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Abstract— The perception of affordances provides an action-
centered parametric representation of the environment. By
perceiving an object’s visual features in terms of what actions
they afford, novel behavior opportunities can be inferred
about previously unseen objects. In this paper, a flexible
deep probabilistic framework is proposed which allows an
explorative agent to learn tool-object affordances in continuous
space. To this end, we use a deep variational auto-encoder
with heterogeneous probabilistic distributions to infer the most
probable action that achieves a desired effect or to predict a
parametric probability distribution over action consequences
i.e. effects. Our experiments show the generalization of the
method to unseen objects and tools and we have analyzed
the influence of different design choices. Our framework goes
beyond other proposals by incorporating various probability
distributions tailored for each individual modality and by
eliminating the need for any pre-processing of the data.

I. INTRODUCTION

Goal-driven agents are required to continuously select
actions that bring their perceptual stimuli closer to a desired
state [1]. However, predicting the consequences of actions re-
mains a non-trivial task for different agents with varying de-
grees of intelligence. In addition, actions and their outcomes
are tightly linked to the contextual environment, meaning
that if specific prerequisites are not satisfied, applying the
action would be impossible, useless or even harmful [2].

The complexity of the problem notwithstanding, humans
and other animals seem to flexibly select and execute proper
actions to handle everyday tasks and they can generalize
their knowledge to new situations. Affordances, introduced
in the seminal work of J. J. Gibson [3], provide a partial
solution by connecting the essential properties of objects and
surroundings with actions an agent can perform.

Affordances are dynamic environment–agent relations
which are learned through embodied interaction processes
by “discovering distinctive features and invariant properties
of things and events” [4]. In robotics, affordances are often
represented as the triplet (entity, action, effect) [5], [6].

In this work, an iCub robot [7] performs simple actions
with tools on a set of objects and observes the resulting
effect. By repeating the experiments several times, the robot
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Fig. 1: Experimental setup, showing the iCub humanoid
robot at the beginning of a robot–object interaction trial, and
the reference frame annotation. In the background screen
we show some intermediate results of the visual perception
routines.

is able to learn a probabilistic interpretation of affordance
variables. This is done with a Variational Auto-Encoder
(VAE) [8], [9] which allows approximating intractable pos-
terior distributions by minimizing a cost function.

VAEs were selected because they allow black box ap-
proximations of multiple target probability distributions, thus
providing two desirable properties: (1) no pre-processing
is required to transform the data into a target shape, en-
abling one to fuse multiple heterogeneous distributions which
naturally fit to the data and (2) it is possible to increase
the amount of training data incrementally until no further
performance improvements are observed..

Our main contribution in this paper is to propose a proba-
bilistic framework to learn objects and tools affordances in a
continuous space with flexible probability distributions in a
self-supervised manner and suitable for incremental learning.
To the best knowledge of authors, training VAEs with
multiple target probability distributions is unprecedented in
the literature as it poses many challenges during training
like domination of a specific distribution over others. In ad-
dition, the way to combine different distributions of various
modalities is non-trivial. Thus, as our second contribution,
we propose several techniques and assumptions to mitigate
the severity of these difficulties which allow us to train a
VAE and use it in a dataset collected by the robot. By
remaining faithful to the probability distribution of each
modality in the dataset, we were able to train the model
without any pre-processing of the dataset, thus achieving a
fully self-supervised learning of affordances in the sense that
the knowledge of each modality contributes to the knowledge



of other ones [10].
The paper is organized as follows: in Sec. II we briefly

review the recent literature on tool use in affordances. Sec. III
will be devoted to develop the theory of using VAEs to learn
objects and tools affordances. The results of our experiments,
detailing multiple views on different aspects of the problem
will be presented in Sec. IV. Finally we draw our conclusions
and discuss possible future directions of research in Sec. V.

II. PREVIOUS WORK

In this section, we provide a succinct review on affordance
learning and modeling relevant to our approach. This section
only serves to highlight the differences of our work with
regard to state-of-the-art advances in the field and we direct
interested reader to [11] for a recent and comprehensive
review of affordances across several fields and [12] for a
survey of affordance research in developmental robotics.

