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Abstract. Visual attention plays a central role in natural and artifi-
cial systems to control perceptual resources. The classic artificial visual
attention systems uses salient features of the image obtained from the in-
formation given by predefined filters. Recently, deep neural networks have
been developed for recognizing thousands of objects and autonomously
generate visual characteristics optimized by training with large data sets.
Besides being used for object recognition, these features have been very
successful in other visual problems such as object segmentation, track-
ing and recently, visual attention. In this work we propose a biologically
inspired object classification and localization framework that combines
Deep Convolutional Neural Networks with foveal vision. First, a feed-
forward pass is performed to obtain the predicted class labels. Next, we
get the object location proposals by applying a segmentation mask on the
saliency map calculated through a top-down backward pass. The main
contribution of our work lies in the evaluation of the performances ob-
tained with different non-uniform resolutions. We were able to establish a
relationship between performance and the different levels of information
preserved by each of the sensing configurations. The results demonstrate
that we do not need to store and transmit all the information present
on high-resolution images since, beyond a certain amount of preserved
information, the performance in the classification and localization task
saturates.

Keywords: Computer vision, deep neural networks, object classification
and localization, space-variant vision, visual attention.

1 Introduction

The available human brain computational resources are limited, therefore it is
not possible to process all the sensory information provided by the visual per-
ceptual modality. Selective visual attention mechanisms are the fundamental
mechanisms in biological systems, responsible for prioritizing the elements of
the visual scene to be attended. Likewise, an important issue in many computer
vision applications requiring real-time visual processing, resides in the involved



2 A. Almeida, R. Figueiredo, A. Bernardino, J. Santos-Victor

computational effort [1]. Therefore, in the past decades, many biologically in-
spired attention-based methods and approaches, were proposed with the goal of
building efficient systems, capable of working in real-time. Hence, attention mod-
eling is still a topic under active research, studying different ways to selectively
process information in order to reduce the time and computational complexity
of the existing methods.

Nowadays, modeling attention is still challenging due to the laborious and
time-consuming task that is to create models by hand, trying to tune where
(regions) and what (objects) the observer should look at. For this purpose, bi-
ologically inspired neural networks have been extensively used, since they can
implicitly learn those mechanisms, circumventing the need of creating models
by hand.

Our work is inspired by [2] which proposed to capture visual attention through
feedback Deep Convolutional Neural Networks. Similarly in spirit, we propose a
biologically inspired hybrid attention model, that is capable of efficiently recog-
nize and locate objects in digital images, using human-like vision. Our method
comprises two steps: first, we perform a bottom-up feed-forward pass to obtain
the predicted class labels (detection). Second, a top-down backward pass is made
to create a saliency map that is used to obtain object location proposals after ap-
plying a segmentation mask (localization). The main contributions of this paper
are the following: first, we evaluate the performance of our methodology for vari-
ous well-known Convolutional Neural Network architectures that are part of the
state-of-the-art in tasks of detection and localization of objects when combined
with multi-resolution, human-inspired, foveal vision. Then, we establish a rela-
tionship between performance and the different levels of information preserved
by foveal sensing configurations.

The remainder of this paper is organized as follows: section 2 overviews the
related work and some fundamental concepts behind the proposed attentional
framework. In section 3.1, we describe in detail the proposed methodologies, more
specifically, a theoretical explanation of an efficient artificial foveation system
and a top-down, saliency-based mechanism for class-specific object localization.
In section 4, we quantitatively evaluate the our contributions. Finally, in section
5, we wrap up with conclusions and ideas for future work.

2 Background

The proposed object classification and localization framework uses several bio-
logically inspired attention mechanisms, which include space-variant vision and
Artificial Neural Networks (ANN). As such, in the remainder of this section we
describe the fundamental concepts from neuroscience and computer science on
which the proposed framework is based.

2.1 Space-variant Vision

In this work, we propose to use a non-uniform distribution of receptive fields
that mimics the human eye for simultaneous detection and localization tasks.
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Unlike the conventional uniform distributions which are typical in artificial vi-
sual systems (e.g. in standard imaging sensors), the receptive field distribution
in the human retina is composed by a region of high acuity – the fovea – and
the periphery, where central and low-resolution peripheral vision occurs, respec-
tively [3].

