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A 3D Active Shape Model for Left Ventricle
Segmentation in MRI

Carlos Santiago, Jacinto C. Nascimento, Jorge S. Marques

Abstract

3D active shape models perform the estimation of deformable surfaces in 3D volumes using landmark statistics.
First, the average shape and deformation modes are obtained from a set of annotated landmarks (training set).
Then, these statistics are used to segment new volumes, involving the estimation of the alignment parameters and
deformation coefficients. This approach is well suited to segment the shape of the left ventricle in 3D MRI volumes.
However, there are several challenging issues since each MRI volume has a different number of slices, which means
that it is difficult to establish correspondences between landmarks of different volumes. This leads to the main
question: how can we learn a shape model from volumes with a variable number of slices? Motion artifacts and
the large distance between slices make interpolation of voxel intensities a bad choice. The question can, thus, be
reformulated: how can we use active shape models without interpolating voxel intensities between slices? This
chapter provides an answer to these questions. We propose an interpolated model that allows the landmarks of
each training volumes to be resampled. Then, we propose a resampling method for the learned shape model (mean
shape and main modes of deformation), in order to ensure that it matches the slices of the test volume without
requiring voxel interpolation. The proposed algorithm was tested in 20 MRI volumes using a leave-one-out scheme.
The results show that it achieves good segmentation accuracy, with an average Dice coefficient of 0.88± 0.06 and
an average minimum distance to the ground truth of 1.2± 0.7 mm.

I. INTRODUCTION

Active shape models (ASMs) have been widely used in medical image analysis for their ability to
include shape information in the segmentation process. Over the past decade, several ASM based methods
have been proposed to address the 3D segmentation of medical images [1]. Most of them use the Point
Distribution Model (PDM) [2] to learn the shape statistics from a set of annotated volumes (training set).
The PDM defines the surface of an object using a set of labeled landmarks. These landmarks correspond
to specific locations such that there is a correspondence between the i-th landmark on one surface and
the i-th landmark on another surface. This allows the computation of shape statistics (mean shape and
modes of deformation) to be computed. However, it requires that all the surfaces are described by the
same landmarks.

The previous assumption is not always true. For instance, consider the left ventricle (LV) in 3D cardiac
magnetic resonance (MR) volumes. An MR volume consists of a set of 2D images orthogonal to the LV
axis and equally spaced. The surface of the LV is often defined by the 2D contours on each volume slice.
However, the dimensions of the heart depend on the person and on the cardiac phase, which means the
number of slices required to cover the heart varies. This leads to the following question: how can we
learn the shape statistics of the LV surface from volumes with a variable number of slices?

This chapter addresses this problem by normalizing the surfaces of the volumes in the training phase,
with respect to the number of slices. The normalization is achieved by modeling the position of each
landmark (surface point) along the LV axis through interpolation. This allows the surface to be resampled
at a set of predefined slices, which guarantees that the surface models in the training set have the same
number of landmarks. A schematic illustration of this approach is shown in Fig. 1 (learning phase). Once
the landmark correspondences have been established, we learn a shape model for each volume slice.

After computing the shape statistics (mean shape and main modes of deformation), we use them to
segment a new volume, as shown in Fig. 1 (test phase). However, as before, this new volume may have
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a different number of slices, which means that the 2D contours of the learned model may not match
the volume slices. In most 3D segmentation problems this is not an issue because the interpolation of
voxel intensities provides reliable data. This is not the case in cardiac MR volumes due to the low
resolution along the LV axis (e.g., the spacing between slices is typically 1cm) and to motion artifacts [3].
Interpolating the voxel intensities in this scenario often leads to a loss of contrast between the blood pool
(inside the endocardium of the LV) and the myocardium (outside the endocardium of the LV), making the
segmentation task very difficult (see Section V for an example). This leads to a second question: how can
we segment a test volume without interpolating voxel intensities between slices? We propose to interpolate
the shape model instead, which means resampling the shape statistics (mean shape and the main modes
of deformation). This way, the contours of the shape model are located at the same axial position as the
volume slices, which means there is no need to interpolate voxel intensities.