Sun et al. [13] have simplified learning of a probabilistic
affordance model by using object categories as hidden vari-
ables. They have shown such new formulation is scalable
to various affordance categories and enables an incremental
learning of affordances while being more data efficient. Even
though using latent variables may significantly simplify the
learning of a probabilistic model and, as such, we also
use a similar formulation, there are significant conceptual
and computational differences between the two approaches.
First, using object categories to determine their usability is
orthogonal to the Gibsonian view of direct perception (a
graspable object with a sharp end is a knife). On the other
hand, we introduce latent variables only as a means to
simplify learning of relations in the probabilistic model,
overcoming the limitation of providing supervised category
labels to learn affordances. Moreover, because these latent
variables summarize the relation between observable random
variables, they can later be used in a classifier similar to [14]
to infer object or tools categories. Second, [13] have used
discrete affordance labels. In contrast, we define affordances
as learned relations between object and tools’ visual features
with actions and effects.

Osório et al. [15] have used Gaussian Mixture Models
to account for continuous observation of object features
and effects. As suggested by their results, considering the
continuous nature of the variables reduces the estimated
parameter errors with respect to the parameters that generated
the simulated dataset. However, they assumed a known
distribution of the sensor noise model, which is not always
feasible when dealing with real data.

Gonçalves et al. [16], [17] have extended the Bayesian
network formulation of [5] to incorporate the notion of tools.
This model was further developed in [18] to allow the robot
to generalize the learned affordances of its own hands to
unseen tools. In a scenario similar to [16] we proposed the
usage of denoising auto-encoders to learn the affordances
of objects and tools in continuous space [19]. Our model
could use the continuous nature of features and effects while
improving on the accuracy of previous works over different

measures of performance. However, this model needs pre-
processing of the data, which is undesirable, as different
choices of this pre-processing considerably influence the
performance.

Complementary to our approach, Mar et al. [20] have
used the iCub robot to learn the effects of applying different
actions with different tools in a self-supervised manner. They
have first reduced the dimensions of tool features and action–
effect vectors using two separate Self Organizing Maps and
learned a mapping from one space to another. This mapping
does not take the object’s shape into considerations and thus,
the influence of object on the measured effects is not studied.

Recently, Chavez-Garcia et al. [21] proposed the usage of
Gaussian Bayesian networks to model the relations between
objects’ features in continuous space with effects of different
actions. The network provides means and covariances of a
query variable given the observed variables, and the structure
is learned by maximizing Bayesian or Akaike information
criterion score.

Advances in deep learning research combined with the
ability of variational methods in approximating intractable
posterior densities, make VAEs an interesting area of re-
search for robotics. E.g. Sung et al. [22] have used VAEs
to learn latent variables over haptic data and later used those
variables to control a robot in a Partially Observable Markov
Decision Process setting. Similar to our approach, their VAE
is also responsible to learn representations over different
modalities but they have assumed Gaussian distributions
for all the modalities. In contrast, in this paper we are
investigating the usage of VAEs over non-equal observation
distributions.

This paper differs from all previous approaches by propos-
ing a computational model which is suitable for desired het-
erogeneous probability distributions. In our experiments, the
features of objects and tools are defined as bounded continu-
ous variables between zero and one, and thus, they cannot be
properly modeled by a distribution with unbounded domain
like multivariate Gaussians. The nature of our applied actions
are discrete and requires a categorical distribution. On the
other hand, the effects generated by actions are correlated
and cannot be constrained by an optimal upper or lower
bound. Using a VAE, all the above desiderata can be satisfied
in one framework as explained in the next section. Since the
nature of each data modality is explicitly considered, no pre-
processing is applied to the training set.

III. METHODS

We start this section by explaining the theory of VAEs
in Sec. III-A. Afterwards, in Sec. III-B we introduce the
changes we have applied to the standard VAE to make it
suitable for learning of affordances.

