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Abstract—In this paper we present an autonomous detection
approach for airborne surveillance in maritime scenarios. This
approach is robust to sun glare, waves and scale variation.
Additionally, we introduce a new metric to evaluate detection
and tracking results that is more adequate for these scenarios.
The proposed detection method is evaluated using videos from
different monitoring missions and its results are compared
with a state-of-the-art neural network. This comparison is done
using a traditional and the proposed evaluation metric.

1. Introduction

Despite the environmental [1], economical [2] and social
[3] importance of maritime environments, monitor such vast
areas is still a challenge. Maritime monitoring has implied
the use of multiple assets, namely coastal stations, manned
vessels, manned aircraft and satellites. All these platforms
have relied primarily on radar technology, creating numer-
ous approaches for automatic detection [4]. The use of active
sensors has also placed power, space and weight require-
ments on the platforms, which limited the use of smaller
and cheaper vehicles. The high cost of these technologies
prevented a stronger control of the seas that could help with
security [5], safety [6] and ecological [7] problems.

Lately, small aircraft (in particular unmanned) became
easily accessible and particularly suited to carry visible
spectrum cameras. Theses sensors are also ubiquitous but
automatic detection in aerial images is still an open problem,
therefore algorithms adequate to this problem are needed.

Detection in aerial images over land had some devel-
opments, with some approaches assuming the background
is approximately static and objects are moving [8] [9].
Maritime scenarios preclude some of these approaches, has
they contain challenging situations like glare, parts of the
background that are also moving and objects can be quite
diverse (from life rafts to oil tankers).

Even with the enumerated difficulties, several attempts to
solve this problem have been made. Having several options
raises questions like ”Which technique is better?” or ”What
is the performance of a given method in different scenar-
ios?”. Computer Vision researchers have faced this issue
numerous times, defining metrics that help understanding

the performance. The adoption of a given metric is usually
related to the characteristics of the problem at hand. In the
present case, we would like to evaluate detections of objects
with significant size and aspect ratio variations and therefore
there is a need to weight the localization error by the size
of the bounding box.

This paper presents a detector that tries to overcome the
difficulties of maritime surveillance scenarios as well as an
adequate way to measure its performance. The contributions
are:

• the use of a Convolutional Neural Network (CNN)
with a method that exploits the time coherence
present in video sequences;

• introduction of a metric to compare detection results
with the ground truths, weighting the errors by the
size of the object of interest;

• testing of the detector in different scenarios, using
labeled videos with a considerable duration.

This paper is organized as follows. In Section 2, we
review the main approaches for detection, in particular the
ones that are applied to maritime scenarios. We also report
the existing methodologies used to evaluate detection results.
Section 3 contains the description of the detector. Section
4 focuses on the metric used to evaluate detection results.
In Section 5, we describe the scenarios that were used
for evaluation, present and discuss the results. Finally, in
Section 6, we present some concluding remarks.

2. Related work

Objection Detection is one of the fundamental tasks
in Computer Vision, which led to many approaches being
suggested to this problem. Detection in aerial images has
followed the trends of general computer vision but hav-
ing some specificities. Some of the most relevant are the
limited computational power if we consider that processing
runs on the aircraft and also processing time that should
small enough allow a timely action (e.g. start tracking).
One important driver of evolution and improvement of
the algorithms performance was the creation of evaluation
methodology that allow an exact comparison of performance
[10] [11]. Also like in other areas, an adequate evaluation



methodology is also important to compare different detec-
tion schemes. In the next two subsections we will discuss
the method suggested for detection using aerial images and
the existing evaluation methodologies, respectively.

2.1. Detection in Maritime Scenarios

Following some of the developments made in general
Computer Vision, some works like [12], have detected peo-
ple on land using Histogram of Oriented Gradientss (HOGs).
Others like [13], used cascaded classifiers to detect people
on foot and land vehicles and complement visible images
with thermal images. Even with these techniques performing
well in some cases, in the case of maritime detection,
the objects’ appearance variability is much higher. Others
approaches, like [14] depend on the movement of the targets
which is not well suited for maritime environments as some
targets may be still and undesired events like wave crests and
sun glare may have a significant movement. It is therefore
difficult to characterize possible targets with respect to size,
shape, colors, textures or movement in the image space.