The next section provides an overview of the state of the art for 3D segmentation using shape models.
Sections III-IV describe the proposed shape representation and how it is used to resample the training
surfaces. Section V explains the interpolation of the learned shape model and describes the estimation of
the shape model parameters that segment the LV in a test volume. Section VI describes the experimental
setup used to evaluate the proposed method and Section VII shows the results obtained. Final conclusions
are presented in Section VIII.

II. STATE OF THE ART

Learning 3D shape models, defined by landmarks is not a simple task [1]. In some problems, such as in
cardiac MR volumes, there are no salient features in the volume and it is difficult to obtain unique landmark
positions. Consequently, establishing correspondences between landmarks of two objects is not trivial. A
popular approach [4]–[6] to overcome this issue is based the Iterative Closest Point (ICP) algorithm [7].
This algorithm registers two shapes by iteratively establishing landmark correspondences between the two
shapes using the best pose estimate and aligning the shapes based on those correspondences. Several
variants of the ICP algorithm have been proposed to improve its results and to allow the use of different
numbers of landmarks [8]–[10].

In the case of the LV segmentation problem, where the LV surface is defined by a set of contours
(one per slice), the ICP would be unable to effectively align two LV surfaces with a different number of
slices. That is why many works in the 3D LV segmentation problem use other approaches. Mitchell et al.
[11], for example, propose the use of a normalized cylindrical coordinate system to define the position of
the landmarks. First, they resample each contour at predefined angle intervals around the LV axis, which
guarantees that all the 2D contours have the same number of landmarks. It also guarantees that there
is a correspondence between the landmarks in consecutive slices. Then, they interpolate the position of
the landmarks along the LV axis using linear interpolation. This allows them to resample the number of
slices in a volume. Finally, by assuming a fixed position for the basal and axial slices in all the volumes,
landmark correspondences between different volumes are easily established. A similar approach is also
used by Andreopoulos et al. [3].

Another work [12] performs a preliminary step to establish the landmarks’ position and correspondences,
based on volumetric registration. Frangi et al. [13] also proposed an automatic method to determine the
landmarks’ position using this approach. They use a volumetric mesh, in which voxels are labeled based
on the type of structure they belong to. These allow the alignment of the volume to a reference one using
a non-rigid registration algorithm [14]. After the two volumes have been aligned, the reference landmarks
are used to establish the position of the landmarks in the other volume.

As an alternative, the level-set method [15] has also been used. For instance, Tsai et al. [16] learn the
shape statistics using the signed distance maps in the training set, instead of the landmark’s positions.
This approach has the advantage of not requiring landmark correspondences between shapes, as well as
the advantage of being able to change the topology of the segmentation. The latter is not of particular
interest for the problem of segmentation of the LV in MRI, since the LV does not change topology, but
may be useful in other applications such as the segmentation of brain structures [17].



3

LE
A
R
N
IN
G
P
H
A
SE

TE
ST

P
H
A
SE

Training set with
variable number

of slices

Continuous models
resampled with 6 

slices

Learned model
(mean shape & 

deformation modes)

Test volume 
with 4 slices

Interpolated
model with 4 slices

Test volume 
segmentation

Fig. 1. Learning and test phases of ASM for volumes with a variable number of slices.

As previously mentioned, there is also an additional problem when applying a learned shape model to 3D
cardiac MRI: the interpolation of voxel intensities located between two slices may not provide reliable data
due to the large distance between slices and to motion artifacts. To overcome this problem, Andreopoulos
et al [3] proposed using a preprocessing step that corrects misalignments between consecutive slices using
an image registration procedure (translation only). Correcting the misalignments increases the reliability
of the interpolated voxel intensities. A different approach was also introduced by Van Assen et al. [12],
[18]. They start by building a triangular mesh using the landmarks of the learned model. This mesh
has edges that intersect the volume slices. In an initial step, the set of points that intersect the volume
slices are the ones used to obtain the necessary displacement vectors that segment the volume. Then,
the displacement vectors are propagated to the corresponding landmarks in the shape model and used
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to update the model parameters. In this way, they are able to use the available intensity information in
the volume without having to interpolated voxel intensities. Nonetheless, some works have used trilinear
interpolation to obtain the intensity values at any position within the limits of the volume [11], [19].

