
A Domain-Specific Language (DSL) for Integrating
Neuronal Networks in Robot Control

Georg Hinkel
FZI Forschungszentrum

Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

hinkel@fzi.de

Henning Groenda
FZI Forschungszentrum

Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

groenda@fzi.de

Lorenzo Vannucci
The BioRobotics Institute at
Scuola Superiore Sant’Anna

viale Rinaldo Piaggio 34
56025 Pontedera, Italy
l.vannucci@sssup.it

Oliver Denninger
FZI Forschungszentrum

Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

denniger@fzi.de

Nino Cauli
The BioRobotics Institute at
Scuola Superiore Sant’Anna

viale Rinaldo Piaggio 34
56025 Pontedera, Italy
n.cauli@sssup.it

Stefan Ulbrich
FZI Forschungszentrum

Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

sulbrich@fzi.de

ABSTRACT
Although robotics has made progress with respect to adapt-
ability and interaction in natural environments, it cannot
match the capabilities of biological systems. A promising
approach to solve this problem is to create biologically plau-
sible robot controllers that use detailed neuronal networks.
However, this approach yields a large gap between the neu-
ronal network and its connection to the robot on the one
side and the technical implementation on the other.

Existing approaches neglect bridging this gap between dis-
ciplines and their focus on different abstractions layers but
manually hand-craft the simulations. This makes the tight
technical integration cumbersome and error-prone impairing
round-trip validation and academic advancements.

Our approach maps the problem to model-driven engineer-
ing techniques and defines a domain-specific language (DSL)
for integrating biologically plausible Neuronal Networks in
robot control algorithms. It provides different levels of ab-
straction and sets an interface standard for integration.

Our approach is implemented in the Neuro-Robotics Plat-
form (NRP) of the Human Brain Project (HBP1). Its prac-
tical applicability is validated in a minimalist experiment in-
spired by the Braitenberg vehicles based on the simulation
of a four-wheeled Husky2 robot controlled by a neuronal net-
work.

1http://www.humanbrainproject.eu
2http://www.clearpathrobotics.com/husky/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MORSE/VAO ’15, July 21 2015, L’Aquila, Italy
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3614-7/15/07.

DOI: http://dx.doi.org/10.1145/2802059.2802060

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering; Domain specific languages; •Computing
methodologies→ Control methods; Neural networks; Bio-
inspired approaches;

Keywords
Neurorobotics, Domain-Specific Languages, Model-Driven En-
gineering

1. INTRODUCTION
A goal in many robotics application in natural environ-

ments is the exposition of a maximally natural behavior. In
nature, such behavior is encoded in biological neuronal net-
works which are subject to research of neuro-physiologists
who in turn may not have a strong background in com-
puter science. In particular, the multitude of technical prob-
lems involved in running a robot and last but not least also
the price for more complex biologically inspired robots with
many joints pose a large obstacle for connecting neuronal
network models.

Knowledge on how neuronal networks are connected to
muscles in biology (and analogical actuators in robotics) is
extremely valuable for both neurophysiology and robotics.
Furthermore, the simulation of neuronal networks connected
to robots offers a method to validate models of neurophys-
iology and thus pushes the understanding of how this is
achieved in biology.

As an example, the bio-inspired walking machine LAU-
RON V [1] is inspired by the stick insect Carausius morosus
with four joints per leg, depicted in Figure 1. In this setting,
the integrated simulation of LAURON V connected to a neu-
ronal network on the one hand yields a promising approach
to obtain biologically plausible robot controllers for LAU-
RON V but also gives neuroscientists a way to validate their
understanding of the neurophysiology of Carausius morosus.

Raising the particular abstraction level to formulate solu-
tions in the problem domain rather than in a technical imple-
mentation domain is also an important goal of model-driven

Proceedings of MORSE/VAO 2015, L’Aquila, Italy



Figure 1: The kinematics of LAURON V compared
to the stick insect Carausius morosus

engineering techniques [2]. The terminology and techniques
can bridge the gap between robotics and neurophysiology by
analogously modeling these connections on a high abstrac-
tion level [3].

