is particularly relevant 
for the evaluation of PD symptoms such as 
tremor, rigidity, and bradykinesia [1, 3]. 
Patients receive the daily L-dopa dosage, as 
well as other anti-PD drugs (▶ Table 1). All 
sensor measurements from patients were 
collected under the effect of medications 
(ON state).

Following the therapist advice, all reha-
bilitation exercises are designed to recover 
or enhance one of the three main human 
functionalities – balance, mobility in the 

sense of normal gait and upper body 
movements [47]. The gait test is fairly 
present in the majority of rehabilitation 
procedures and it can have different forms 
depending on the equipment used and the 
measured gait performance indi-
cators / features [47].

In our work, the gait test is carried out 
in accordance with the available Kinect 
range [12], with the starting and end points 
placed at 3.5m and 1.5m away from the Ki-
nect, respectively. During the gait test, pa-
tients walked the selected distance of 2m 
six times with normal and natural gait 
rhythm (▶ Figure 2a). The rest of the tested 
exercises belong to a group of upper body 
movements: adjusted shoulder abduction-
adduction (SAA) (▶ Figure 2b) until maxi-
mum possible range of motion, shoulder 
flexion-extension (SFE) (▶ Figure 2c) and 
movements of the right-left hand between 
the boundaries (further, hand boundary 
movements (HBM), ▶ Figure 2d). The first 
two exercises were repeated five times, 
while the HBM was repeated ten times 
with each hand within experiment.

The set of hand exercises includes 
finger-tapping movement (▶ Figure 3a), 
fingers flexion and extension movement 
(▶ Figure 3b), rotation of the hand (▶ Fig-
ure 3c), and fingers expansion and contrac-
tion movement (▶ Figure 3d).

We investigated the correlation between 
the proposed MPIs, across patients with 
different disease stages (according to HY 
scale), and clinical tests – such as tapping 
test, and UPDRS clinical scale – to assess if 
such measurements can be used as reha-
bilitation features.

The clinical measurements (HY and 
UPDRS) are collected by one experienced 
rater, immediately before the sensor 
meas urements. All measurements have 
been performed in the hospital settings 
for outpatients. The clinician was present 
during the sensor measurements in order 
to monitor the patient state, and to pre-
vent si tuations in which the patient is 
quickly switched from ON (the effect of 
medication present) to OFF state (the ef-
fect of medication stopped), due to which 
the possible clinical measurement and 
sensor measurement would be carried out 
under different conditions. The Hoehn 
and Yahr (HY) clinical values (which 
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evaluate the disease stage) were assessed 
using the modified Hoehn and Yahr (HY) 
Scale [2]. The UPDRS clinical values 
(which evaluate the motor symptoms) 
were assessed using the motor part of the 
Unified Parkinson’s Disease Rating Scale 
(UPDRS) [3].

One group of patients performed tap-
ping test [48] that is frequently used by 
neurologists to examine hand movements 
in PD patients. The test consists of the 
proximal and distal tapping tasks using a 
specially designed board (▶ Figure 4) as 
the one proposed in [48]. The proximal 
tapping task refers to the alternate pressing 
of two large buttons located 20 cm apart 
with the palm of the hand during 30 sec-
onds. The distal tapping task is related to 
the alternate pressing of two closely located 
buttons (3 cm apart) with the index finger 
while the wrist is fixed on the table during 
30 seconds. Both tests are repeated twice 

for the palm and index finger of the right 
hand, wherein each test lasts thirty seconds 
and the subject tries to alternately press the 
buttons as many times as possible. Since 
the CyberGlove is designed for the right 
hand, only patients with the affected right 
side (side on which PD symptoms are initi-
ated) have been tested with the data glove. 
In the case of Kinect measurements, both, 
right and left side affected patients have 
been considered.

2.2.2 Data Preprocessing: Noise Fil-
tering and Temporal Segmentation

Data pre-processing is required for noise 
removal as well as for temporal segmen-
tation (only Kinect data). We have applied 
Butterworth low-pass filters with cut-off 
frequency of 3 Hz to raw sensor signals 
that proved to be effective in terms of noise 
removal.

Sensor motion data are collected in a se-
quence of several consecutive repetitions of 
the instructed movement. Since the MPIs 
for Kinect data are extracted from each 
movement separately, a temporal segmen-
tation algorithm is applied to divide the se-
quence into the corresponding movement 
segments. On the other hand, the data 
glove MPIs are extracted at a time for all 
movements in the sequence; hence seg-
mentation algorithm is applied only to the 
Kinect data.

The segmentation algorithm is based on 
the analysis of the relevant joint for each 
specific movement and detecting its mean-
ingful positions along the particular axis of 

b

a

c

d

Figure 3 Experimental exercises (a – d) and 
sensor positions on the glove (e).

e

Figure 4  
Board for tapping test.
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interest. In other words, joint positions can 
reveal the movement’s starting and termi-
nation frames. Let the observed skeleton 
data be represented by:

[J1 , ..., Jn , ..., JN] R3K×N, 1 ≤ n ≤ N (1)

where N is the total number of frames, K is 
the number of collected joints per frame 
(K = 15) and

(2)

where Jn represents the set of all K collected 
joints per frame n and   particular k-th 
3D-coordinate joint in the frame n. Our 
goal is to find a set of vectors (Eq. 3)

V = {[s1, t1], ...,[sl , tl], ...,[sL , tL]}, 1 ≤ l ≤ L (3)
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where L denotes the total number of move-
ments (temporal segments) in a sequence 
and each vector consists of two compo-
nents: the first one represents the starting 
frame (sl) and the second one corresponds 
to the termination frame (tl) of the l-th 
movement.