In the proposed method, landmarks correspondences are obtained in a way that is similar to the approach
used in [3], [11]. However, instead of using a linear interpolation to resample the number of slices, which
may create sharp edges in the surface of the LV (due to the large distance between the volume slices), we
use a polynomial interpolation of the landmarks’ position along the LV axis (see Fig. 2 for an illustration).
In addition, our method is different in the test phase. First, we do not interpolate voxel intensities between
slices; instead, we resample the shape model so that it fits the test volume. Second, we use a robust
estimation method to obtain the shape parameters that segment that volume, based on the EM-RASM
algorithm proposed in [20].

III. INTERPOLATION OF SURFACE MODELS WITH A VARIABLE NUMBER OF SLICES

The PDM approach requires that all surfaces in the training set have the same number of landmarks.
As discussed before, in cardiac MRI, this poses a problem because the volumes have a variable number
of slices. For a specific volume, v, the slices are located at equally spaced axial positions

sm =
m− 1

Sv − 1
, (1)

where m = 1, . . . , Sv and Sv is the total number of slices in volume v. We assume that the basal slice
is located at s1 = 0 and that the apical slice is located at sSv = 1. The shape model is learned based on
medical segmentations, which correspond to the 2D contour of the LV on each slice. This means that the
LV surface of volume v in the training set is defined by a set of Sv contours located at the axial positions
defined by (1).

In order to learn the shape model, the surface models in the training set must have the landmarks at
corresponding positions. This can be achieved by: 1) using specific landmarks to define each slice contour;
and 2) using a fix number of slices in all volumes.

Regarding the first step, we resample the contours in arc-length at N points, starting at a specific
anatomical landmark. Let xv(sm) ∈ R2N×1 be the left ventricle contour on the m-th slice of volume v

xv(sm) =


x1(sm)

x2(sm)
...

xN(sm)

 =



x11(sm)

x12(sm)

x21(sm)

x22(sm)
...

xN1 (sm)

xN2 (sm)


, (2)

where xi(sm) = [xi1(sm), x
i
2(sm)]

> ∈ R2×1 is the position of the i-th point. This guarantees that there is
a correspondence between the i-th point of one contour and the i-th point of another contour, i.e., they
represent the same landmark. Concerning the second step, we use an interpolated/approximate model of
the landmark positions along the LV axis, defined by x̂v(s). We wish to model the slice contour as a
function of the axial position s ∈ [0, 1]. This is done using a combination of K polynomial basis functions,
ψ(s) ∈ RK×1,

x̂v(s) = Cvψ(s), (3)
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where Cv ∈ R2N×K is the coefficient matrix associated to volume v, defined by

Cv =



c11
c12
c21
c22
...
cN1
cN2


, (4)

and where the line vector, cij ∈ R1×K , contains the K coefficients associated to the j-th coordinate of the
i-th contour point. This coefficient matrix is specific of volume v, i.e., each surface is interpolated using
a different coefficient matrix. On the other hand, the polynomial basis, ψ(s) =

[
1, s, . . . , sK−1

]>, depend
only on the slice position, s.

This representation provides an estimate of the LV contour for any position s ∈ [0, 1] along the LV
axis. Ultimately, this means that we are able to redefine the surface of any volume using a predefined
number of slices, as shown in Fig. 2. This approach is used to resample the surface models in the training
set. However, the coefficient matrix, Cv, associated to the surface in volume, v, has to be estimated from
the corresponding annotations. This problem is addressed in the following section.

Available Continuous Resampled
Data Representation Volume

Fig. 2. Illustration of the resampling process. In this example, the available data (left) consists of an MR volume with 4 slices and respective
contours in red. The blue lines show the interpolated model for a subset of the contour points (green dots), obtained using the 4 contours
(middle), which allows us to obtain the contour at any axial location between the basal and apical slices (right).