In this paper, we present our approach of applying tech-
niques and processes from the field of model-driven engineer-
ing for integrating neuronal networks with robot control. In
particular, we created a Domain-Specific Language (DSL) in
Python. The applicability of the concept is then validated by
the simulation of a minimalist experiment inspired by Brait-
enberg vehicles [4]. This experiment is also used throughout
the paper as a running example.

The paper is structured as follows: Section 2 provides
an overview of our approach and its implementation in the
Neuro-Robotics Platform. In this section, we also map our
approach to the model-driven process by Völter and Stahl
[2]. Section 3 introduces the experiment which we use as our
running example. Sections 4 to 6 describe the approach ac-
cording to the mapping introduced in Section 2. Section 4
explains the internal Python DSL to specify the connection
of neuronal and robot simulations. Section 5 discusses the
usage of a formal model with a higher abstraction level. Sec-
tion 6 presents the transformation from the formal model
to the Python DSL. Section 7 presents simulation results of
our approach implemented in the Neuro-Robotics Platform
(NRP). Finally, Section 8 lists related work before Section
9 concludes the paper and provides an outlook on future
research.

2. THE NEURO-ROBOTICS PLATFORM
A round-trip validation of Neuronal Network algorithms

controlling a robot in a virtual or real environment requires
a solid evaluation platform covering all disciplines. We use
the Neuro-Robotics platform (NRP) developed in the scope
of the Human Brain Project (HBP) as technical basis. The
platform simulate neuronal network models connected to a
simulated robot through Transfer Functions (TFs) which
translate neuronal activity into the desired control signals
for robots.

The NRP consists of the following key components:

Neuronal (Brain) Simulator:.
To simulate the neuronal networks, the neuronal simulator

NEST [5] is used. This simulator was designed to run within
a distributed and parallel environment. This is especially
important given the ultimate goal to simulate the human
brain with about 1011 neurons and 1015 synapses. On the
other hand, we access the neuronal simulator through the
PyNN [6] interface so we are able to exchange the neuronal
simulator by other implementations such as SpiNNaker [7]

which runs on specialized neuromorphic hardware.

World Simulator:.
To physically simulate the robots and their environment,

the Gazebo simulator[8] is used communicating to the simu-
lated robot through the Robot Operating System (ROS)[9].
In particular, we use the asynchronous event-based commu-
nication through ROS topics. This allows identifying parts
of the robot only by its topic address and type. Using ROS
as middleware also yields the possibility to easily exchange
the simulated robot by a physical counterpart.

Closed Loop Engine:.
The component connecting both simulators is the Closed

Loop Engine (CLE) developed in the scope of the HBP.
The CLE orchestrates the brain simulation, world simulation
and the data transfer. The data transfer is handled through
Transfer Functions that describe a function together with
specifications on how the parameters are connected either
to neurons of the neuronal network or to topics of the sim-
ulated robot. These transfer functions can be specified both
through an internal domain-specific language (DSL [10]) in
Python and through an XML format. We target to create
these XML representations by means of a graphical designer
in future releases.

While these components are static in the sense that they
are reused for every simulation run on the platform, other
parts of the simulation code are dependent on the given
setup, i.e. the simulated robot, the neuronal network and
the connection in between.

Figure 2: Model-driven software development as pro-
posed by Völter and Stahl [2]

To assemble the simulation, we use an approach similar to
the artifacts of model-driven software development as pro-
posed by Völter and Stahl [2]. An overview is shown in Fig-
ure 2 which also depicts the Sections in which the artifacts
are described. The platform are the key components of the
NRP. The schematic repetitive code is the connection be-
tween the neuronal network and the simulated robot that is
described by a DSL and a model. Unlike the original proposal
by Völter and Stahl, we use two domain-specific languages
on two different abstraction levels to take account for differ-
ent expertise among neuroscientists. As a consequence, the
low-level DSL appears twice in the diagram of Figure 2, as

10 Georg Hinkel, Henning Groenda, Lorenzo Vannucci, Oliver Denninger, Nino Cauli and Stefan Ulbrich



a DSL per se and as individual code from the perspective of
the high-level DSL.