A. Variational auto-encoder

A variational auto-encoder is a generative model which
aims to find latent factors of variation which can explain
the observations while being as independent as possible.
Consider a dataset of observations D =

{
xi | i = 1, . . . , N

}
,



where each xi ∈ Rn are i.i.d. observations. The goal is
to find a distribution qφ

(
zi | xi

)
, zi ∈ Rm from a family

of known distributions (usually independent Gaussians) pa-
rameterized by φ = {µz (x) ,σz (x)} that minimizes the
Kullback–Leibler (KL) divergence

DKL

(
qφ
(
zi | xi

)
‖ pθ

(
zi | xi

))
(1)

over all training samples, where zi are the latent variables
and pθ

(
zi | xi

)
is the true posterior density we are trying

to approximate with q. By using the definition of KL
divergence, (1) can be written as:

E
[
log qφ

(
zi | xi

)]
−E

[
log pθ

(
zi,xi

)]
+log pθ

(
xi
)
, (2)

where all expectations are taken with respect
of q and we have used the Bayes identity
pθ
(
zi | xi

)
= pθ

(
zi,xi

)
/pθ

(
xi
)
. Notice that calculating

the log likelihood of complete data (last term in (2)) is
intractable [23]. As a result, true posterior distribution
cannot be recovered and exact inference wouldn’t be
possible. Hence, in variational inference the following loss
function will be optimized:

Li = E
[
log qφ

(
zi | xi

)]
− E

[
log pθ

(
zi,xi

)]
. (3)

Equation (3) is written for a single training sample. The
quantity L =

∑N
i=1 Li, also known as Evidence Lower

BOund (ELBO), can be re-written as

L = DKL (qφ (z | x) ‖ pθ (z))− E [log pθ (x | z)] , (4)

where pθ (z) is the prior over latent variables and, to simplify
computations and provide a closed form solution, a popular
choice is to set pθ (z) = N (0, 1). θ is the parameter vector
of the generative distribution which determines how latent
variables combine to generate an observation x and it will
be explained further in the next subsection.

B. Affordance learning and modeling

The first term in (4) is the KL divergence between the
approximate posterior and prior distributions. It is trying
to make the latent variables come from an uninformative
standard Gaussian distribution and acts as a regularizer to
ensure that independent latent variables are learned, poten-
tially making the network less prone to overfit. The second
term, however, tries to maximize the log-likelihood of the
observation, hence the name auto-encoder. It is the interplay
between the two which results in learning independent latent
factors that generate the data. In this paper, the vector
of observations x is a concatenation of {o; t;a; e} where
o ∈ (0, 1)

no are the object features, t ∈ (0, 1)
nt are

the tool features, a = {ai |
∑na

i ai = 1} is the one-hot
representation of the applied motor action and e ∈ Rne are
the effects. no, nt, na and ne are the dimensions of their
respective variables. In order to take the different nature of
each variable into account, we represent each of them with

Fig. 2: Graphical model of affordance network. Grey nodes
are observed and white node is hidden. o: object, t: tool,
a: action, e: effect, z: latent variable, and N : number of
samples.
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Fig. 3: Schematic of the variational auto-encoder. Circles
represent random variables and rectangles represent fully
connected neural networks.

their own probability distribution that factorizes conditioned
on the latent variable, i.e.

pθ (x) = pθ (o) · pθ (t) · pθ (a) · pθ (e) ,

where conditioning on z is not explicitly written to simplify
the notation (Fig. 2). By considering this assumption, the
log-likelihood part of (4) can be written as:

log pθ (x | z) = log pθ (o | z) + log pθ (t | z)+
log pθ (a | z) + log pθ (e | z) . (5)

With respect to the regularization term in (4), gradient
based optimization techniques tend to start reducing it very
early in training. As a result, it becomes difficult to recover
from this local minima solution. To overcome this problem
Sønderby et al. [24] have modified (4) to the following:

L = β ·DKL (qφ (z | x) ‖ pθ (z))− E [log pθ (x | z)] , (6)

where β increases from zero to one during training linearly.
Our experiments suggest that this simple modification is
crucial in training a the network.