IV. LEARNING THE SHAPE MODEL

We use the interpolation method described in the previous section to resample the surfaces of the
training set. This section explains the computation of the coefficient matrix, Cv, for each volume v in the
training set and the computation of the shape model.
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A. Resampling the surface models in the training set
The surface of the LV of a particular volume v is represented by a matrix Xv ∈ R2N×Sv , given by the

concatenation of the slice contours,

Xv = [xv(s1),xv(s2), . . . ,xv(sSv)] . (5)

Each pair of lines in Xv, denoted by X i
v ∈ R2×Sv , can be regarded as samples of the trajectory of the

i-th contour point as a function of the slice position, sm (see the green dots along each blue line in Fig.
2). Specifically, the trajectory samples are given by

X i
v =

[
xi1(s1), . . . , x

i
1(sSv)

xi2(s1), . . . , x
i
2(sSv)

]
=

[
X i

1v

X i
2v

]
, (6)

where, X i
jv, j = 1, 2, corresponds to a coefficient line vector cij ∈ R1×K , which is a line from matrix Cv

(recall (4)).
The trajectory sample points are used to estimate cij by

cij = argmin
c
‖X i

jv

> −Ψc>‖2 + γ‖c‖2, (7)

where Ψ = [ψ(s1), . . . ,ψ(sSv)]> ∈ RSv×K is the concatenation of the polynomial basis ψ(sm) for
m = 1 . . . , Sv, and γ is a regularization constant. This is a ridge regression problem [21] that can be
solved by

cij =X
i
jvΨ

(
Ψ>Ψ + γI

)−1
, (8)

where I is the K ×K identity matrix. Setting γ = 0 would lead to the Ordinary Least Squares (OLS)
solution. A regularization term is used (γ > 0) because the OLS solution can only be computed for
K ≤ Sv, which means it requires at least the same number of sample points, Sv, as the number of basis
functions, K. Since our goal is to use a sufficiently large K (K = 6 was the value used in our tests) and
to use the same K for all volumes, the OLS would not be suitable. The solution (8) can be computed for
all the lines in Cv, leading to

Cv =XvΨ
(
Ψ>Ψ + γI

)−1
, (9)

Now, the contour, x̂v(s), can be obtained for any position s ∈ [0, 1] using (3).
This approach is used to resample all the surface models included in the training set at sm = m−1

Sr−1 ,
m = 1, . . . , Sr, where Sr is the desired number of slices. This guarantees that all volumes have the same
number of landmarks.

B. Learning the shape statistics
Once all the surface models in the training volumes have been resampled, then it is possible to learn

a shape model. We assume a surface model results from deforming the mean shape and applying a
transformation associated to the pose of the LV [1]. Therefore, in order to compute the shape statistics,
all the surface models have to be aligned. This is done by finding, for each surface, a global (pose)
transformation Tθ that minimizes the following sum of squared errors

E(θ) =
Sr∑

m=1

N∑
i=1

∥∥Tθ (x̂i(sm)
)
− xi

ref(sm)
∥∥2 , (10)

where xref is a reference shape (for instance, one of the training shapes randomly selected), and Tθ(·) is
a 2D similarity transformation with parameters θ = {a, t}, applied to all slices, such that

Tθ
(
x̂i(sm)

)
= X̂ i(sm)a+ t, (11)
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where

X̂ i(sm) =

[
x̂i1(sm) −x̂i2(sm)
x̂i2(sm) x̂i1(sm)

]
, a =

[
a1

a2

]
, t =

[
t1

t2

]
.

We are only interested in the translation, rotation and scaling within the axial (slice) plane to guarantee
that the slice contours remain orthogonal to the LV axis. The minimization of (10) leads to a standard
least squares solution similar to the alignment algorithm presented in [2].

After the training surfaces have been aligned, the mean shape of each slice, x(sm), is computed as the
average slice contour over all the volumes in the training set. The main modes of deformation, D(sm) =
[d1(sm), . . . ,dL(sm)] ∈ R2N×L, and the corresponding eigenvalues, λ(sm) = [λ1(sm), . . . , λL(sm)]

> ∈
RL×1, are obtained by applying Principal Component Analysis (PCA) [1], where dl(sm) ∈ R2N×1 and
λi(sm) ∈ R are the l-th main mode of deformation at the m-th slice and corresponding eigenvalue,
respectively, and L ≤ 2N is the number of main deformation modes that are used.