3. THE BRAITENBERG VEHICLE EXPER-
IMENT

Figure 3: The neuronal network for the simple Brait-
enberg experiment

As an example experiment to launch on the NRP, we
use an experiment inspired by the Braitenberg vehicles [4].
There, a four-wheeled Husky robot equipped with a camera
is simulated in a virtual room. A simplistic neuronal network
consisting of just 8 neurons recognizes red colors and lets the
robot move towards the red color. In the neuronal network,
shown in Figure 3, the five neurons in orange (numbers 0
to 4) are bundled in a population that represent the sensors
of the network. They receive the input signal through Pois-
son generators generating spikes at a rate depending on how
many red pixels have been detected in the robot’s camera
image that were classified as red pixels. This classification
is done through a library function categorizing the pixels
according to the HSV color model. This information is prop-
agated through the network until the voltage of the actor
neurons 6 and 7 (in green) is used as voltage on the left and
right wheel motors of the robot.

4. A PYTHON DSL FOR TRANSFER FUNC-
TIONS

Transfer Functions can be specified using the Transfer
Functions framework, which effectively offers an internal DSL
hosted in Python. We use Python mainly because there is
an API both for the neuronal simulations and also for the
robotics side since ROS provides a Python API. As a con-
sequence, Python is popular both among robotics and neu-
roscience users. Given the research results from Meyerovich
[11] that suggest that developers do not like to change their
primary language, we wanted to make the barrier for neu-
roscience users as low as possible and therefore created a
Python API. This API allows to specify Transfer Functions
by decorating usual Python functions, giving it the flavor of
an internal domain-specific language (DSL) [10].

4.1 Transfer Functions Neuron to Robot
This section describes the information flow from the neu-

ronal network to the robot. In the example, the voltage of
the actor neurons is to be transmitted to the robot. But
as the robot simulation requires to specify movement of the
robot in terms of angular and linear progression, the volt-
ages must be converted by means of arithmetic transforma-
tion. In particular, the minimum of both voltages forms the

linear progression while their difference results in the angu-
lar progression. Furthermore, the voltages must be scaled to
achieve good results.

1 import hbp_nrp_cle.tf_framework as nrp

2 import geometry_msgs.msg

3
4 @nrp.MapSpikeSink("left_wheel_neuron", nrp.brain.actors[0], nrp.

leaky_integrator_alpha)

5 @nrp.MapSpikeSink("right_wheel_neuron", nrp.brain.actors[1], nrp.

leaky_integrator_alpha)

6 @nrp.Neuron2Robot(Topic(’/husky/cmd_vel’, geometry_msgs.msg.Twist))

7 def linear_twist(t, left_wheel_neuron, right_wheel_neuron):

8 linear = geometry_msgs.msg.Vector3(20 * min(left_wheel_neuron.

voltage, right_wheel_neuron.voltage), 0, 0)

9 angular = geometry_msgs.msg.Vector3(0, 0, 100 * (right_wheel_neuron

.voltage - left_wheel_neuron.voltage))

10 return geometry_msgs.msg.Twist(linear=linear, angular=angular)

Listing 1: Transfer Function from neurons to the
robot in the Python DSL

This connection can be specified in our Python DSL as
shown in Listing 1. Line 1 simply imports the Transfer Func-
tion framework into the current script. Line 2 imports the
robot message type. Lines 4-10 are an example of a Trans-
fer Function translating the voltage of actor neurons into
robot commands. This is done by a Python function with
a set of decorators. The decorator @nrp.Neuron2Robot in line
6 marks the function as a Transfer Function from the neu-
ronal network towards the robot and automatically registers
it at a singleton component instance to manage the Trans-
fer Functions. Furthermore, the decorator specifies what the
platform should do with the function’s return value. In the
example, the return value is sent to the robot using the ROS
topic /husky/cmd_vel. The decorators in lines 4 and 5 specify
how the parameters of the function should be mapped to
the neuronal network. In this case, the parameters should
be connected to two single neurons of the actors population
through a leaky integration algorithm. That is, the spikes
coming from the neuronal network are simply integrated in
a neuron with an infinite spiking threshold, thus the device
effectively measures the voltage of the neurons combined.
The first parameter t is reserved for the current simulation
time and cannot be remapped through a decorator. All other
parameters must be mapped to either robot parts or neurons.