The segmentation algorithm is based on 
the search for “peaks” and “valleys” in the 
input signal, i.e. local maxima or minima. 
Input signal represents the evolution of the 
chosen joint in the direction (x, y or z, 
▶ Figure 5) with the most expressed transi-
tions during the particular movement. 
Under the gait test, it is the evolution of the 
torso joint in the z-axis direction. As for 
upper body movements, right-hand joint in 
the y-axis direction was chosen for shoulder 
abduction-adduction (▶ Figure 5) and 
flexion-extension movement, while the both 
hand joints in the x-axis direction represent 
the input signals of the segmentation algo-

rithm for hand boundary movement se-
quence. Segmentation points are extracted 
from the determined set of local minima 
and maxima points. Then, the actual begin-
ning and end of the movements are isolated 
based on the two types of threshold condi-
tions: (i) amplitude value threshold (ampli-
tude range in which segmentation points 
lie) and (ii) temporal position threshold 
(corresponding distance in time between 
the points of interest must be satisfied). 
Threshold values are established depending 
on the particular movement and its tem-
poral evolution in the selected direction.
▶ Figure 5 illustrates the segmentation 

algorithm for the case of shoulder abduc-
tion-adduction movement sequence. Evo -
lution of the right-hand joint in the y-axis 
direction shows that y value increases from 
the starting position in the first part of the 
movement (when the arms go up) and then 
decreases in the second part of the move-
ment (when the arms go down). The actual 
starting and ending points for all six move-
ments in the sequence are correctly deter-
mined by our segmentation algorithm 
(▶ Figure 5).

2.3 Proposed Approach for 
 Movement Characterization

We have used several MPIs that represent 
the movements of the different body parts 
(using the Kinect) or hands (using the 
data-glove) of a subject. The choice of 
MPIs was partly resulting from discussions 
with doctors, therapists, and other domain 
experts. In the following sections, we will 
detail how these MPIs were designed.

2.3.1 Full-body Movements

All together we have used 10 different 
MPIs that result from the combination of 
four measurement categories (speed, rigid -
ity, the range of motion and symmetry) 
 applied to 4 categories of full-body move-
ments, as illustrated in ▶ Table 2.

The MPIs we extracted from gait move-
ments are commonly used in the rehabili-
tation practice and treatment [28]. From 
gait movements, we considered three MPIs 
– speed of the gait, variations in the gait 
speed, and hand rigidity – during walking. 
We have adopted the mean gait speed V, 

Figure 5 Illustration of the segmentation approach (shoulder abduction movement).

Frames

Table 2 The proposed MPIs result from a combination of 4 body movements and 4 MPI categories 
(speed, rigidity, range of motion and symmetry).

Movements/MPI categories

Gait

Shoulder abduction-adduction (SAA)

Shoulder flexion-extension (SFE)

Hand boundary movements (HBM)

Speed/Speed 
variations

MPI1 / MPI2

MPI5

MPI8

MPI10

Rigidity

MPI3

Range of 
 Motion 
(ROM)

MPI4

MPI7

Symmetry 
Ratio (SR)

MPI6

MPI9
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Eq. (4), during each two-meter sequence. 
Due to possible deviations of the starting 
and end point of the gait test, and in order 
to improve the accuracy, the path length 
(the numerator in Eq. (4)) has been calcu-
lated as the total trajectory of the torso dur-
ing each gait sequence, instead of setting 
the path length of 2m. The total trajectory 
length is obtained by summing up the Eu-
clidean distances (d) between the torso 
joint coordinates Xi (xi , yi , zi) and Xi–1 (xi–1 , 
yi–1 , zi–1) for consecutive frames, i and i–1, 
during the gait sequence. The time du-
ration of the gait sequence (the denomi-
nator in Eq. (4)) is computed based on the 
total number of frames (m and n denote re-
spectively the first and last frame of the se-
quence) and the frame rate, f = 27 Hz.

 (4)

Variations in the gait speed are calculated 
as the differences in the mean gait speed 
between consecutive gait sequences within 
gait test. This MPI can be an indicator of 
the unbalanced gait if the speed value sig-
nificantly differs from one gait sequence to 
another. The position of the arms during 
walking can reveal rigidity, one of the main 
indicators of the PD [1]. In the case of 
healthy subjects, the arms usually swing in 
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a certain rhythm during gait activity, in 
contrast to the Parkinson’s patients. We 
have computed a measure of rigidity, based 
on temporal evolution of the hand position 
during the gait test. The rigidity symptom 
can be noticed in the variation of the dis-
tance between the hip and hand during 
the gait sequence. For healthy subjects, the 
temporal evolution of these distances is ap-
proximately periodic, due to normal arm 
swing. In contrast, for patients with one 
rigid arm, the distance between the rigid 
hand and the closest hip does change sig-
nificantly over time (▶ Figure 6a). The 
measure of rigidity is calculated in two 
steps. First, we record the difference signal 
between the left and right hand-hip dis-
tances, during the gait movement. Then, 
we take the highest value of the (absolute) 
difference signal as an indicator of rigidity.

For patients with a rigid arm the differ-
ence signal is larger because the healthy 
arm performs a normal swing and the rigid 
arm remains more or less static. Instead, 
healthy subjects display a lower-amplitude 
difference signal, due to the normal swing 
of both hands.