V. ASM FOR 3D DATA

After the training phase, the learned shape model can then be used to segment a new MRI volume -
the test phase. However, the number of slices in the new volume, which we denote as St, may not be
the same as the learned shape model, Sr. In case St 6= Sr, one possible approach would be to interpolate
the test volume to determine the intensity values at the axial positions of the shape model contours.
This would require computing interpolated images. However, the spatial resolution of MRI between axial
slices is very low, i.e., the distance between two consecutive slices is very large, and significantly larger
than the distance between two consecutive pixels in a slice. Typical values for the distance between
slices is 10mm, whereas the distance between two pixels in a slice is approximately 1mm. Furthermore,
motion artifacts can cause significant displacement between the location of the LV contour in consecutive
slices. Therefore, interpolating images often leads to the loss of contrast between the blood pool and the
myocardium, which determines the location of the LV boundary. The images in Fig. 3 show the result
of computing an interpolated image on a slice located between two consecutive slices, using trilinear
interpolation. The edges in the new image are blurred and, therefore, it is difficult to accurately determine
the location of the LV contour. This means that this approach is a bad choice for 3D segmentation of
cardiac MRI.

We use a different approach that consists in resampling the learned shape model, i.e., the mean shape
and the main modes of deformation. This guarantees that the shape model contours are located at the same
axial positions as the volume slices, and thus voxel interpolation is no longer required. The following
sections address: A. the interpolation of the learned shape model, and B. the estimation of the model
parameters that segment the LV in a test volume.

𝑠4 𝑠4 + 𝑠5
2

𝑠5

Fig. 3. Slice interpolation. Example of an interpolated image (middle), located at s = s4+s5
2

, obtained by linear interpolation between
slices s4 and s5.
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A. Interpolation of shape statistics
In the learning phase, we obtained the mean shape, x(sm), and the main modes of deformation, D(sm),

and their corresponding eigenvalues, λ(sm). These shape statistics were computed for the axial positions
sm = m−1

Sr−1 , m = 1, . . . , Sr. Now, given a test volume with St slices, we wish to obtain the shape statistics
for new slice positions sm = m−1

St−1 , m = 1, . . . , St, where St 6= Sr.
The mean shape in the new slice positions is computed using the same strategy described in the

previous sections, i.e., by computing the corresponding coefficient matrix, C, and resampling at the new
slice positions. Formally, let X = [x(0), . . . ,x(1)] ∈ R2N×St be the concatenation of all the St slices
of the mean shape. The corresponding coefficient matrix, C, is computed using (9), where the trajectory
samples are now given by X . Then, the mean shape is resampled at St slices using (3).

On the other hand, resampling the main modes of deformation at intermediate slices is not straightfor-
ward, since we need to match deformation modes of different slices. In fact, the modes of deformation are
sorted according to the value of the corresponding eigenvalues. Since eigenvalues are learned independently
for each slice, it is not easy to find corresponding deformation modes in different slices. In this chapter, we
adopt a simple approach that consists of finding the nearest correspondence between deformation modes
in consecutive slices and use them to perform a linear interpolation.

Consider a slice position, s ∈ [sm, sm+1], located between slices sm and sm+1. The deformation modes
at this slice, D(s) = [d1(s), . . . ,dL(s)], are determined using linear interpolation between corresponding
deformation modes in sm and sm+1. Let α ∈ [0, 1] be the relative distance of slice s ∈ [sm, sm+1] to sm,

α =
s− sm

sm+1 − sm
. (12)

Without loss of generality, we assume that sm is the closest slice (i.e., α ≤ 0.5). The l-th deformation
mode and corresponding eigenvalue are given by

dl(s) = (1− α)dl(sm) + αdF (l)(sm+1) (13)
λl(s) = (1− α)λl(sm) + αλF (l)(sm+1), (14)

where F (·) defines the correspondence between the deformation modes in sm and sm+1,

F (l) = argmin
n
‖dl(sm)− dn(sm+1)‖ . (15)

This interpolation process is repeated for all the deformation modes at all the required slices, i.e., for
l = 1, . . . , L and for s = m−1

St−1 , with m = 1, . . . , St.
Once all the deformation modes and eigenvalues have been computed, we define the LV surface as

x(s) = Tθ (x(s) +D(s)b(s)) , (16)

where b(s) are the deformation coefficients. This means that the segmentation of the test volume is obtained
by finding the parameters for the pose transformation, θ = {a, t}, and the deformation coefficients, b(s).