The fact that the decorators turn a usual function into
a transfer function gives the API the flavor of a domain-
specific language as the underlying method is no longer acces-
sible to the outside. In particular, the name linear_twist in
Listing 1 is resolved in Python to an object representing the
Transfer Function instead of the method underneath. Once
the framework is initialized and the connections such as spec-
ified in Lines 4-6 are established, the connected devices can
be accessed directly, e.g. through linear_twist.left_wheel_-

neuron. As a valuable side effect, this enables users of the
platform that like to use automated tests to test their Trans-
fer Functions when connecting them to mockups of the sim-
ulations.

4.2 Transfer Functions Robot to Neuron
In the opposite direction, we take a camera image from

the world simulator, detect red colors and use the results as
stimuli for the neuronal network. In this setting, the classi-
fication is currently implemented in a library function. This
library function computes for an image the ratio of red pix-
els in the left half of the image, the ratio of red pixels in

A Domain-Specific Language (DSL) for Integrating Neuronal Networks in Robot Control 11



the right half of the image and the ratio of pixels classified
as not red in the whole image. These ratios are propagated
to the input sensor neurons by means of Poisson generators
that create spikes according to a Poisson distribution with
a rate depending on the detected red color.

1 @nrp.MapRobotSubscriber("camera", Topic(’/husky/camera’, sensor_msgs.

msg.Image))

2 @nrp.MapSpikeSource("red_left_eye", nrp.brain.sensors[0, 2], nrp.

poisson)

3 @nrp.MapSpikeSource("red_right_eye", nrp.brain.sensors[1, 3], nrp.

poisson)

4 @nrp.MapSpikeSource("green_blue_eye", nrp.brain.sensors[4], nrp.

poisson)

5 @nrp.Robot2Neuron()

6 def eye_sensor_transmit(t, camera, red_left_eye, red_right_eye,

green_blue_eye):

7 image_results = nrp.tf_lib.detect_red(camera.value)

8
9 red_left_eye.rate = 1000.0 * image_results.leftred

10 red_right_eye.rate = 1000.0 * image_results.rightred

11 green_blue_eye.rate = 1000.0 * image_results.greenblue

Listing 2: Transfer Function from a camera image to
neuron spikes

The implementation of this connection is shown in List-
ing 2. The decorator @nrp.Robot2Neuron in line 5 marks the
function as a Transfer Function from the world simulation
to the neuronal network. Line 1 is responsible to map the
camera parameter to a subscriber on the camera topic of the
robot. In lines 2-4, we create three Poisson generators that
will issue spikes according to a Poisson distribution. We use
Poisson generators since alternative spike sources generating
spikes in a fixed frequency are more affected by time resolu-
tion. The method body itself is not restricted in any way, so
we have no limitation in the expressiveness of the language.

5. APPLICATION MODELS
FOR BRAIN AND BODY INTEGRATION

To further simplify the specification of such connections
and to enhance validation, we are aiming for a graphical
designer, the Brain Interface and Body Integrator (BIBI).
Although our requirements demand us to support arbitrary
Transfer Functions, in many cases these Transfer Functions
simply consist of predefined functional building blocks stacked
together. Thus, the full execution semantic of Python is not
necessary in these cases and a metamodel of stacked func-
tional building blocks suffices. On the other side, a formal
model has a couple of advantages such as model validation
and the definition of an abstract syntax to create an editor
for it.

In particular, model validation is a particularly important
concern. Early validation of Transfer Functions increases lo-
cality and reduces the time to error reports. Both have been
identified in Software Engineering as success factors for effi-
cient failure management.