Inspired by the well-known and widely 
used rehabilitation measure for upper body 
movements, we have also computed the 
range of motion [47] for the shoulder ab-
duction-adduction and shoulder flexion-
extension exercise. The range of motion 

represents an angle of the movement rela -
tive to a specific body axis, which can be 
measured at various joints such as elbow, 
shoulder, knee, etc. In our case, we measure 
the evolution of the shoulder angle during 
the movement in relation to the longitudi-
nal body axis.

As a specific MPI, we have used the 
range of motion (maximum achieved 
shoulder angle). Examples of the shoulder 
angle profiles of both normal subjects and 
patients for the shoulder abduction move-
ment are shown in ▶ Figure 6b. The range 
of motion is higher for healthy subjects 
(more than 180°) than for patients (142°, 
150°).

In addition, the trajectory of shoulder 
angle is steeper for healthy subjects, indi-
cating a higher speed of movement. We 
calculated the mean movement speed for 
all three tested upper body exercises. The 
applied procedure was the same for the gait 
speed (Eq. 4), setting the path length to the 
total length of hand trajectory during the 
movement.

The comparison between relevant left/
right body-side movement descriptors can 
suggest which side or limb is more affected 
by the neurological disorder. For healthy 
subjects, these differences are usually negli-
gible, while they can become quite large for 
Parkinson’s patients, depending on the dis-
ease stage.

Figure 6 (a) The difference between the left / right hand-hip distances shows the rigidity symptom. (b) Evolution of the shoulder angle profiles during 
shoulder abduction movements.
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Important movement descriptors such 
as profiles of joint angles (▶ Figure 6b) and 
angular velocity profiles (▶ Figure 7a) can 
reveal the symmetry of the movements. In 
order to quantitatively assess the move-
ment symmetry, we have extracted sym-
metry ratio from the shoulder abduction-
adduction and shoulder flexion-extension 
exercises. In motor control, the symmetry 

ratio (SR) [41– 44] (▶ Figure 7b) is defined 
as the ratio between acceleration (tACC) 
and deceleration (tDEC) times, during one 
movement. ▶ Figure 7a shows that the 
maximum angular velocity of the shoulder 
abduction movement is higher for healthy 
subjects than it is for Parkinson’s patients. 
In addition, healthy subjects reach the 
maximum angular velocities of the left/

right arm movements approximately at the 
same time as opposed to non-healthy sub-
jects, where a difference of about 20 frames 
is typical. The consequence is unbalance in 
symmetry ratios between left and right arm 
for the same movement. Thus, in our ex-
periments, we obtained larger left-right dif-
ferences of the symmetry ratios for Parkin-
son’s patients than in healthy subjects.

We have described 10 MPIs extracted 
from the Kinect data to quantify the move-
ments of different body parts during a re-
habilitation session. These MPIs will be 
used later on to diagnose and characterize 
the progress of the Parkinson’s patients. In 
the next section, we will explain how the 
hand movements were also taken into con-
sideration for a finer analysis.

2.3.2 Hand Movements

Similarly to what we have done for full-
body movements, we propose a new set of 
MPIs to characterize the hand movements 
(▶ Table 3) with respect to: (1) range of 
motion of the characteristic hand and fin -
ger joints (for fingers flexion and extension 
movement and rotation of the hand); (2) 
velocity values derived from abduction 
sensor angular data (for finger expansion 
and contraction movement) and (3) velo -
city and acceleration parameters between 
thumb and index finger tips estimated 

Figure 7 Evolution of the shoulder angular velocity profiles during shoulder abduction movements (a) and symmetry ratio calculation (b).

0 10 20 30 40 50 60 70
−50

0

50

100

150

200

250

300

Frame

A
ng

lu
la

r
ve

lo
ci

ty
(

°
/s

)

Healthy subject − right arm
Healthy subject − left arm
Patient − right arm
Patient − left arm

a b

Table 3 Extracted MPIs from the collected hand movements.

Movements

Extracted 
MPIs

Sensors of 
 interest

Fingers flexion 
and extension

Joint range of 
 motion
Proximal:
thumb (MPI11),
index (MPI12),
middle (MPI13),
ring (MPI14)
Metacarpal:
index (MPI15),
middle (MPI16),
ring (MPI17),
pinky (MPI18)

■■Figure 1■■

Hand rotation

Joints range of 
 motion
Wrist yaw (MPI23)

■■Figure 2■■

Fingers expan-
sion and contrac-
tion

Angular velocity 
data
Abduction sensors
(MPI19, MPI20, 
MPI21, MPI22)

■■Figure 3■■

Finger tapping 
movement

Velocity (MPI24) 
and acceleration 
(MPI25) signal 
parameters

Hand model
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contraction phase (▶ Figure 9, squares) are 
extracted as MPIs. Evolution of the angular 
velocity profiles of patient and control sub-
ject for ring-pinky abduction sensor is 

perimental and control group than range of 
motion data. Maximum angular velocity 
values for each movement in a sequence of 
both, expansion (▶ Figure 9, circles) and 
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from the hand model (for finger-tapping 
movement).

The range of motion (ROM) of the hand 
and fingers characteristic joints can be de-
rived directly from the sensor angular data 
signals. It is defined as the distance be-
tween the angular sensor values from the 
initial (minimum angular value) to the 
final position (maximum angular value) 
during each movement in the sequence 
(▶ Figure 8a).