The central region of the retina of the human eye named fovea is a photore-
ceptor layer predominantly constituted by cones which provide localized high-
resolution color vision. The concentration of these photoreceptor cells reduce
drastically towards the periphery causing a loss of definition. This space-variant
resolution decay is a natural mechanism to decrease the amount of informa-
tion that is transmitted to the brain (see Figure 2). Many artificial foveation
methods have been proposed in the literature that attempt to mimic similar
behavior: geometric method [4], filtering-based method [5] and multi-resolution
methods [6].

2.2 Deep Convolutional Neural Networks

Deep neural networks are a subclass of Artificial Neural Networks (ANN) and
are characterized by having several hidden layers between the input and out-
put layers. The deep breakthrough occurred in 2006 when researchers brought
together by the Canadian Institute for Advanced Research (CIFAR) were capa-
ble of training networks with much more layers for the handwriting recognition
task [7].

As far as visual attention is concerned, the most commonly used are the
Convolutional Neural Networks (CNN), that are feed-forward Deep ANN that
take into account the spatial structure of the inputs. These, have the ability to
learn discriminative features from raw data input and have been used in several
visual tasks like object recognition and classification.

A CNN is constituted by multiple stacked layers that filter (convolve) the
input stimuli to extract useful and meaningful information depending on the
task at hand. These layers have parameters that are learned in a way that al-
lows filters to automatically adjust to extract useful information without feature
selection so there is no need to manually select relevant features. In this work we
study the performance of state-of-the-art CNN architectures that were within our
attentional framework, namely, CaffeNet [8], GoogLeNet [9] and VGGNet [10].

3 Methodologies

Our hybrid detection and localization methodology can be briefly outlined as
follows: In a first feed-forward pass, a set of object class proposals is computed
(Section 3.2) which are further analyzed via top-down backward propagation to
obtain proposals regarding the location of the object in the scene (Section 3.2).

More specifically, for a given input image I, we begin by computing a set
of object class proposals by performing a feed-forward pass. The probability
scores for each class label (1 000 in total) are collected by accessing the network’s



4 A. Almeida, R. Figueiredo, A. Bernardino, J. Santos-Victor

output softmax layer. Then, retaining our attention on the five highest predicted
class labels, we compute the saliency map for each one of those predicted classes
(see Figure 3). Then, a top-down back-propagation pass is done to calculate
the score derivative of the specific class c. The computed gradient indicates which
pixels are more relevant for the class score [11]. In the remainder of this section,
we describe in detail the components of the proposed attentional framework.

3.1 Artificial Foveal Vision

Fig. 1: A summary of the steps in the foveation system with four levels. The
image g0 corresponds to the original image and h0 to the foveated image. The
thick up arrows represent sub-sampling and the thick down arrows represent
up-sampling.

Our foveation system is based on the method proposed in [12] for image
compression (e.g. in encoding/decoding applications) which, unlike the methods
based on log-polar transformations, is extremely fast and easy to implement, with
demonstrated applicability in real-time image processing and pattern recognition
tasks [13].

Our approach comprises four steps that go as follow. The first step consists on
building a Gaussian pyramid with increasing levels of blur, but similar resolution.
The first pyramid level (level 0) contains the original image g0 that is down-
sampled by a factor of two and low-pass filtered, yielding the image g1 at level 1.
More specifically, the image gk+1 can be obtained from the gk via convolution
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(a) f0 = 30 (b) f0 = 60 (c) f0 = 90

Fig. 2: Example images obtained with our foveation system where f0 defines the
size of the region with highest acuity (the fovea), from a 224x224 image uniform
resolution image.