An illustration how models at different levels of abstrac-
tion are used in the NRP is shown in Figure 4. The user may
choose between two ways how to specify the integration of
brain and body, either through the Python DSL we have
presented in Section 4 or through a graphical designer. The
transfer functions directly contained in the BIBI Model are
then transformed into the Python DSL by means of a model-
to-text transformation. This allows a migration path if the
expressiveness of the formal model does not suffice as users
can then continue to work with the underlying Python DSL

CLE

Specifica�on of Transfer Func�ons

in the Python DSL

Specifica�on of Transfer Func�ons
in the BIBI Model

Transforma�on into Python DSL

<<include>>

Specifica�on of Transfer Func�ons

User

Figure 4: Usage of different abstraction models

directly. As the BIBI Model supports to reference Python
files, both ways to specify Transfer Function may be used si-
multaneously while only one model interpreter is necessary.

An overview of the general structure of the BIBI Model
is depicted in Figure 5. The model is implemented in an
XML Schema conforming to the XMI standard since it is
available on more technical platforms than modeling envi-
ronments such as Ecore. Our approach uses generateDS3 to
automatically generate Python classes to read the models.
The use of XML Schema limits stable cross-references of ele-
ments, which are not part of the containment hierarchy. The
design accordingly prevents those cross-references where pos-
sible.

The main assets of these Transfer Functions in the BIBI
Model are the specification of used channels, i.e. the connec-
tions they have to either the simulated robot (topic chan-
nels) or the neuronal network through devices (device chan-
nels). The device channels augment the neuronal simulation
with a device, an intermediate object necessary since the
neuronal network typically runs in a higher time resolution
than the Transfer Function. Their task is to distribute input
values from a Transfer Function or aggregate values from
the neuronal network. Typical examples of devices include
voltmeters, current generators or Poisson generators.

Channels can either be read from or written to, according
whether the channel is used as input or output from the re-
spective simulator. Further, Transfer Functions can also spec-
ify local variables that act both as input and output within
the Transfer Function. Whether a channel is read from or
written to is determined by whether it has an expression
assigned to it as its body or not.

For such expressions, we have a simple expression language
limited to the prospected needs of Transfer Functions includ-
ing arithmetic operations, minima and maxima. However,
the language also contains an element to include library calls,
ensuring its extensibility.

The additional channel configuration is different for device
channels and robot channels. For a topic channel, we assume
that all connectible parts of the robot are accessible through
named and typed topics where the default implementation
are ROS topics.

The configuration of device channels is depicted in Figure

3https://pypi.python.org/pypi/generateDS

12 Georg Hinkel, Henning Groenda, Lorenzo Vannucci, Oliver Denninger, Nino Cauli and Stefan Ulbrich



BIBIConfiguration

bodyModel : SDFFilename

extRobotController : ScriptFilename

transferFunctionImport : PythonFilename

BrainModel

file : H5Filename

TransferFunction

group : EFeatureMapEntry

name : String

DeviceChannel

name : String

type : DeviceType = ACSource

Neuron2Robot Robot2Neuron

TopicChannel

name : String

topic : RobotTopicAddress

type : String

Local

name : String

[1..1] brainModel

[0..*] transferFunctions

[0..*] devices

[0..*] topics

[0..1] returnValue

[0..1] returnValue

[0..*] locals

Figure 5: An overview on the structure of the BIBI Model

6. Besides an expression what values should be assigned to
the device, the device channel also incorporates a neuron se-
lector and the device type such as a leaky integrator or a
Poisson generator. This neuron selector selects the neurons
the device should be connected to. Currently we support the
selection of a whole population of neurons in the neuronal
network, a range of neurons or a list of neurons. Future neu-
ronal network models we intend to use also specify a notion
of location for neurons. Based on this location, more elab-
orate selectors will include a biologically plausible selection
by a neurons physical location.

6. TRANSFORMATION
To avoid inconsistencies between artifacts representing the

same entities on different levels of abstraction, transforma-
tion approaches have proven to be viable. In our case, it is the
CLE that runs the Transfer Functions. As we allow the spec-
ification of Transfer Functions in two different formats, in-
consistencies could arise from different interpretations of how
Transfer Functions are connected to the neuronal network or
to the robot. To prevent these inconsistencies, we transform
the Transfer Functions specified in the formal BIBI model
to the Python DSL. That is, Transfer Functions specified in
the BIBI Model are transformed into Transfer Functions in
the Python DSL. Thus, for the CLE the fact that a formal
BIBI model is on top is entirely transparent since it is only
based on the Python DSL.