The ROM measurement is extracted 
from the fingers flexion and extension 
movement and hand rotation movement. 
The fingers flexion and extension move-
ment is representative in the investigation 
of the tremor, dyskinesia and the mobility 
of the fingers. Subjects are asked to perform 
twenty consecutive alternating fingers 
flexion and extension movements as fast 
as possible. For the quantification of this 
movement, we concentrate on the sensor 
data collected from metacarpal (index, 
middle, ring and little finger) and proximal 
finger joints (thumb, index, middle and 
ring finger) according to their high activity 
during movement performance (▶ Table 3).

The rotation of the hand movement can 
indicate the presence and severity of the 
rigidity symptom. Under this movement’s 
test, subjects need to rotate their hand to 
the left and right direction alternately as 
fast as possible during a ten second period. 
The relevant sensor data for this movement 
are collected from the wrist yaw position 
(▶ Table 3). The angular data profiles of 
wrist yaw joint (▶ Figure 8b) for control 
subjects show the expressed periodicity 
and wide range of motion. For patients, the 
range of motion is substantially smaller 
and the signal clearly illustrates the execu-
tion of slower movements (▶ Figure 8b).

The fingers expansion and contraction 
movement tests the functionality, flexibility 
and speed of finger movements; hence, it 
can reveal the presence of asynchronous, 
uncoordinated motion and dyskinesia. 
Subjects are asked to perform ten con -
secutive fingers expansion and contraction 
movements. It is characterized using four 
abduction sensors, placed between each 
two consecutive fingers. The angular velo -
city signals are derived from processed 
angular data since the velocity values have 
underlined greater differences between ex-

Figure 8  
Calculating the range 
of motion (ROM) of 
finger joints (a) and 
evolution of the wrist 
yaw joint angular 
data profiles during 
rotation of the hand 
movement (b).

Figure 9  
Evolution of the ab-
duction sensor (ring-
pinky position) angu-
lar velocity data pro-
files during fingers ex-
pansion and contrac-
tion movement.
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given in ▶ Figure 9. It can be seen that con-
trol subject’s consecutive expansion-con-
traction finger movements reach higher 
velocity values compared to the same 
movements in patients.

2.3.3 Model-based Estimate of 
Hand MPIs

Finger-tapping movement is the most fre-
quent rehabilitation exercise in the PD 
protocol, which tests symptoms such as 
tremor, dyskinesia, and bradykinesia. In our 
finger tapping test, subjects are direct ed to 
perform twenty consecutive touches be-
tween the thumb and index finger tips as fast 
as possible with the elbow fixed on the table. 
It has been widely studied and some at-
tempts at its quantification are reported in 
[22, 28, 29, 49]. In some of these approaches, 
sensors are attached at the thumb and index 
finger tips making contact detections during 
the finger-tapping movement performance. 
In [22, 49] measurement system is composed 
of two accelerometers, while in [28, 29] mag-
netic sensors are used. The main drawback 
of these systems is the analysis of one par-
ticular movement since, due to the sensor 
placement, only the evaluation of the finger-
tapping movement is feasible.

Unfortunately, the sensor glove we used 
does not possess sensors on the finger-
tips and available joint-angle data are 
not enough to characterize finger-tapping 
movement. To overcome this, we devel-
oped a hand model and used the model to 

estimate the fingertips position informa-
tion. The hand model allows us to produce 
estimates of different hand-related meas -
urements (distance, velocity, acceleration), 
without using specific sensors (e.g. accele-
rometers) for that purpose. Consequently, 
our approach provides a comprehensive 
analysis of several hand movements along 
with finger tapping movement, without ex-
cluding significant sensor information.

The Kinematic hand model with 20 de-
grees of freedom is fed with the joint-angle 
data collected by the sensor glove and real di-
mensions of the subject’s finger sections, 
measured at the time of experiments. Based 
on this information and using direct kine-
matics, the positions of the fingertips can be 
estimated. Every finger is treated as a serial 
kinematic chain, which is modeled using De-
navit-Hartenberg (D-H) representation [50, 
51]. As a by-product, the kinematic hand 
model can be used to visualize the hand 
movements and check whether the sensor 
data keep track of real finger movements 
within the appropriate range of motion.

Finger tapping movement is quantified 
based on the velocity and acceleration sig-
nals. Those signals are obtained as deriva-
tives of the distance information between 
thumb and index fingertips during finger-
tapping movement. Concrete MPI values 
are represented by the extreme points 
of the velocity and acceleration signals. 
▶ Figure 10 shows the extracted MPIs 
(marked using circles and squares) during 
the movement sequence.

2.4 Internal Consistency of the 
Sensor Measurements and 
 Reliability of the MPIs

We assessed the internal consistency of the 
sensor measurements using Cronbach’s 
alpha parameter [52]. In the case of the 
 Kinect sensor measurements, Cronbach’s 
alpha parameter was investigated for four 
recorded movements (▶ Figure 2a–d), fif-
teen collected joints (▶ Figure 2e–h) and 
three coordinates (▶ Figure 5) in the sense 
of the collected patient’s data (12 patients 
in total). All obtained Cronbach’s alpha 
 parameters across different movements, 
joints and coordinates have values within 
the range [0.91 – 0.99]. Values of the Cron-
bach’s alpha parameter close to one indi-
cate the high consistency of the Kinect sen-
sor measurements.

Similar analysis has been conducted for 
the data glove measurements. The Cron-
bach’s alpha parameter was determined 
for four collected hand movements 
(▶ Figure 3 a–d) and eighteen sensors 
placed inside the Cyber Glove (▶ Figure 
3e). The data set for internal consistency 
investigation consists of 24 patients. Our 
results across different movements and 
sensor outputs report the values of the 
Cronbach’s alpha pa rameter within the 
range [0.86 – 0.99], and thus, confirm the 
high consistency of the data glove sensor 
measurements, as well.