Even with the aforementioned peculiarities, several spe-
cialized maritime detectors have been proposed. In [15], a
set of features is designed to distinguish nautical objects
from the ocean. However, the authors need to use several
other layers to discard clutter. Similar approach is followed
in [16] to detect marine mammals, using color features on a
first stage and shape features secondly. In [17], the authors
detect castaways by exploring the information contained
in video sequences, more specifically, by using a Hidden
Markov Model (HMM).

Just like in other applications, neural networks have
been applied to the recognition of aerial images, even be-
fore modern CNNs were available [18] [19]. Like in other
areas, the results with older network configurations were
limited. More recently, taking advantage of more advanced
network configurations, CNNs have been used for maritime
detection using airborne images [20] [21] but with limited
results when compared with other areas. This is caused by
factors like the high variability of objects’ appearance and
phenomena like sun glare and waves. Additionally, most
detectors were designed to be used in isolated pictures and
only very recently some approaches based on CNNs like
Kang et al. [22], took advantage of processing sequences
instead of isolated images.

The method suggested in this work makes use of a
existing network configuration and improves its performance
by using a Multiple Hypothesis Tracker (MHT) to capture
the dependency of detection across time.

2.2. Performance Metrics

Two main types of approaches have been considered
to evaluate detection performance. The first type are Pixel-
based methods, in which the detection output (groups of pix-
els of a given class) is compared with a labeled segmented
image. The evaluation is then done as a binary classification
problem and can be evaluated with missed detection rates,

false positives or Receiver Operating Characteristic (ROC)
[23]. This kind of method is not very attractive for maritime
surveillance specially because creating accurate ground truth
segmented images is a tremendous amount of work and de-
tection stage usually does not need such detailed description
of the object.

This drawback leads us to the second type of evaluation:
Region-based methods. For these methods, ground truth
typically consists of a rectangular region containing the
object of interest and the output of the algorithm is usually
rectangular as well (usually designated as bounding boxes).
In this case, detections hardly are exactly equal to the ground
truth, therefore there is no direct assignment (as with pixels)
and a matching strategy must be followed. Some of the most
used options consider the distance between both rectangles
[24] or the overlap between both regions [25]. With this
matching, evaluation is still considered as a binary classifi-
cation problem, defining true and false positives, correct and
missed detections. Subsequently, many performance figures
can be defined (e.g. Precision, Recall or F-score) but are
still dependent on the threshold considered for the matching.
For instance, [10] considers that there should be an overlap
between both Bounding Boxes (BBs) of 50%.

To avoid defining arbitrary thresholds, other metrics have
been introduced that focus on evaluating localization [26].
A recent tracking evaluation approach [27] overcomes some
of the mentioned limitations. In particular, the mentioned
work assumes the creation of two curves: Precision and
Success. The first one, plots the ratio of BBs as a function
of distance between detections and Ground Truths (GTs).
The second curve, shows the ratio of BBs as a function
of overlap. The main advantage of this method is the use
of continuous values for distance and overlap and not an
arbitrary discrete value. In this work, we will follow this
idea, using a distance between BBs that is weighted by the
size and shape of the GT and plot the ratio of detections as
a function of that distance.

3. Detection Approach

Our approach consists on using a Convolutional Neural
Network to generate detection proposals and then associate
these proposals using a Multiple Hypothesis Tracker (MHT).
The network was based on DetectNet [28], a network which
is itself based on GoogleNet but instead of classifying, it
produces bounding boxes. In its unchanged version, depicted
in Figure 1, the network’s last layer receives a coverage map
and produces bounding boxes. Each cell of this map repre-
sents a area of the original image and has a value between 0
and 1, where higher values mean that the cell is more likely
to contain an object of interest. On its unaltered version,
DetectNet processes each image without any memory of the
past and does not take advantage of the previous detections.