The following section describes the estimation of the pose and shape parameters for a new test volume
using a robust estimation method.

B. Automatic surface estimation
Given the test volume, the segmentation of the LV is obtained by estimating the pose, defined by a

similarity transformation Tθ with parameters θ = {a, t}, and deformation coefficients of the shape model,
b(s). However, automatically obtaining these parameters is difficult due to the presence of other structures
in the images, such as the epicardium, papillary muscles and trabeculations [22], that should be considered
as noise or outliers.

In this work, the automatic segmentation of the LV is achieved by using the EM-RASM estimation
method [20], which is robust in the presence of outliers. An overview of the estimation method is shown
in Fig. 4.
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Fig. 4. Block diagram of the automatic segmentation process using the EM-RASM algorithm [20]. The observation points include outliers
that should be rejected by the update block.

First, an initial guess of the pose parameters is required - a rough location of the LV center in the basal
slice (first block in Fig. 4). We assume that the initial values for the deformation coefficients are b(s) = 0,
i.e., that the mean shape is a good initialization. With these parameters, we can determine the location of
the slice contours. Then, observation points, corresponding to the LV border, are detected in the vicinity
of the model (second block in Fig. 4). These observation points are searched in each slice, along lines
orthogonal to the contour model, as shown in Fig. 5. The LV border is detected along the search lines by
applying an edge detector (see [23] Section 5.2 for details). This approach often leads to the detection of
outliers, i.e., observation points that do not belong to the LV border (see Fig. 5). These outliers should
not be taken into account in the update of the pose and deformation parameters. The EM-RASM is able
to handle the outliers by assuming that each observation point may be either an outlier or a valid point.
It assigns a weight to each observation point proportional to the probability that the point belongs to the
LV border. The weights determine their influence in the estimation of the model parameters, θ and b(s).
Since outliers typically get lower weights, their influence in the estimation procedure is reduced and the
results are more robust. The final update equations correspond to the weighted least squares solution to the
problem of minimizing the distance between each observation point and the corresponding model point
(see [20] for further details), computed over all the slice contours simultaneously (third block in Fig. 4).

Fig. 5. Detection of observation points. In each example, the slice contour is shown in blue, the search lines in dashed cyan, and the red
dots represent the detected observation points.

Once the parameters have been updated, the slice contours are updated and new observation points are
extracted from the volume. This process iterates until no significant changes in the parameters occur. The
final position of the slice contours determine the segmentation of the LV in the MRI volume (fourth block
in Fig. 4).

VI. EXPERIMENTAL SETUP

The proposed method was evaluated on a set of 20 volumes extracted from a publicly available dataset
provided by Andreopoulos and Tsotsos [3]. These volumes consist of end-diastolic short axis cardiac MR
volumes, acquired from 20 different subjects at the Department of Diagnostic Imaging of the Hospital for
Sick Children in Toronto, Canada. They were acquired using the FIESTA scan protocal and a GE Genesis
Signa MR scanner. The age of the subjects ranged between 8 and 15 and they displayed not only healthy
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hearts but also heart abnormalities, such as enlarged right ventricles and ischemia. The image slices were
acquired with 256×256 pixels, with a resolution of 0.93−1.64 mm. The number of slices in the volumes
ranged from 5 to 10 (recall that we are only interested in the slices depicting the endocardial border of
the LV) and the spacing between consecutive slices range from 6 to 13 mm. The dataset also provided the
endocardial contour of the LV, which was considered as ground truth (GT). The segmentations obtained
using the proposed method were evaluated by comparison with the GT.