In order to test the reliability of the 
extracted MPIs, the split-half method for 

Figure 10 Estimated velocity (a) and acceleration (b) signals from the hand model.
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Table 4 ICC reliability parameters of the extracted Kinect and data glove MPIs.

Kinect 
MPIs

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

ICC

0.94

0.59

0.65

0.96

0.97

0.74

0.81

0.95

0.51

0.92

95 % CI

[0.89 – 0.97]

[0.20 – 0.79]

[0.32 – 0.82]

[0.92 – 0.98]

[0.93 – 0.98]

[0.49 – 0.87]

[0.62 – 0.90]

[0.91 – 0.98]

[0.15 – 0.75]

[0.84 – 0.96]

Data glove 
MPIs

11.

12.

13.

14.

15.

16.

17.

18.

ICC

0.97

0.97

0.98

0.97

0.98

0.98

0.99

0.98

95 % CI

[0.969 – 0.979]

[0.962 – 0.974]

[0.971 – 0.980]

[0.969 – 0.979]

[0.982 – 0.988]

[0.983 – 0.989]

[0.984 – 0.989]

[0.971 – 0.980]

Data glove 
MPIs

19.

20.

21.

22.

23.

24.

25.

ICC

0.90

0.92

0.92

0.90

0.97

0.99

0.99

95 % CI

[0.882 – 0.920]

[0.898 – 0.930]

[0.903 – 0.934]

[0.882 – 0.920]

[0.964 – 0.975]

[0.987 – 0.998]

[0.988 – 0.999]

reliability analysis [52] has been applied. 
The split-half method divides the con-
ducted tests into two parts and correlates 
the scores on one-half of the test with 
scores on the other half of the test. Thus, 
the split-half method estimates the reliabil-
ity based on the repetitions inside the same 
trial. Reliability of the extracted MPIs from 
the Kinect and data glove data is assessed 
using Intraclass correlation coefficient 
(ICC) [52]. Results are shown in the 
▶ Table 4 for both, Kinect and data glove 
MPIs, along with the 95 % confidence inter-
vals. The complete list of the numbered 
MPIs is given by ▶ Figures 11 (Kinect 
MPIs) and 12 (data glove MPIs).

Results of the reliability analysis have 
demonstrated the high reliability of the 
data glove MPIs (ICC ≥ 0.90 for all MPIs). 
In the case of the Kinect MPIs, the majority 
of the extracted MPIs have shown the high 
reliability, except the Variations in the gait 
speed MPI and the Difference between 
right and left SR MPI (SFE movement), 
where the values of ICC are less than 0.60.

3. Results

We have defined a set of 25 MPIs (10 for the 
full-body and 15 for the hand movements) 
that can be used both for diagnosis and 
progress monitoring of PD during rehabili-
tation. The design of these MPIs was 
grounded on the information provided by 
neurologists and therapists with the goal of 
delivering quantitative information about 

subject’s performance. In this section, we 
will show the relationship of these MPIs 
with the demographic and clinical charac-
teristics of subjects, how these MPIs were se-
lected from the initial MPIs set and how 
they can be successfully used in practice. We 
will address both full-body movements cap-
tured with the Kinect sensor and fine hand 
movements measured with the data glove.

When dealing with the initial MPIs set, 
three important questions are imposed: 
(1) What is the relationship between the 
proposed MPIs and the demographic and 
clinical characteristics of subjects? (2) 
Which MPIs are the more relevant and 
 informative? (3) Can we improve classifi-
cation results if we design an optimized 
MPIs set? To answer the first question we 
conducted statistical analysis using mixed 
effect models. To investigate questions 2 – 3 

we adopted a Linear Discriminant Analysis 
(LDA) approach [53].

3.1 Statistical Evaluation of the 
MPIs across Demographic and 
Clinical Parameters

We investigated the relationship between 
the proposed MPIs and the demographic 
and clinical characteristics of subjects – 
age, gender, and clinical group: (i) patients/
controls and (ii) disease stage group. In 
order to reveal whether those character-
istics are statistically significantly corre-
lated with the primarily proposed MPIs, we 
have used mixed effect models [52]. Our 
initial MPIs set consisted of 30 MPIs (11 
full-body and 19 hand movement MPIs).

Every MPI was modeled based on fixed 
and random effects. As fixed effects, we in-

Figure 11  
MPI ranges (Kinect 
data). 
1. Gait speed [m / s] 
2. Variations in the 
gait speed [m / s] 
3. Rigidity 
measure[cm] 
4. ROM (SAA) [°] 
5. Speed (SAA) [m / s] 
6. Difference between 
right and left SR (SAA) 
7. ROM (SFE) [°] 
8. Speed (SFE) [m / s] 
9. Difference between 
right and left SR (SFE) 
10. Speed (HBM) [m / s]
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cluded the age, gender, and group effect. 
Intra-individual variations in repeated 
measures were modeled as the random 
 effect. Statistical significance of the fixed 
effects was assessed by corresponding 
p-values (5 % confidence level) after correc-
tion using Benjamini-Hochberg procedure 
for multiple testing. Mixed effect model fit-
ting was performed for thirty initially pro-
posed MPIs.