To overcome this issue, we have slightly changed Detect-
Net as represented in Figure 2. This modifications consist on
creating tracks with the successive detections and predicting



Figure 1. Simplified diagram of DetectNet. The solid line box encompasses
the convolutional part of the network, up to the moment where the coverage
map is produced. The final stage of the network (represented by the dashed
line box) receives the coverage map, creates BBs and scores them.

the position of the objects in the future frame. The prediction
model is

z(t+ 1) = z(t) + ∆z(t) (1)

where z(t) = (x(t), y(t)) is the position of a given object
and ∆z(t) = z(t)−z(t−1). This location is then converted
into the corresponding cell of a map (with the same size as
the coverage map) and the cell’s value is defined as 1.0. This
process is depicted in the right-hand side of Figure 2. The
map that was composed with the predicted position is then
mixed with the network’s coverage map, produced by the
pipeline represented in the left-hand size of Figure 1. The
resulting map is then fed into the last layer, represented as
the dashed box in Figure 1.

In our problem, the MHT is used mainly to increase ro-
bustness by creating associations between detections and not
to create very long tracks discriminating different objects.
Yet it also improves the results by creating short duration
tracks that ultimately increase the persistence of an object in
the coverage map. The tracker is implemented by building
a graph with the detections D̄t. As depicted in Figure 3, at
each time instant, a level of the graph is built. The level is
composed of nodes that correspond to the detections from
that time instant. At a given level, a node will have as parents
all the nodes from the top level, unless its distance is above
a certain threshold. Additionally, each node also contains
the detection’s score.

The tracking is then done by searching paths from a
given detection at time instant t, all the way to older levels.

Figure 2. Simplified diagram of the network based on DetectNet. As in the
previous figure, the solid line box encompasses the convolutional part of
the network. Parallel to this convolutional part, there is the generation of a
map, given the predicted object position (this only takes place, if there are
any tracks). Finally, the last part of the network (represented by the dashed
line box) receives the merge of the two maps and creates scored BBs.

This process is represented in Figure 3 with (a) showing the
paths obtained from D̄t

k0
and (b) showing the paths from D̄t

1

up to level 3. Because of the combinatorial nature of finding
all paths, the search is done only up to a given time horizon,
limiting the considered number of levels. With a limited
search depth, the graph will create tracks T t,··· ,t−Rj that are
composed by detections

{
D̄t
l0
, D̄t−1

l1
, · · · , D̄t−R

lR

}
, where

D̄t−R
lR

is the lth detection in level R. The selection of a depth
R should allow a time interval bigger than phenomena like
glare and waves, excluding most false detections.

The probability of each track T t,··· ,t−Rj being generated
by correct detections

{
D̄t
l1
, D̄t−1

l2
, · · · , D̄t−R

lR

}
is evaluated

using the score of each detection and a weighting function
that penalizes parent-child pairs that are farther from each
other. This probability can be written as

P (T t,··· ,t−Rj ) = P (D̄t
lr ≈ Gtj)

R∏
r=1

P (D̄t−r
lr

≈ Gt−rj )C(D̄t−r
lr

, D̄t
lr ) (2)

with P (D̄t
lr

≈ Gtj) representing the probability of a
detection matching a given ground truth label Gtj and
C(D̄t−1

l1
, D̄t

l0
) representing the cost of associating two con-
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Figure 3. Simple example of a graph similar to those used in MHT.

secutive detections D̄t−1
l1

and D̄t
l0

. To compute C, we have
used a Gaussian function that depends on the distance
between the center point of the bounding boxes, i.e.,

C(D̄t−1
l1

, D̄t
l0) = e(−d

2
x+d

2
y)/2σxσy (3)

with dx and dy being calculated as

dx = (xt−1
l1

+
wt−1
l1

2
) − (xtl0 +

wtl0
2

) and (4)

dy = (yt−1
l1

+
yt−1
l1

2
) − (ytl0 +

htl0
2

) . (5)

The σx and σy should be a compromise between being able
to accommodate for camera motion and small enough to
distinguish boats that are close to each other.

By calculating Equation (2), for each detection at a
time instant t, we get possible tracks with different scores,
represented in Figure 3 by thinner and thicker edges. Using
MHT, if we have a false detection that is wrongly assigned a
high score by the CNN but spatially is far from detection in
previous frames, then the track with origin in this detection
will have a lower probability. Conversely, if there is a correct
detection with a low score but that is at approximately
the same location as previous detections, then the detection
might still have a significant probability.