The segmentation obtained with the proposed approach was quantitatively evaluated using two metrics:
1) the average Dice similarity coefficient [24], and 2) the average minimum distance between the surface
points and the GT. These metrics were computed as follows. Let z(s) ∈ R2M×1 be the GT contour at slice
s, defined by M points (the GT and the contour model may have a different number of points). Also, let
Rx(s) and Rz(s) be the regions delimited by the obtained slice contour, x(s), and by the corresponding
GT contour, z(s), respectively. The average Dice similarity coefficient is given by

dDice =
1

St

St∑
m=1

2
A
(
Rx(sm) ∩Rz(sm)

)
A
(
Rx(sm)

)
+ A

(
Rz(sm)

) , (17)

where A(·) denotes the area of a region. The average minimum distance is given by

dAV =
1

NSt

St∑
m=1

N∑
i=1

min
j
‖xi(sm)− zj(sm)‖, (18)

and was measured in mm.
The results were obtained using a leave-one-out scheme, where the shape model was trained using 19

volumes and then the model was applied to segment the remaining volume. This process was repeated for
each test volume. In all the tests, the contours in the training surface models were resampled in arc-length
to have N = 40 points, and the surface model was resampled to have Sr = 8 slices (regardless of the
number of slices of the test volume). This means that the shape model was learned using a total number
of points of N × Sr = 320. Then, the shape model was resampled to have the same number of slices as
the test volume, St, which means the total number of points in the test phase was N × St (it depends on
the test volume).

The interpolation models were computed using the parameters K = 6 and γ = 10−4. These values
were empirically chosen by comparing the interpolated model with the corresponding training surface
models for different values of K and γ. Fig. 6 (left) shows the error obtained for different values of
K (using γ = 10−4), and Fig. 6 (right) shows the error for different values of γ (using K = 6). It is
possible to see that for values of K > 6, the average error does not justify the increase in computational
complexity of using larger values of K. Regarding the regularization parameter γ, it is concluded that,
for values of γ < 10−4, the average error does not significantly change. This parameter can be interpreted
as a confidence degree of a prior over the coefficients in matrix Cv. By decreasing the value of γ, the
influence of the prior over the estimation of Cv is reduced, and the estimation is primarily influenced by
the observed data (the trajectories Xv). On the other hand, a higher value of γ helps the estimation of
Cv when the number of slices is smaller than K. For this reason, we chose γ = 10−4 for the following
tests.

The obtained shape statistics are exemplified in Fig. 7. The figure shows the mean shape and the variation
introduced by the two first modes of deformation. It is possible to see that, besides local (2D) deformation,
these modes also capture the 3D shape variation, caused by misalignments between consecutive slices. In
order to determine the influence of the number of deformation modes, L, used in the shape model (recall
that we use L ≤ 2N modes of the deformation), we compute the error of approximating the contours
of the training surfaces by (16), i.e., a linear combination of the mean shape and the main modes of
deformation. The results are shown in Fig. 8. The plot shows that using more modes of deformation
than L = 10 does not significantly improve the accuracy of the approximation. Again, choosing a larger
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Fig. 6. Average error (in pixels) of the interpolated model for: (left) different number of polynomial basis functions, K (using γ = 10−4),
and (right) different values of the regularization coefficient, γ (using K = 6).

value of L would only lead to an increase of the computational complexity of the algorithm. Furthermore,
L = 10 corresponds to approximately 90% of the variation shown in the training set, which is also a
common criterion to select the number of deformation modes used in the shape model [1].

 𝒙 𝑠  𝒙 𝑠 + 2𝜆2 𝑠 𝒅2 𝑠 𝒙 𝑠 − 2𝜆2 𝑠 𝒅2 𝑠

1ST DEFORMATION MODE

2ND DEFORMATION MODE

 𝒙 𝑠  𝒙 𝑠 + 2𝜆1 𝑠 𝒅1 𝑠 𝒙 𝑠 − 2𝜆1 𝑠 𝒅1 𝑠

Fig. 7. Shape statistics for the LV. The top row shows the shape variation along the first mode of deformation and the bottom row the same
for the second mode of deformation. The shape in the middle column corresponds to the mean shape x(s). These contours were computed
for all the slice positions, s = s1, s2, . . . , s6.