The key results of the statistical analy-
sis lead to two main conclusions: (i) the 
demographic parameters, age, and gender, 
did not have significant influence 
(p >> 0.05) on the MPIs and (ii) in addi-
tion, five of thirty MPIs had no significant 
correlation with the clinical group effect 
(p > 0.05). Those MPIs represent one full-
body MPI (the measure of tremor) and 
four hand movement MPIs (ROM of 
thumb metacarpal joint, ROM of pinky 
proximal joint, ROM of wrist pitch and 
distance parameter of the hand model). 
Hence, as suggested by these statistical 
studies, the subsequent data analysis (di-
mensionality reduction, classification, and 
correlation analysis) was carried out with 
the clinical group in formation only 
(demographic parameters were not rel-
evant) and using the identified 25 MPIs. 
Such outcomes lead to the simplification 
in terms of the number of clusters and 

data needs and rejection of five MPIs in 
the subsequent data analysis.

3.1.1 Overview of the Full-body and 
Hand MPI Value Ranges

▶ Figures 11 and 12 provide additional in-
sight concerning full-body and hand MPIs, 
adopted in the previous section and their 
ranges across patients and controls. Be-
cause of their higher values, MPIs 3, 4, 5, 7, 
8 and 10 were normalized, in order to allow 
a comparative representation with other 
MPIs. The values of the range of motion 
and gait / movement speed are lower in the 
patient group, while the left-right arm dif-
ferences of the symmetry ratio, during 
shoulder movements, as well as variations 
in the gait speed, are much larger in pa-
tients, as expected.
▶ Figure 12 illustrates lower values of 

finger joints range of motion in the patient 
group, as expected. Our experiments have 
shown especially large differences in angu-
lar velocity values between patients and 
controls for fingers expansion and contrac-
tion movement (▶ Figure 12, 19 – 22), as 
well as in the case of MPIs extracted from 
the hand model (▶ Figure 12, 24 – 25). 
Hence, the results confirm that our newly 
proposed MPIs would give significant con-
tribution to support the evaluations in PD.

3.2 Dimensionality Reduction

By adopting the 25 MPIs for the tested 
full-body and hand exercises, we obtain 
two sets of 10-dimensional and 15-dimen-
sional feature vectors (▶ Figure 11 and 
12), which can be used in a classification 
system to assist diagnosis and monitoring. 
We applied Linear Discriminant Analysis 
(LDA) [53] to determine the most relevant 
MPIs for the decision-making process 
based on the clinical group parameter, be-
tween patients and controls (diagnosis 
support) and between disease stages 
(monitoring support). Demographic pa-
rameters were not of interest according to 
the statistical analysis described in Section 
3.1. Another outcome of the LDA algo-
rithm is the transformation of the MPI 
data set into a new, compact, lower dimen-
sional space. The LDA approach aims to 
maximize the between-class distance and 
to minimize within-class dissipation. The 
dimension of the newly created space is 
determined from the eigenvalues of the 
LDA criterion function, which takes into 
account the class covariances. Our tests re-
vealed that, both in the 10-dimensional 
and 15-dimensional feature spaces, the 
sum of the first two eigenvalues was much 
larger than the sum of the remaining ei-
genvalues (λ1 + λ2 >> λ3 + ... + λm), where m 
denotes the total number of features. 
Hence, both feature sets are reduced to the 
new 2-dimensional feature space.

As a side-result, the LDA method ranks 
the original features in terms of their 
 contribution to the reduced feature space 
based on the weights (v11 ...vm1; v12 ...vm2) of 
the transformation matrix V, where m rep-
resents the total number of features, (Eq. 
5). S is the matrix of the original data set 
with n samples while the L represents the 
matrix of reduced data set to 2-dimen-
sional feature space.
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Figure 12 MPI ranges (sensor glove data).  
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cantly correlated with clinical group ef-
fect. The LDA analysis has established a 
new reduced-dimension feature space and 
determined the most relevant MPIs. In 
this section, we present a classification ap-
proach that can automatically identify the 
different subject groups (patients / controls 
and disease stages) based on the original 
and the derived feature sets. First, we built 
a classification model using the training 
data. Second, we adopt the model param-
eters in the cross-validation procedure. 
Finally, we test the model on the unseen 
testing data. This procedure is performed 
for all classifiers.

Using the Kinect data, we have tested 
the classification between healthy and non-
healthy subjects in three different condi-
tions: (i) with the original feature set, (ii) 
using the four most relevant features 
adopted in the previous section and (iii) 
the two new synthetic features, obtained 
from LDA. We have compared three differ-
ent classifiers (▶ Figure 14): (a) SVM – 
support vector machines with RBF kernel 

tients and healthy-subjects, while MPIs 
24, 25, 18, 12, 22 and 13 were the most 
representative features during dimen-
sionality reduction according to disease 
stage classes. This result suggests that the 
MPIs extracted from the hand model are 
the most relevant features in both cases. In 
addition, ROM MPIs (fingers flexion and 
extension movement – both proximal and 
metacarpal joints) and angular velocity 
MPIs (fingers expansion and contraction 
movement – thumb-index abduction sen-
sor), are also very important in the data 
analysis.

The LDA method also provides us with 
new synthetic features that form a reduced-
dimension feature space. While these new 
synthetic features have the power to differ-
entiate the different conditions in the data, 
they are less efficient in terms of communi-
cation and understanding for the medical 
doctors and therapists, as they do not cor-
respond to a specific MPI.