Fig. 3 shows the schematic of the whole architecture which
is composed of an encoder and a decoder. The parameters θ
and φ are jointly trained to minimize L.

IV. EXPERIMENTS AND RESULTS

The results of our experiments and implementation details
are described in this section. We start by briefly introducing
the dataset1 and the experimental procedure of obtaining
the data in Sec. IV-A. Afterwards, we describe the data-
augmentation procedure and train, test, and validation split,
and finally we introduce the values of the hyper-parameters
and usage of the network at test time. Sec. IV-B will
introduce the first use case of VAE in determining the correct
action and associated metrics will be discussed. Sec. IV-C
will explain how well the network can predict the effects of

1 http://vislab.isr.tecnico.ulisboa.pt/datasets/
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applying an action with a tool on an object. It is challenging
to quantitatively assess the quality of predictions because
unlike the actions, the effects are continuous random vari-
ables. Regardless, we provide several measures to investigate
how well effects are predicted. Afterwards, in Sec. IV-D we
quantify the influence of different design choices on some of
the performance metrics and how it was possible to avoid the
dominance of one modality over others. Finally, in Sec. IV-
E we report the performance of the network on previously
unseen objects and tools.

A. Dataset and experiment procedure

The dataset and experiments are fully explained in [25]
and a video of the robot during data collection phase is
accessible from https://youtu.be/pKa6GNeBfjk. Briefly, the
robot holds one of the 3 tools in hand and applies one of
the 4 cardinal actions {pull, push, tap from left and tap from
right} to one of the 11 objects, placed in front of it on a
table (Fig. 1). Each experiment is repeated at least 10 times,
resulting in more than 3 × 11 × 4 × 10 = 1320 unique
experiments.

To gather the effects information, the robot takes note
of the initial position of the object on the table and after
executing the action, records the 3D location of the object’s
geometric center, if the experimenter decides the action was
successful i.e. the action was carried out correctly and initial
placement of the tool with respect to action was appropriate.
Effects will be defined as 2D displacement of the object on
the table in front of the robot in meters.

The visual features used in this work are Convexity, Ec-
centricity, Compactness, Circleness and Squareness [17]
which are collected by placing the objects and tools on
different locations and orientations in front of the robot after
all the experiments are done. In the case of tools, these
features are calculated only for the distant half of the tool
to represent its tip. For a detailed description of the dataset
and trials please refer to [25].

By having ten independent views of objects and tools, one
can augment the data by considering that different views
do not change affordances associated with tools and objects
if they are reasonably visible. For example, considering the
rake, one can posit each of the 10 real trials were performed
with the first view of the rake, then the same set of 10 trials
were performed with the second view of the rake, effectively
increasing the size of the dataset. The same argument goes
for the objects. This way, it is possible to reach to a dataset
of size (tool views×object views×trials) which results in
around 132 000 data points.

After all the points in the dataset are collected, 80%
are selected for training and 20% are used only to report
the performance. We added a zero mean uniform noise of
maximum 1 centimeter to the effects of the training data and
selected 10% of this set as validation for hyper-parameter
tuning and stopping criterion.

The parameters φ and θ are the weights and biases of fully
connected neural networks with sigmoid activation units. The
feature vector x is composed of no = 5 visual features

of the target object and nt = 5 visual features of the
used tool, na = 4 one hot encoded actions and ne = 2
motion vectors of effects in meters, resulting in a vector
of size 16. In accordance with the guidelines in [26], each
of these four modalities are followed by a separate layer of
size 12, resulting in a vector of size 48 which is then, densely
connected to another layer of size 50. We also have selected
m = 50 dimensions for the latent variable z which results in
estimating 50 means and 50 variances for the latent variables.
The means are passed through a linear activation function,
while the variances have softplus, to ensure that they remain
positive.