with 2D isotropic and separable Gaussian filter kernels of the form

G(u, v, σk) =
1

2πσk
e
−u

2+v2

2σ2
k , 0 < k < K (1)

where u and v represent the image coordinates and σk = 2k−1σ1 the Gaussian
standard deviation at the k-th level. These images are up-sampled to impose
similar resolution at all levels. Next, we compute a Laplacian pyramid from the
difference between adjacent Gaussian levels. The Laplacian pyramid comprises a
set of error images where each level represents the difference between two levels
of the previous output (see Figure 1). Finally, exponential weighting kernels are
multiplied by each level of the Laplacian pyramid to emulate a smooth fovea.
The exponential kernels are given by

k(u, v, fk) = e
− (u−u0)2+(v−v0)2

2f2
k , 0 ≤ k < K (2)

where fk = 2kf0 denotes the exponential kernel standard deviation at the k-th
level. These kernels are centered at a given fixation point (u0, v0) which defines
the focus of attention. Throughout the rest of this paper, we assume that u0 =
v0 = 0. Figure 1 exemplifies the proposed foveation model with four levels and
Figure 2 depicts examples of resulting foveated images.

Information Reduction The proposed foveal visual system is a result of a
combination of low-pass Gaussian filtering and exponential spatial weighting. To
be possible to establish a relationship between signal information compression
and task performance, one must understand how the proposed foveation system
reduces the image information depending on the method’s parameters (i.e. fovea
and image size).

Low-pass Gaussian Filtering Let us define the original high-resolution image as
i(u, v) to which corresponds the discrete time Fourier Transform I(ejwu , ejwv ).
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The filtered image O(ejwu , ejwv ) at each pyramid level is given by the convolution
theorem as follows

O(ejwu , ejwv ) = I(ejwu , ejwv ) ∗G(ejwu , ejwv ). (3)

Following the Parseval’s theorem that describes the unitarity of a Fourier Trans-
form, the signal information of the original image i is given by

Ei =

+∞∑
u=−∞

+∞∑
v=−∞

|i(u, v)|2dudv =
1

4π2

∫ π

−π

∫ π

−π
|I(ejwu , ejwv )|2dwudwv. (4)

and the information in the filtered image o is given by

Eo =

+∞∑
u=−∞

+∞∑
v=−∞

|o(u, v)|2dudv

=
1

4π2

∫ π

−π

∫ π

−π
|I(ejwu , ejwv ).G(ejwu , ejwv )|2dwudwv. (5)

Assuming that I(ejwu , ejwv ) has energy/information equally distributed across
all frequencies, of magnitude M, the information in the filtered image Eo can be
expressed as

Eo =
M2

4π2

∫ π

−π
G(wu)2dwu

∫ π

−π
G(wv)

2dwv

=
M2

4π2

∫ π

−π
e−w

2
uσ

2

dwu

∫ π

−π
e−w

2
vσ

2

dwv

=
M2

4π2

(
πerf (πσ)

2

σ2

)
. (6)

Finally, the normalized information gain due to filtering for each level k of the
pyramid is given by

P (σk) =
1

4π2

(
πerf (πσk)

2

σ2
k

)
(7)

Gaussian Spatial Weighting The information due to spatial weighting is given
by

R(fk) =
1

N

∫ N/2

−N/2

∫ N/2

−N/2
e
− 1

2
u2+v2

f2
k dudv (8)

Hence, to compute the total information compression of the pyramid for the
non-uniform foveal vision system, we need to take into account the combined
information due to filtering and spatial weighting at each level of the pyramid.
The total information of the pyramid is thus given by

T (k) =

K−1∑
k=0

R(fk)Lk (9)



A hybrid attention model using foveal vision 7

where

Lk = Pk − Pk+1 with P0 = 1 (10)

3.2 Weakly Supervised Object Localization

In this subsection we describe in detail our top-down object localization via
feedback saliency extraction.