The alternative solution of using a model interpreter does
not allow users to understand what is happening under the
hood whereas the transformation approach allows users to
see the generated Python DSL code for a given Transfer
Function created in the BIBI Model. The transformation
approach also provides a migration path if the expressiveness
of the formal model does no longer suffice.

For consistency reasons, this transformation is also written

in Python code where we use Jinja24, a templating engine
usually used for the generation of HTML files.

1 {% for tf in config.transferFunction %}{% if tf.extensiontype_ == ’

Neuron2Robot’ %}

2 {% for topic in tf.topic %}{% if is_not_none(topic.body) %}

3 @nrp.MapRobotPublisher("{{topic.name}}", Topic(’{{topic.topic}}’,

{{topic.type_}})){% else %}

4 @nrp.MapRobotSubscriber("{{topic.name}}", Topic(’{{topic.topic}}’,

{{topic.type_}})){% endif %}{% endfor %}{% for dev in tf.

device %}{% if is_not_none(dev.body) %}

5 @nrp.MapSpikeSource("{{dev.name}}", nrp.brain.{{get_neurons(dev)}},

nrp.{{get_device_name(dev.type_)}}){% else %}

6 @nrp.MapSpikeSink("{{dev.name}}", nrp.brain.{{get_neurons(dev)}},

nrp.{{get_device_name(dev.type_)}}){% endif %}{% endfor %}

7 @nrp.Neuron2Robot({% if is_not_none(tf.returnValue) %}Topic(’{{tf.

returnValue.topic}}’, {{tf.returnValue.type_}}){% endif %})

8 def {{tf.name}}(t{% for t in tf.topic %}, {{t.name}}{%endfor%}{%

for dev in tf.device %}, {{dev.name}}{%endfor%}):

9 {% for local in tf.local %}

10 {{local.name}} = {{print_expression(local.body)}}{% endfor %}

11 {% for dev in tf.device %}{% if is_not_none(dev.body) %}

12 {{dev.name}}.{{get_default_property(dev.type_)}} = {{

print_expression(dev.body)}}{% endif %}{% endfor %}

13 {% for top in tf.topic %}{% if is_not_none(top.body) %}

14 {{top.name}}.send_message({{print_expression(top.body)}}){%

endif %}{% endfor %}

15 {% if is_not_none(tf.returnValue) %}

16 return {{print_expression(tf.returnValue.body)}}{% endif %}

Listing 3: Transformation of the BIBI Model to the
Python DSL

An excerpt of this template showing the transformation
for Transfer Functions from the neuronal network to the
robot is shown in Listing 3. An advantage of the Jinja2
templating engine is that it supports the inclusion of ar-
bitrary Python code. Therefore, more complex predicates
can be implemented in normal Python code and can thus be
unit tested. This is important given the difficulties of testing
model transformations [12].

4http://jinja.pocoo.org/docs/dev/

A Domain-Specific Language (DSL) for Integrating Neuronal Networks in Robot Control 13



DeviceChannel

name : String

type : DeviceType = ACSource

NeuronSelector

population : String

Index

index : NonNegativeInteger

List

element : NonNegativeInteger

Range

from : NonNegativeInteger

step : NonNegativeInteger

to : NonNegativeInteger

[1..1] neurons

Figure 6: The connection to the neuronal network in the BIBI Configuration model

However, as shown in Listing 3, the code generation tem-
plate can be difficult to read and thus maintain, particularly
if it is a goal that the generated code has a reasonable for-
matting. This is important to users that want to understand
what Python DSL code is generated for a particular BIBI
model.

7. THE BRAITENBERG VEHICLE EXPER-
IMENT ON THE NRP

This section describes the use of the Braitenberg vehicle
experiment introduce in Section 3 on the NRP. The Husky
robot is simulated in a realistic virtual room equipped with
two screens that may be turned red by the user during the
simulation. The neuronal network (presented in Section 3)
guides the robot to turn unless it sees red color and then
moves towards it. Figure 7 shows a screenshot of the sim-
ulation of the experiment and a video is publicly available
online5.