As mentioned at the end of Sec. II, the visual features
are defined as bounded values between zero and one. Beta
distributions were selected to represent them as they are
defined in the desired [0,1] interval and it is flexible in
the possible shapes it can get. Furthermore, we posit that
individual features become conditionally independent of each
other given the values of latent variables. This is justified
according to the definition of the features, as no clear relation
between them can be observed and even if it appears out of
the limitation in the number of available objects and tools,
those relations are expected to be captured via the latent
variables. In other words:

log pθ (o) =

no=5∑
i=1

log pθ (oi) =

5∑
i=1

logBeta (oi; ai, bi) , (7)

where ai > 0 and bi > 0 are shape parameters of their
respective distributions and conditioning on z is implicit.
Tool features are treated in a similar way. By estimating two
parameters for each distribution and having 5 visual features,
10 parameters for objects and 10 separate parameters for the
tools will be estimated. These parameters will be the output
of softplus nonlinearity to ensure their positiveness.

Actions, as mentioned, are categorical and we have used
categorical cross-entropy to estimate the probability of each
action, i.e.:

log pθ (a) =

na=4∑
i=1

a∗i log ai, (8)

where ai is the output of a sotfmax function, representing
the belief that action i was executed and a∗ is a one-hot
representation of the executed action.

In this work, the effects are considered as 2D displacement
of the object’s geometric center as being subject to different
actions with different tools. Even though the actions are
along the cardinal directions, small errors in initial tool
tip placement and non-uniformity in weight distribution of
objects makes the displacement on x and y axis correlated. To
account for this behavior, we model the effects as bi-variate
Gaussians, estimating µ, σ and ρ which are the vector of
means, standard deviations and correlation coefficients

pθ (e) = N (e;µ,Σ) = 1

2πσxσy

√
1−ρ2

exp
[
− m

2(1−ρ2)

]
(9)

https://youtu.be/pKa6GNeBfjk


m ,
(ex − µx)2

σ2
x

+
(ey − µy)2

σ2
y

− 2ρ (ex − µx) (ey − µy)
σxσy

,

in which ex and ey are the observed effect, µx and µy are
the predicted mean, σx and σy are the predicted standard
deviations on x and y directions, respectively, and

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
is the covariance matrix. Means are estimated with lin-
ear activation functions, softplus was used to estimate the
standard deviations and, since the correlation coefficient is
ρ ∈ [−1, 1] it is estimated using hyperbolic tangent, resulting
in estimating 5 parameters for modeling the probability
distributions over effects.

After predicting µz (x) and σz (x) from the encoder,
we get a sample from z distribution and that sample will
be passed through two layers of densely connected neural
networks with 50 units in each layer. This representation will
be used to estimate the already mentioned 10+10+4+5 = 29
parameters.

In all our experiments, we used batch sizes of 3500
samples and Adam [27] training algorithm. Even though
Adam uses an adaptive learning rate, we found significant
performance differences with various learning rates. This
might be attributed to the different natures of individual
cost elements DKL (qφ (z | x) ‖ pθ (z)) of (6) with (7), (8)
and (9) (tool cost is omitted), which are ultimately summed
together. As each cost would require a bigger or smaller
learning rate, we use the Cyclical Learning Rate (CLR) [28]
which has shown to improve performance (more details in
Sec. IV-D). In all experiments, β is increased from 0.01
to 1 during the first 2000 iterations. We did not see any
difference in linear or exponential scheduling for β. Unless
stated otherwise, the training is done for 5300 iterations in
which the first 100 epochs have a learning rate of 0.01 and,
afterwards, the learning rate changes between 1e-3 and 1e-4
with stepsize = 100.

After the network is trained, in order to query the network
with a missing modality (e.g., predicting most probable
action given the values of object and tool features and the
observed effect), we fix the values of objects, tools and
effects and put random numbers between zero and one in
place of the action as the input of the auto-encoder and
obtain a distribution over actions. Next we sample from
this distribution and put the sample in place of the random
variables in the previous step. Repeating this procedure many
times creates a Markov chain which gets closer and closer
to the true distribution [8]. In the case of testing for the
original test-set, increasing the length of the Markov chain
never significantly worsens the accuracy of the prediction,
however, it will reach a saturation which is caused by the
approximation on the true posterior density in intractability
of data log-likelihood, as we will see subsequently.
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Fig. 4: Evaluating the performance of the learned model in
predicting the correct action, given the values of object and
tool features and the desired effect. The confusion matrix is
calculated from the 20th iteration of the Markov chain.