VII. RESULTS

This section shows the evaluation of the segmentations obtained using the proposed method. Some
examples of the segmentations are shown in Fig. 11. It is possible to see that the obtained segmentations
are close to the ground truth. However, in some cases (e.g., the second row), the algorithm is not able to
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Fig. 8. Average error (in pixels) of the shape model approximation for different values of the number of deformation modes, L.

accuracy segment both the apical and basal slices. This is because it is not always possible to find a proper
pose transformation that fits all slices, particularly in volumes where there is significant misalignment
between slices. The statistics for the two metrics are shown in Fig. 9 for each test volume. The overall
results achieved in these tests were dDice = 0.88± 0.06 and dAV = 1.2± 0.7 mm.
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Fig. 9. Statistical results for all the test volumes using a leave-one-out scheme. The top row shows the Dice coefficient and the bottom
row shows the average minimum distance metric (in mm).

Although the proposed method is able to accurately segment the LV, the apical slice remains the most
difficult part of the volume to segment. This is due to the fact that the LV chamber is very small in these
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slices, its borders are often irregular and this makes it difficult to detect the endocardium. This can be
verified by the results in Fig. 10, which shows a 3D representation of the LV surface, as well as a color
coded representation of each slice contours, where the color depends on the corresponding Dice coefficient
(green corresponds to a good segmentation and red corresponds to a poor segmentation). In this figure,
it is possible to see that most apical slices have poorer accuracy that the basal slices. Nonetheless, the
segmentation accuracy is still high, with Dice coefficients of approximately dDice ≈ 0.7.

𝑑
D

ic
e

1

0.9

0.8

0.7

Fig. 10. Segmentations obtained using the proposed method. The color code shows the accuracy of the segmentation in each slice and for
each volume (according to the Dice coefficient).

VIII. CONCLUSION

Many medical image problems use an Active Shape Model (ASM) based approach to include shape
constraints into the segmentation process. However, obtaining the 3D segmentation of cardiac MR volumes
has additional difficulties due to the variable number of slices.

Learning a 3D shape model based on a training set of surfaces with a variable number of slices is
not easy. We propose to deal with this issue by using a continuous (interpolated) representation for the
surface. With this representation, we are able to obtain a smooth continuous surface that can be resampled
to have a predefined number of slices. By resampling all the surfaces in the training set, we establish a
1-1 correspondence between the landmarks (surface points) of all the training surfaces. Then, the shape
model can be easily learned by aligning the surfaces and applying PCA to determine the shape statistics.

On the other hand, in order to use the learned shape model in a test volume, one has to be careful in
case the number of slices of the shape model is different from the number of slices of the test volume.
In this case, carelessly applying trilinear interpolation to obtain the intensities of locations in between
slices may result in the appearance of dubious edges, due to the large distance between consecutive slices
and by the misalignment caused by motion artifacts. We address this issue by resampling the learned
model so that it has the same number of slices as the test volume, noting that this involves resampling the
mean shape as well as the main modes of deformation. Only then we apply the model to the test volume
and estimate the parameters that best segment the volume. This means finding the pose and deformation
of the LV. We restrict the possible transformations to rotation, scaling and translation in 2D, to ensure
the surface points remain within the volume slices. The model parameters are obtained using a robust
estimation technique, based on the EM algorithm [20].

The proposed approach was tested using 20 volumes from the Andreopoulos and Tsotsos dataset [3].
The shape model was learned using a leave-one-out scheme and the segmentations were evaluated using the
Dice similarity coefficient and the average minimum distance metric. The results shows that the proposed
method is able to accurately segment the LV. However, further improvements may still be achieved. For
instance, when the volume slices are misaligned, finding a proper similarity transformation to fit the
learned model to the volume is nearly impossible. In these cases, a preprocessing step may be required
to correct the misalignment as proposed in [3]. Alternatively, one could allow the possibility of having
minor independent translations associated to each slice, allowing the model to correct the misalignment
of the slices.
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Fig. 11. Examples of the obtained segmentations. Each line shows a different volume and each row a different slice: the left column
corresponds to the basal slice and the right column to the apex slice. The red contour is the obtained segmentation and the dashed green is
the ground truth.
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