Figure 7: The Braitenberg vehicle simulated in the
NRP platform

The platform takes as input an experiment model. This
model contains a reference to the virtual room in which the
robot is loaded for simulation as well as a BIBI Model. In
this case, all Transfer Functions are specified within the BIBI
Model. These Transfer Functions are transformed into the
Python DSL which is then executed by the CLE.

5https://www.youtube.com/watch?v=osmkKQb5pTc

However, so far the platform has only been released within
the HBP consortium and we do not have any experience
reports on further validation areas such as the expressiveness
of both the Python DSL and the BIBI model and leave such
analysis for future work.

8. RELATED WORK
Despite software playing a basic role in implementing the

functionality of robotics systems, most robotics software sys-
tems are still hand-crafted. A model-based approach is com-
monly accepted as more suitable to cover the control or me-
chanical design aspects. In the last years, a migration from
a code-driven approach towards a more flexible model-based
one has started to emerge[13], [14].

But even though approaches to simulate a neuronal net-
work connected used to control robots can be traced back at
least until the early nineties [15], we could not identify do-
main specific languages designed to support this connection
for neuro-scientist and covering biological inspired neuronal
networks. However, there are some DSLs that describe ei-
ther the neuronal network simulation [16], [17] or robotics
[18], our language is the first to describe their interplay on
a high abstraction level.

In the field of neuroscience, an example of such a language
can be found in the NEURON simulator [16], [17], whose
network models can be described in a DSL based on Hoc [19].
Furthermore, current research projects such as NESTML6

are trying to create domain-specific languages for the NEST
simulator [5].

From a robotic point of view, several works have been pro-
posed, covering some specific aspects of robotic software sys-
tems [20]–[22]. Nordmann et al. have published a list of DSLs
in robotics7 and created a survey of these [18]. Most of these
languages utilize the knowledge of a particular sub-domain
of robotics to create an abstract syntax and a DSL for it.
From this DSL, the entire robot controller or at least large
parts of it can be generated. This is different to our approach
where we assume the robot controller to be already existing,

6http://www.jara.org/en/research/jara-hpc/research/
details/seed-funds-zuk2/nestml-eine-modellierungssprache-
fuer-biologisch-realistische-neuronen-und-synapsenmodelle-
fuer-nest/
7http://cor-lab.org/robotics-dsl-zoo

14 Georg Hinkel, Henning Groenda, Lorenzo Vannucci, Oliver Denninger, Nino Cauli and Stefan Ulbrich



implemented as a neuronal network that has to be connected
to the robot.

9. CONCLUSION AND FUTURE WORK
In this paper, we have presented an approach to bridge

the semantic gap involved in the specification of a coupling
between a neuronal network and a simulated robot. We have
presented both a textual DSL in Python for users with a com-
puter science background and also a meta-model for Trans-
fer Functions on a high abstraction level. This meta-model
paves the way for graphical languages that allow to specify
such connections for users with little or no computer science
background. Furthermore, it fosters the validation of these
models. Through a transformation approach, these two ab-
straction levels can be mixed.

In the short-term, we plan to create an editor for the graph-
ical DSL easing the specification for the brain and body in-
tegration. The Python DSL has just been released together
with the NRP within the HBP and we are looking forward
to comments and suggestion how to further improve the ap-
plicability according to our users needs. In the mid-term,
we are going to implement analyses and constraint checks
to ensure that Transfer Functions reference valid input and
output of Brain and Body.

Acknowledgment
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project).

References
[1] A. Roennau, G. Heppner, M. Nowicki, and R. Dillmann,

“LAURON V: a versatile six-legged walking robot with
advanced maneuverability,”in Advanced Intelligent Mecha-
tronics (AIM), 2014 IEEE/ASME International Confer-
ence on, IEEE, 2014, pp. 82–87.

[2] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, and K.
Czarnecki, Model-Driven Software Development: Tech-
nology. 2006.

[3] P. Trojanek, “Model-driven engineering approach to de-
sign and implementation of robot control system,” 2013.