B. Action prediction

In this section, we investigate the performance of the
network from the action’s point of view. Note that by
having 4 actions, chance prediction accuracy will be 25%.
Fig. 4a shows how many times the most probable action will
coincide with the true action. According to this analysis,
the prediction accuracy varies between 74 to 76 percent
of accuracy after only 3 iteration of the Markov chain. As
evident from Fig. 4a, no clear improvement is visible after
a Markov chain of length 10. Fig. 4b shows the confusion
matrix after 20 iterations of the Markov chain.

In order to investigate the most informative feature for
predicting actions, we have taken the derivative of each
action parameter ai with respect to observation vector x.
This provides us with a measure of sensitivity of action
outputs to the input. However, this analysis alone cannot
reliably provide us with the most informative feature, as
this sensitivity might be caused because of low variations
in a specific feature and the network could have learned
to rely heavily on that feature. To account for this, we
multiplied the derivative by the observed standard deviation
of each feature across the whole training set, and we call this
quantity as input-influence. This means the variables with
the same absolute magnitude of derivative will have lower
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Fig. 5: Performance evaluation of VAE in predicting effects.

input-influence if they have lower standard deviations in the
training set.

It was observed that motion on x axis ex had the highest
input-influence on drawing and pushing, where as the motion
on y axis ey had the highest input–influence on taping from
left and right (Fig. 1). This can explain why the correct
action was predicted 74% of the times, even at the first
iteration of the Markov chain. The network has learned to be
greatly influenced by the effect observations, and with only
having access to the correct effect, it makes correct action
predictions most of the time.

C. Effect prediction

It is more challenging to provide a quantitative measure
of how well the network performs in predicting the effect
distributions. This is due to the fact that, in the current formu-
lation, the effect of each trial is a sample from an unknown
distribution and because it is impossible to repeat each trial
perfectly for multiple times, no empirical distribution can be
evaluated. One way to overcome this problem is to use the
VAE itself to provide us with probabilities.

In the first experiment, initially we put the whole vector
of observations x into the VAE and get the probability
distributions over e i.e. p∗θ (e | z). This distribution is su-
perscripted by ∗ because we treat it as the true distribution.
Then we remove the observation over effects and fill its place
with random numbers and continue with the Markov chain,
this time analyzing the KL divergence between p∗θ (e | z)
and pθ (e | z), which are the obtained distributions: Fig. 5a
shows the result of this process.

Fig. 5b shows the mean absolute error
∣∣e− µ∣∣ in me-

ters averaged over all samples of the test set. The error
converges to a value around 8 cm after a Markov chain
of length 150 (see Fig. 7b). In contrast, the true mean of∣∣e− µ∗∣∣ is around 4 cm. It should be noted that this result
is only a crude estimate, and the distribution of effects and
predicted means, separated by actions and tools is shown in
Fig. 6. An interesting observation is the higher variance in
mean predictions, associated with outliers of the test set.

It turns out the most influential tool feature in predicting
effect means is either tool’s convexity or eccentricity which
are the features that best distinguish between stick-like and
rake-like tools.

Fig. 6: Distribution of effects, divided by different actions
and tools. Green points are observations and red points are
predicted means for each of the green points. Note that
corresponding to each mean, a covariance matrix is also
provided by the network. The axis units are in meters.

D. Reducing the effect of modality dominance

In order to quantify how the different design choices have
contributed to the final performance of the model, here we
have compared the result of two variants of the same network
with the proposed architecture. In one of the models, we have
kept β of (6) constant and equal to 1 during the training. In
the second model, after epoch 100 we kept the learning rate
constant and equal to 1e-4 to analyse the effect of CLR. The
result of this analysis is depicted in Fig. 7.