Image-Specific Class Saliency Extraction As opposed to Itti’s [14] that pro-
cesses the image with different filters to generate specific feature maps, Cao [2]
proposed a way to compute a saliency map, in a top-down manner, given an
image I and a class c. The class score of an object class c in an image I, Sc(I), is
the output of the neural network for class c. An approximation of the neural net-
work class score with the first-order Taylor expansion [2][11] in the neighborhood
of I can be done as follows

Sc(I) ≈ G>c I + b (11)

where b is the bias of the model and Gc is the gradient of Sc with respect to I :

Gc =
∂Sc
∂I

. (12)

Accordingly, the saliency map is computed for a class c by calculating the score
derivative of that specific class employing a back-propagation pass. In order
to get the saliency value for each pixel (u, v) and since the images used are multi-
channel (RGB - three color channels), we rearrange the elements of the vector
Gc by taking the maximum magnitude of it over all color channels. This method
for saliency map computation is extremely simple and fast since only a back
propagation pass is necessary. Simonyan et al. [11] shows that the magnitude
of the gradient Gc expresses which pixels contribute more to the class score.
Consequently, it is expected that these pixels can give us the localization of the
object pertaining to that class, in the image.

Bounding Box Object Localization Considering Simonyan’s findings [11],
the class saliency maps hold the object localization of the correspondent class in
a given image. Surprisingly and despite being trained on image labels only, the
saliency maps can be used on localization tasks.

Our object localization method based on saliency maps goes as follow. Given
an image I and the corresponding class saliency map Mc, a segmentation mask is
computed by selecting the pixels with the saliency higher than a certain thresh-
old, th, and set the rest of the pixels to zero.
Considering the stain of points resulting from the segmentation mask, for a given
threshold, we are able to define a bounding box covering all the non-zero saliency
pixels, obtaining a guess of the localization of the object (see Figure 3).
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Fig. 3: Representation of the saliency map and the correspondent bounding box
of each of the top 5 predicted class labels of a bee eater image of ILSVRC 2012
data set. The rectangles represent the bounding boxes that cover all non-zero
saliency pixels resultant from a segmentation mask with th = 0.75.

4 Results

In this section, we begin by numerically quantifying the proposed non-uniform
foveation mechanism information compression dependence on the fovea size.
Then, we quantitatively assess the classification and localization performance
obtained for the proposed feed-forward and feed-backward passes for various
state-of-the-art CNN architectures (section 4.2).

4.1 Information Compression

In order to quantitatively assess the performance of our methodology, it is im-
portant to first quantify the amount of information preserved by the proposed
non-uniform foveation mechanism to further understand the fovea size influence
in task performance. Through a formal mathematical analysis of the informa-
tion compression (see section 3.1) we can represent the relationship between
fovea size (f0), image size (N) and information compression. In our experiments
σ1 was set to 1, the original image resolution was set to N ×N = 224× 224 (the
size of the considered CNNs input layers) and the size of the fovea was varied in
the interval f0 = [0.1; 224] . As depicted in Figure 4, the gain grows monoton-
ically and exhibits a logarithmic behaviour for f0 ∈ [1; 100]. Beyond f0 ≈ 100,
the compression becomes residual, saturating at around f0 ≈ 120. Hence, from
this point our foveation mechanism becomes unnecessary since resulting images
contain practically the same information as the original uniform-resolution ones.

4.2 Attentional Framework Evaluation

In this paper, our main goal was to develop a single CNN capable of performing,
recognition and localization tasks, taking into account both bottom-up and top-
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Fig. 4: Information gain in function of f0 for the proposed non-uniform foveal
vision mechanism.

down mechanisms of selective visual attention. In order to quantitatively assess
the performance of the proposed framework we used the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 20121data set, which comprises a total
of 50K test images with objects conveniently located in the images center.

Furthermore, we tested the performance of our methods with different pre-
trained Convolutional Network (ConvNet) models which are publicly and readily
available at Caffe [15] Model Zoo, namely, CaffeNet [8], GoogLeNet [9] and
VGGNet [10]. As mentioned on Section 3.2, a feed-forward pass is executed
originating a vector with the probability distribution of the class label scores.
These class labels are used to compute the classification error which compares
the ground truth class label provided in ILSVRC with the predicted class labels.
Usually, two error rates are commonly used: the top-1 and the top-5. The former
serves to verify if the predicted class label with the highest score is equal to the
ground truth label. For the latter, we verify if the ground truth label is in the
set of the five highest predicted class labels.