[4] V. Braitenberg, Vehicles: Experiments in synthetic psy-
chology. MIT press, 1986.

[5] H. Plesser, J. Eppler, A. Morrison, M. Diesmann, and
M.-O. Gewaltig, “Efficient Parallel Simulation of Large-
Scale Neuronal Networks on Clusters of Multiprocessor
Computers,” in Euro-Par 2007 Parallel Processing, ser.
LNCS, vol. 4641, Springer Berlin Heidelberg, 2007, pp. 672–
681.

[6] A. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E.
Muller, D. A. Pecevski, L. Perrinet, and P. Yger,“PyNN:
a common interface for neuronal network simulators,”
Front. Neuroinform., 2008.

[7] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E.
Painkras, and S. B. Furber,“SpiNNaker: mapping neural
networks onto a massively-parallel chip multiprocessor,”
in Neural Networks, 2008. IJCNN 2008.(IEEE World

[7] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E.
Painkras, and S. B. Furber,“SpiNNaker: mapping neural
networks onto a massively-parallel chip multiprocessor,”
in Neural Networks, 2008. IJCNN 2008.(IEEE World
Congress on Computational Intelligence). IEEE Interna-
tional Joint Conference on, IEEE, 2008, pp. 2849–2856.

[8] N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in In-
telligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on,
IEEE, vol. 3, 2004, pp. 2149–2154.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source
Robot Operating System,” in ICRA workshop on open
source software, vol. 3, 2009, p. 5.

[10] M. Fowler, Domain-specific languages. Pearson Educa-
tion, 2010.

[11] L. A. Meyerovich and A. S. Rabkin, “Empirical analy-
sis of programming language adoption,” in Proceedings
of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & appli-
cations, ACM, 2013, pp. 1–18.

[12] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon,
and J.-M. Mottu,“Barriers to systematic model transfor-
mation testing,” Communications of the ACM, vol. 53,
no. 6, pp. 139–143, 2010.

[13] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic
software systems: from code-driven to model-driven de-
signs,” in Advanced Robotics, 2009. ICAR 2009. Inter-
national Conference on, IEEE, 2009, pp. 1–8.

[14] C. Atkinson, R. Gerbig, K. Markert, M. Zrianina, A. Egurnov,
and F. Kajzar, “Towards a Deep, Domain Specific Mod-
eling Framework for Robot Applications,” pp. 1–12.

[15] D. A. Pomerleau,“Neural network perception for mobile
robot guidance,” PhD thesis, DTIC Document, 1992.

[16] M. Hines, “A program for simulation of nerve equations
with branching geometries,” International journal of bio-
medical computing, vol. 24, no. 1, pp. 55–68, 1989.

[17] A. P. Davison, M. L. Hines, and E. Muller, “Trends in
programming languages for neuroscience simulations,”
Frontiers in neuroscience, vol. 3, no. 3, p. 374, 2009.

[18] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A
survey on domain-specific languages in robotics,” in Sim-
ulation, Modeling, and Programming for Autonomous Robots,
Springer, 2014, pp. 195–206.

[19] B. W. Kernighan and R. Pike, The Unix programming
environment. Prentice-Hall Englewood Cliffs, NJ, 1984,
vol. 270.

[20] M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain
specific language for kinematic models and fast imple-
mentations of robot dynamics algorithms,” 2013.

[21] M. Bordignon, U. P. Schultz, and K. Stoy,“Model-based
kinematics generation for modular mechatronic toolk-
its,” in ACM SIGPLAN Notices, ACM, vol. 46, 2010,
pp. 157–166.

[22] D. Di Ruscio, I. Malavolta, and P. Pelliccione, “A fam-
ily of domain-specific languages for specifying civilian
missions of multi-robot systems,” in First Workshop on

Model-Driven Robot Software Engineering-MORSE, 2014.

A Domain-Specific Language (DSL) for Integrating Neuronal Networks in Robot Control 15


	Integration of Existing Software Artifacts into a View- and Change-Driven Development Approach Sven Leonhardt, Benjamin Hettwer, Johannes Hoor and Michael Langhammer