By looking at Fig. 7a, it is clear that keeping a constant β
causes the network to simply converge to spaces where the
latent variables are very similar to their priors and fails to
reduce the cost of other data modalities. On the other hand,
with a constant learning rate, the percentage of correct action
predictions remains low.

To see that this is an example of one modality dominating
another, we can look at Fig. 7b. According to this figure,
keeping a constant learning rate has marginally improved the
effect prediction, at the cost of a much lower correct action
selection. This can be explained by the observation that each
component of (5) would require a different learning rate and
CLR manages to smoothly change this quantity, thus finding
a balanced solution.

E. Generalization to novel objects and tools

One of the benefits of using visual features instead of
object categories or labels in learning of affordances is
the ability to generalize the already learned knowledge to
novel objects and tools where no previous interaction was
conducted. To assess the extent to which this generalization
is possible, we report the performance of the network on the
dataset collected using iCub in [19]. In those experiments, the
tools and objects are completely different than the ones used
to train the VAE. A video of the experiment is accessible at
https://youtu.be/yUzlrHFx8MM. The metrics introduced in
Sec. IV-B are demonstrared in Fig. 8 and 9 for the case of
new objects and tools.

Similar to Fig. 4a increasing the length of the Markov
chain after the first few iterations does not significantly

https://youtu.be/yUzlrHFx8MM
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Fig. 8: Correct action prediction over the novel dataset.

increase the accuracy of action predictions and according to
Fig. 8, this accuracy hovers over 60%. Looking at the con-
fusion matrix (Fig. 9) reveals that the majority of mistakes
correspond to the case where the correct action was pushing
but the network has predicted a pulling action. It is evident
from Fig. 10 that the stick has failed to generate an effect
of pushing the objects away, this has caused the network to
mistake it many times for pulling as usually it is pulling with
a stick which results in no motion. As explained before, the
most influential feature to predict a push is movement along
the y axis which did not occur during pushing with the novel
stick. According to our expectation, the VAE has predicted
more forward motion for pushing with the novel stick (see
the red dots for pushing with the stick in Fig. 10).

Another interesting observation is that in the novel dataset,
we only performed experiments with pushing and drawing,
so the true lable cannot be tap from left or right (two first
rows of Fig. 9), however, since we have used the exact same
network, sometimes we get tapping predictions which are
always classified as incorrect.

ta
p_

fro
m

_r
ig

ht

ta
p_

fro
m

_le
ft

dr
aw

pu
sh

Predicted label

tap_from_right

tap_from_left

draw

push

T
ru

e
 l
a
b

e
l

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.04 0.03 0.86 0.05

0.02 0.13 0.46 0.38

Normalized confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 9: Confusion Matrix for the novel dataset with a Markov
chain of length 20.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel probabilistic framework based
on VAEs which uses deep neural networks to predict het-
erogeneous distributions of multi-modal observations. This
model was used to endow a robot with the capability to
perceive and use objects and tools affordances. In order to
cope with different distributions, we have assumed condi-
tional factorizations among disparate modalities. CLR was
used to prevent some modalities dominating over other
ones by continuously increasing and decreasing the learning
rate during training. This flexibility enabled us to achieve
complete self-supervision as a result of no pre-processing of
the data. This property is unique to the presented work.

Actions that were used in this work were categorical and
pre-defined. As a result, the robot cannot learn new actions
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Fig. 10: Distribution of effects, divided by different actions
and tools for the novel dataset; similar to Fig. 6, the length
of the Markov chain is 150.

by interacting with the environment. A possible extension to
this work would be to incorporate parametric actions in the
formulation of affordances.

Variational Auto-Encoders were originally tested on a
dataset of images. An exciting area of research would be to
learn the affordances directly from images through interac-
tions without the need to extract predefined visual features.
We hope to facilitate further research in this direction by
providing a relatively large dataset of robot’s tool and object
manipulation trials which can easily be extended by external
research groups.

Finally, one can argue that specific forces and tool trajec-
tories with respect to objects are among important variables
which ultimately determine the effects of actions. Having a
flexible probabilistic framework, it is possible to incorporate
these variables for a more complete modeling of affordance
effects.
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