The usage of the MHT allowed us to relax the tunning
of the threshold present in DetectNet’s last layer, setting
it to a low value. With a low threshold, many detections
are created and fed into the MHT that associates them,
given the score of each detection and also the distance
between detections in consecutive frames. This leads to
many possible combinations but only the ones with higher
combined score are considered.

In Figure 4, we supply an example where the contri-
bution of the tracks to the detection process is visible. In
Figure 4(a) is shown the result of the tracker, with a green
line connecting the centers of previous detections. Figure 4
(b) contains the coverage map produced by the part of the
network contained in the solid line box in Figure 2 (the same
as would be produced by the unchanged DetectNet). While
the bigger blob of this map has a high value, the smaller
blob has values closer to the background. If no additional
care was taken, it would be very difficult to distinguish this
situation from a case where a distractor would be visible.
With the incorporation of the tracks’ information into the

map in Figure 4(c), then the knowledge of the previous time
instants is propagated into the neural network. The cells
corresponding to the position predicted using Equation (1),
are assigned a value one and then merged with the coverage
map produced by the neural network. The final result is the
map represented in Figure 4(d) that incorporates information
of the convolutional part of the network and also from the
tracks and where the smaller blob has a higher value.

4. Performance Metrics

Detection and tracking are very relevant tasks in Com-
puter Vision and have benefited a lot from the creation of
benchmarks and establishment of solid performance metrics.
Nevertheless, different metrics highlight different character-
istics and there is still no one-fits-all metric.

One of the most used for detection was introduced
by Dollar et al. [10]. This method characterizes a given
detection scheme by checking if detections can be matched
to ground truths. According to this matching, Precision-
Recall or Missed Rate-False Positive Per Image curves are
created. However, the matching is based on a hard threshold.
If there is enough overlap between detection and ground
truth, the matching is correct. If the overlap is not enough,
then the detection is considered incorrect. One disadvantage
of this method is that detections have the same quality as
long as both satisfy the minimum overlap with GT. Another
drawback is that if a detection has no overlap, even though
it might have exactly the same size and aspect ratio, then
is considered as bad as another that might be far from the
ground truth.

For the tracking task, one common approach is Object
Tracking Benchmark (OTB) [27]. As stated in Subsection
2.2, Precision is verified for different distance thresholds
and Success with different overlap values. Even though this
method has softer metrics, Sucess penalizes equally two
cases that do not overlap (even if in one case BBs are
close and in other are very far apart) and Precision penalizes
equally two cases given the distance between BBs (though in
one case, the size of bounding boxes might be very similar
and in the other it might be very different).

4.1. Proposed Metric

To have a metric in which detections are not classi-
fied binarily but differences in localization, areas and as-
pect ratios of detections and ground truths are considered,
we introduced a distance based on Mahalanobis distance.
This distance, that we designate as Ground Truth Weighted
Bounding Box Distance, is defined as

DGT weighted =
√

(x− µ)TΣ−1(x− µ) . (6)

In this equation, x and µ represent the data of de-
tections and Ground Truths and are defined as x =[
xC yC wC hC

]T and µ =
[
xG yG wG hG

]T .
The central coordinate of detections and ground truths are



(a) (b)

(c) (d)

Figure 4. Representation of an example where the detection is improved by using information provided by the tracks. In (a) are illustrated part of the
tracks that exist at location 1 of Figure 2; the tracks are represented as green lines connecting the centers of previous detections. In (b) is shown the
coverage map that was produced by the neural network at location 2 of Figure 2. The coverage map has higher values in areas where the more likely
to have boats present. The map in (b) contains two blobs but the one that corresponds to the life raft, because of its size and the lighting conditions,
has smaller values. The map in (c) is generated based on the tracks and is binary, with ones only in the prediction location for each object; this map is
obtained in location 3 of Figure 2. Finally in (d) there is the merge of the previous maps, which is created at location 4 of Figure 2.

represented by (xD, yD) and (xG, yG), respectively. Like-
wise, (wD, hD) and (wG, hG) represent the width and height
of detections and ground truths. The subtraction of these
two variables is therefore used to compare the error in
position and size of the detection with respect to the GT.
The absolute difference of BBs is multiplied by a matrix Σ
defined as

Σ =

w
2
G 0 0 0
0 h2G 0 0
0 0 w2

G 0
0 0 0 h2G

 , (7)

i.e., only the size of GT is used to weight the difference
between detections and Ground Truths.