3.3 Classification: Diagnosis and 
Monitoring Evaluations

So far, we have shown how to build a set 
of MPIs from the movement of body/
 hands of Parkinson’s patients. Statistical 
analysis using mixed effect models con-
firmed the significance of the clinical 
group factor in relation to MPIs, in 
contrast to demographic factors that turn 
out to be non- relevant. In addition, it has 
underlined 25 MPIs out of 30 as signifi-
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The modified Informativeness Index (II(f)) 
based on the weights of the transformation 
matrix is adopted for the first f features 
using Eq. (6):

(6)

where the decreasing order of the sum of 
weights is considered:

(v11 + v12) ≥ (v21 + v22) ≥ ...≥ (vm1 + vm2).

The LDA method for groups of patients 
and controls results that, for keeping 80 % 
of information from the original Kinect 
data set, it is sufficient to select the MPIs 1, 
6, 9 and 10 from ▶ Figure 12. This result 
shows that, in addition to the speed of the 
gait and upper-body movement (HBM), 
both symmetry ratio MPIs are amongst the 
most informative MPIs. 

The same criterion, of capturing 80 % 
of the information from the original data 
sets, is applied to verify the most relevant 
hand MPIs. Consequently, we have 
chosen first seven features during LDA 
analysis for groups of patients and con-
trols and six features from the LDA pro-
cedure in the case of disease stages (▶ Fig-
ure 13). MPIs 22, 18, 12, 24, 25, 13 and 17 
from ▶ Figure 12 have the highest con-
tribution to differentiate classes of pa-
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Figure 13 LDA Informativeness index: (a) patients-controls and (b) disease stages data.
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data (patients / controls).
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3.4 Correlations with 
 Clinical Scales

We have confirmed the potential of the 
chosen MPIs to support the decision-mak-
ing systems for diagnosis and monitoring 
evaluations. Another important issue is to 
investigate the correlation between the pro-
posed MPIs and clinical test and scales. 
This is particularly important for the possi-
ble inclusion of the proposed MPIs into 
 rehabilitation protocols. Since the clinical 
scales are designed for disease stage assess-
ment, the correlation analysis is performed 
only for the sensor glove data MPIs.

The correlation analysis is carried out 
between the proposed hand MPIs (▶ Fig-
ure 12) and tapping test [48] and UPDRS-
III clinical scale [3]. The tapping-test is 
performed by patients while UPDRS-III 
values result from the neurologist’s evalu-
ation. Correlations were calculated using 
Pearson’s correlation coefficient r (takes 
values between –1 and 0 for negative corre-
lation and between 0 and 1 for positive cor-
relation), along with the p-value (testing 
the hypothesis if two variables are corre-
lated). Scatter plots in ▶ Figure 16 illustrate 
the correlation between selected MPIs and 
clinical parameters, where the line repre-
sents the regression curve. It can be seen 
that the selected MPIs have a positive cor-
relation with the tapping test, more con-
cretely with the number of taps performed 
by the subject’s right-hand palm (pro-
cedure of the tapping test is previously ex-
plained in the Section 2.2.1). This is ex-
pected since the patients who have higher 
values of ROM and acceleration parameter 
potentially can achieve a larger number of 
taps within defined period (30 seconds). 
On the other side, our MPIs have a nega -
tive correlation with the UPDRS-III scale, 
since the lower values of our MPIs and 
higher values on this scale indicate a more 
severe state of the patient i.e. higher disease 
stage.

Results of the correlation analysis have 
shown that some MPIs are highly corre-
lated with both clinical parameters (11, 12, 
13, 14, 24, 25 from ▶ Figure 12, r > 0.5/ 
r < –0.5, p < 0.05) and those MPIs represent 
ROM of the proximal finger joints (11–14) 
and velocity and acceleration parameters 
derived from the hand model (24, 25). 

stages. Hence, in the first three disease 
stages, hand movement behavior is more 
relevant for PD assessment and monitoring 
than the gait and large range upper body 
movements, which our results have con-
firmed.

The classification process for sensor 
glove data was performed between the 
groups of controls and patients (support 
for diagnosis) and between patients with 
different disease stage (support for moni-
toring). Three different classifiers are 
tested with the original feature set, 
six / seven most relevant features and two 
new features obtained from LDA (▶ Fig-
ure 15). Support vector machines (SVMs) 
are designed with the RBF kernel, 
whereby the bandwidth of the RBF kernel, 
σ varies between 0.01 and 1 and regulariz-
ation parameter, C varies within a range 
[0.01 – 10]. K nearest neighbors classifier 
(KNN) is tested for the k = 1, 3 and 5 near-
est neighbors. The neural networks classi-
fier is a multilayer perceptron with a dif-
ferent number of hidden layers and nodes. 
The parameters of classifiers are chosen 
from listed ranges in a validation pro-
cedure in order to achieve the highest ac-
curacy rate. The best results on the testing 
set for all classifiers are obtained with the 
original 15D feature set. The classification 
accuracy is above 90 % for the six/seven 
most relevant feature set. The lowest clas-
sification rates are reported in the case of 
new reduced feature space, due to the sig-
nificant information losses during dimen-
sionality reduction procedure.

These results confirm the higher infor -
mativeness of the sensor glove MPIs com-
pared to the Kinect data MPIs and their 
ability to participate in both, diagnosis and 
monitoring evaluations of PD. Such out-
come is expected, due to the high import-
ance of hand movement analysis and quan-
tification for PD assessment.
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(bandwidth of the RBF kernel, σ and 
 regularization parameter, C: 0.01 < σ < 1, 
0.01 < C < 10), (b) KNN (number of nearest 
neighbors, k  1, 3, 5) and (c) neural net-
works (MLP – multilayer perceptron: vari-
ous structures with different number of 
hidden layers and nodes). The parameters 
of classifiers were chosen from above spec-
ified ranges in a validation procedure in 
order to achieve the highest accuracy rate. 
▶ Figure 14 shows that all classifiers suc-
ceed to differentiate healthy from non-
healthy subjects. The SVM and the NN-
MLP have the best results when using the 
original feature set. The KNN classifier 
works best for the reduced feature sets but 
in general, is the least performing classifier. 
We achieve classification results close to 
100 % on the unseen testing samples, com-
pared to the chance level of 50 %.