For a given image, the object location was considered correct if at least one
of the five predicted bounding boxes overlapped over 50% with the ground truth
bounding box. This evaluation criterion [16] consists on the intersection over
union (IoU) between the computed and the ground truth bounding box.

Classification Performance The classification performance for the various
CNN architectures combined with the proposed foveal sensing mechanism are
depicted in Figure 5a. The CaffeNet pre-trained model which presents the shal-
lower architecture had the worst classification performance. The main reason
is that the GoogLeNet and VGG models use smaller convolutional filters and

1 source: http://image-net.org/challenges/LSVRC/2012/ [as seen on June, 2017]
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Fig. 5: Classification and localization performance for various network architec-
tures and sensing configurations. Left column: Dashed lines correspond to top-1
error and the solid ones correspond to top-5 error. Righ column: Dashed lines
correspond to f0 = 80 and solid lines to f0 = 100.

deeper networks that enhance the distinction between similar and nearby ob-
jects.

Regarding the impact of non-uniform foveal vision, a common tendency can
be seen for all three pre-trained models. The classification error saturates at
approximately f0 = 70. This result is corroborated by the evolution of the gain,
depicted in Figure 4, since after−3 dB compressions goes slowly below 3 dB. This
means that on average and for this particular data set, half of the information
contained in uniform resolution images is irrelevant for correct classification.

Small size foveas exhibit extremely high error rates, which corresponds to a
very small region characterized by having high acuity. This is due to the fact that
images that make up the ILSVRC data set contain objects that occupy most of
the image area, that is, although the image has a region with high-resolution, it
may be small and not suffice to give an idea of the object in the image, which
leads to poor classification performance.

Localization Performance As can be seen in Fig. 5b, for thresholds smaller
than 0.4, the localization error remains consistent and stable at around 60%.
From this point, the evolution of the error presents the form of a valley where
the best localization results were obtained for thresholds between 0.65 and 0.7.

Overall, GoogLeNet presents the best localization performance. We hypoth-
esize that this is mostly due to CaffeNet and VGG models feature two fully-
connected layers of 4096 dimension that may jeopardize the spatial distinction
of image characteristics. Furthermore, GoogLeNet is deeper than the aforemen-
tioned models and hence can learn discriminant features at higher levels of ab-
straction.
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5 Conclusions and Future Work

In this paper we proposed a biologically inspired framework for object classifica-
tion and localization that combines bottom-up ant top-down attentional mech-
anisms, incorporating recent Deep Convolutional Neural Networks architectures
with human-like foveal vision. The main experimental goal of this study was
to assess the performance of our framework with well-known state-of-the-art
CNN architectures, in recognition and localization tasks, when combined with
non-uniform foveal vision.

Through the analysis performed in our tests, we can conclude that the deeper
neural networks present better performance when it comes to classification.
Deeper networks have the capcity to learn more features which results in im-
proved ability in distinguishing similar and close objects (i.e. generalization).
Furthermore, the results obtained for non-uniform foveal vision are promising.
We conclude that it is not necessary to store and transmit all the information
present in a high-resolution images since, from a given fovea size (f0), the per-
formance in the classification task saturates.

However, the tests performed in this work assumed that the objects were
centered, which is reasonable for the used data set, but unreasonable in real
scenarios. In the future, we intend to test this type of vision in other data sets
trained for recognition and localization tasks where objects may not be centered,
thus having a greater localization variety. Dealing with multiple scales is another
relevant limitation of non-uniform foveal sensors, in particular for close objects
whose overall characteristics become unperceivable as the resolution decays very
rapidly towards the periphery. To overcome this limitation, we intend to develop
active vision mechanisms that will allow to autonomously redirect the attentional
focus while integrating task-related evidence over time. Finally, it would also be
interesting to train the system directly with blur (uniform and non-uniform
foveal). In this case, it would be expected that with this tuning of the network,
its performance would improve for both classification and localization tasks.
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