4.2. Example

In Figure 5, we present the Ground Truth Weighted
Bounding Box Distance computed in four different cases.
These are just toy examples to display properties that are
useful in the context of maritime surveillance using airborne
images . The black boxes, represent the ground truth and
the colored represent the detections. In the red case, the
detection box is equal to the ground truth and is shifted 15
units in both axes. In the blue case, the shift is equal but
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Figure 5. Example of the Ground Truth Weighted Bounding Box Distance
for 4 different cases.

the size of both boxes is the double, which make the cost
smaller. The green case, is similar to the first but the shift
of 21 units (

√
(15)2 + (15)2) was done only in the smaller

axis, making the cost bigger than the first case. In the bottom



right example, both boxes are perfectly centered and only
differ in size (15 units in both axes). With a size difference
similar to the position difference of the first case, the cost
is also similar.

5. Evaluation

The evaluation in this work was done with two goals
in mind. The first is to provide information about the ade-
quateness of the detection mechanism presented in Section
3. The second goal is to display the need of having a more
adequate evaluation metric which is presented in Section 4.
In the following subsection, we describe the conditions in
which the videos were captured, their main characteristics
and the settings that were used for the algorithm. In the latter
subsection, we present the evaluation results and discuss the
advantage of the proposed metric and the performance of the
detector in scenarios very close to real maritime surveillance
missions.

5.1. Experimental Setup

The testing of the detector was done using four different
video sequences. These sequences were captured near the
portuguese coastline during spring and summer, using a
small size Unmanned Aerial Vehicle (with a weight of 25
kg). The aircraft flew at a constant speed of 20m/s and
its altitude varied from 200 to 1500 feet above the ocean
surface.

To show the applicability of the detector to the real
world, in each video sequence a different scenario was cre-
ated. In the first (sequence WIDE), a wide area monitoring
mission is simulated with the aircraft flying at 1500ft. with
a wide angle camera. In the second scenario, a vessel is
followed closely, at an altitude of 200ft (seq. NEAR). In
the third scenario, we simulate potentially illegal activities,
with the vessel deploying a small skiff (seq. SUSP). In the
last sequence, we simulate a search and rescue mission, with
a vessel deploying a life raft (seq. SAR). 1.

In Table 1, more details about the videos are presented.
In particular, we listed the number of frames of each video,
number of frames containing only one boat, number of
frames containing two or more boats and the average dis-
tance between them. Even though the problem considered
in this work is detection and we do not care about pointing
out the identity of each boat in the sequence, the data
about multiple boats is relevant to access the algorithm’s
robustness when boats are close to each other. The average
dimensions of the boat are also presented to provide a hint
on the sensitivity to the apparent size of the object.

To achieve a compromise between the duration of dis-
tractors and the computational complexity of calculating all
the combinations of paths in the graph, the time horizon
that was used in Equation 2 was R = 6. Based on the

1. The four sequences are available at http://vislab.isr.ist.utl.pt/seagull-
dataset/ and are designated, respectively as bigShipHighAlt_clip2.mp4,
lanchaArgos_clip3.mp4 , 2015-04-22-16-05-15_jai_eo_.mp4 and
GP030175_part01.mp4

TABLE 1. MAIN DATA OF THE VIDEO SEQUENCES THAT WERE
CONSIDERED FOR THE TESTING OF THE DETECTOR. DISTANCES ARE

MEASURED IN PIXEL.

WIDE NEAR SUSP SAR
# resolution 1920 1920 1024 1920

×1080 ×1080 ×768 ×1080
# frames 2250 1400 16368 4850
# frames with
only one boat 1798 1237 12129 3816
# frames with
2+ boats 123 0 3746 794
average and 1747 - 187 211
minimum distance
between boats 1717 - 0 0
average width 18 111 20 35
and height of boats 19 50 17 35

distances between boats, their sizes and also the apparent
motion caused by the camera motion, for Equation 3 we
selected σx and σy = 60.