The Kinect data showed poor results 
during classification between the disease 
stages. We achieved a classification accu-
racy of about 50 %, compared to the chance 
level of 33 %, which is not enough for 
evaluating the disease stage. Our results 
show that, while the Kinect MPIs have the 
power to distinguish patients from healthy 
subjects, the quantitative analysis of the 
disease stages requires more detailed and 
informative MPIs, extracted from the fine 
hand movements. The gait represents the 
most important motor task to reveal the 
motor impairments. However, patients at 
mild to moderate PD stages, do not experi-
ence significant gait disorders, contrarily to 
the more advanced disease stages. By defi-
nition, serious gait disorders are starting 
at the third HY stage and become more 
 important at fourth and fifth HY stages. 
Moreover, cardinal clinical symptoms such 
as bradykinesia, rigidity and later the hand 
tremor are required for establishment of 
the PD diagnosis, and those symptoms are 
continuously present at different disease 
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Figure 15 Classification accuracy sensor glove data: (a) patients / controls and (b) disease stages.
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Figure 16 Scatter plots of the correlation between particular MPIs and (a – c) tapping test and UPDRS-III scale (d – f).
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ROM of the metacarpal finger joints (MPIs 
15, 16, 17, 18 from ▶ Figure 12) have 
shown good correlation with the tapping 
test (r > 0.5, p < 0.05), but not very high cor-
relation with UPDRS-III scale (r > –0.5, 
p > 0.05). Angular velocity MPIs extracted 
from the abduction sensor data and ROM 
of wrist yaw are poorly correlated with 
both clinical parameters (r < 0.5 / r > –0.5, 
p > 0.05), except correlation of MPIs 19 and 
21 (▶ Figure 12) with tapping test (r > 0.5, 
p < 0.05).

4. Discussion and 
 Conclusions

We have presented an approach for quanti-
tative movement analysis to support and 
advance traditional rehabilitation therapy, 
based on the full-body / hand movement 
data. Our results suggest that the proposed 
approach has the potential to be adopted 
by therapists, with a goal to enhance objec-
tivity and precision, during the diagnosis 
and monitoring evaluations. Still, the sys-
tem needs to be further tested for the valid-
ity, reliability and sensitivity to the treat-
ment changes. At the same time, it opens 
the possibility of home rehabilitation for 
patients with the mild to moderate PD 
stages (I–III according to the modified HY 
clinical scale). Our final goal is to develop a 
low-cost and portable sensor system for 
comprehensive movement analysis in reha-
bilitation, suitable for home rehabilitation. 
In this study, data glove device has been 
used to test the proof of concept for the 
hand movement analysis, hence due to its 
high cost, the final version of the system, 
will contain alternative low-cost data glove.

We have used the Kinect device to ac-
quire full-body movements and data glove 
to collect fine hand movements. We pro-
posed a set of 25 Movement Perfor -
mance Indicators (MPIs) to characterize 
the movements of subjects, based on the 
sensor data, in the context of Parkinson’s 
disease. We conducted a thorough analysis 
of the properties of these MPIs, to identify 
the most informative in terms of assisting 
both the medical diagnosis and monitor-
ing. This process unveiled the significant 
role of the new MPIs we proposed: (i) Ki-
nect data – the symmetry ratio MPIs along 

with the speed of the full-body movements; 
(ii) Sensor glove data – angular velocity 
MPIs extracted from the abduction sensor 
data and velocity and acceleration MPIs 
derived from the hand model, accompany-
ing with the finger joint’s range of motion. 
On the other hand, correlation analysis 
showed that the Range of Motion (ROM) 
of the metacarpal finger joints and velocity 
and acceleration parameters are correlated 
with clinical scales. Consequently, these 
MPIs satisfy important conditions for in-
clusion in the rehabilitation protocols – 
high relevance for the PD symptom assess-
ment and important role in diagnosis and 
monitoring evaluations through decision-
making systems. The MPIs obtained from 
the Kinect and data glove data were ana-
lyzed separately and can be used in differ-
ent ways. The full-body MPIs are suitable 
to be used by therapists as a first step for 
the preliminary assessment of the subject’s 
condition (detecting motor disorders). In a 
second step, more detailed analysis can be 
performed to determine the disorder sever-
ity (disease stage) using hand MPIs.

Our results have shown significant dif-
ferences between patients and controls, as 
well as disease stages for the proposed 
MPIs and the possibility of successfully 
classifying the two conditions. The data 
glove sensor has proven to be more in-
formative than the Kinect for assessing the 
PD main symptoms and the disease stages. 
This is due to the higher importance of the 
fine hand movement analysis, particularly 
for PD evaluations in comparison to the 
full-body movements.

In the future work, we will evaluate the 
system by assessing the validity, reliability 
and sensitivity to the treatment changes. 
We plan to examine the remaining group 
of the exercises included in the therapist’s 
protocol – grasping and pick and place 
movements. Finally, we are considering 
using low-cost EMG sensors during those 
activities and to perform the movement 
analysis relying on the approach described 
in this paper.
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