5.2. Results discussion

The evaluation of our detection approach was conducted
both with traditional detection metric proposed in [10] and
with our proposed metric. The evaluation method used by
Dollar et al. requires the BBs produced by the algorithm and
the GT to be bigger than 50% to consider a detection as cor-
rect. On the present scenario, objects have a smaller apparent
size and therefore is harder to meet this requirement. We
have tried smaller thresholds of 10 and 50%, respectively.
As presented in Figure 7 and 8, the differences in results
between using an overlap of 10% and 30% makes difficult
an interpretation about the performance of the algorithm.

One might argue that in the case of object detection, the
overlap is not of paramount importance, although, this could
lead to a misleading situation. If evaluation is done using a
very small threshold, then a given algorithm producing very
adequate BBs would lead to the same evaluation results as
another algorithm that produced BBs of worst quality (as
long as the overlap threshold was satisfied).

When inspecting Figure 9, it easier to understand what
are the tests in which the algorithm performed better. For
instance, looking at the results obtained for sequence WIDE
detectnet only with detectnet neural network, it is possible
to verify that approximately 65% of detections achieve a
Ground Truth Weighted Bounding Box Distance of 0.1 or
better (in this case less distance is better). For the detectnet
with MHT applied to the same sequence (WIDE detect
w/ MHT) then approximately 70% of detections achieve a
Ground Truth Weighted Bounding Box Distance of 0.1.

Generally, the proposed method produces good results
as visible in Figure 6. The exception to this behavior is
when vessels are in areas affected by the sun glare. All
sequences contain glare but it is specially severe in WIDE,
SUSP and SAR, which causes a low recall in Figure 9.
Additionally, sequence SUSP poses another challenge as it
contains several boats and when they become adjacent, only
one is detected. Nevertheless, an important feature is that the



Figure 6. Example of detections for sequence WIDE, NEAR, SUSP and SAR, respectively.
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Figure 7. Results of evaluation using a traditional detection metric [10], with a overlap threshold of 10%. Results were obtained for sequence (a) WIDE,
(b) NEAR, (c) SUSP and (d) SAR respectively, using the standalone neural network (blue dashed line) and using the network with MHT (red solid line).
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Figure 8. Results of evaluation using a traditional detection metric [10], with a overlap threshold of 30%. Results were obtained for sequence (a) WIDE,
(b) NEAR, (c) SUSP and (d) SAR respectively, using the standalone neural network (blue dashed line) and using the network with MHT (red solid line).
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Figure 9. Results of Ground Truth Weighted Bounding Box Distance for sequence (a) WIDE, (b) NEAR, (c) SUSP and (d) SAR respectively, using the
standalone neural network (blue dashed line) and using the network with MHT (red solid line). The horizontal axis represents the Ground Truth Weighted
Bounding Box Distance and the vertical axis represents the recall obtained for a given operating point.

MHT improves results in every situation, which validates the
proposed detection method.

6. Conclusions

This paper presents a detector for aerial images captured
in maritime surveillance missions. This detector is based on
a CNN architecture that created BBs with different scales
but it is still not very robust due to scale and perspective
variations as well as due to distractors, like glare and wave
crests. To overcome its limitations, we have used a MHT that

tracks all the possible detections for a limited time horizon,
computing the probabilities of combining detections (based
on the difference of position) in successive frames. The
combinations that have low probabilities are then discarded,
limiting the number of combinations and making the com-
putation feasible.

We have also evaluated this detector in four very differ-
ent conditions, where it showed an interesting performance
without changing any setting. The worst result was obtained
in a sequence were two boats are close to each other and
consequently the association probabilities computed by the



MHT are not very discriminative.
In this work, we have also presented an evaluation metric

that is not based on a binary decision but based on the
difference of position and size of the BBs produced by the
algorithm and the ground truths. We evaluated the results
with the proposed metric and with one of the most used
metrics for detection. On the already existing metric, the
difficulty on selecting adequate threshold for the binary
decision was apparent. Using the proposed metrics, this dif-
ficulty did not exist and better understanding of the behavior
of the algorithm is possible.
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