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Doctor Paulo Lúıs Serras Lobato Correia, Instituto Superior Técnico, Universidade de Lisboa
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Abstract

Person Re-Identification (Re-ID) is one of the most interesting tools in the realm of intelligent
video-surveillance. Re-ID consists in recognising whether an individual has already been ob-
served and then associating his identity, over a network of cameras. Person Re-ID encounters
a multitude of application scenarios in real world, e.g., (1) off-line person retrieval (all the
video-sequences showing an individual of interest whose image is given as query), (2) on-line
pedestrian Re-ID and tracking over multiple cameras, (3) on-line authentication system via
Re-ID. Traditionally, the classical approaches in Re-ID consist in exploiting the appearance
cues such as color or texture of clothing. However, they restrain the system from long term
applications, since those features undergo drastic variations over long periods. Hence, a new
trend in Re-ID is to leverage biometric traits called soft-biometrics, like body shape and gait.
Their advantage over the appearance cues is increased stability over long periods which allows
long term Re-ID applications. The general objectives of this thesis is to identify good features
to be used for long term application and develop novel technology towards the long term au-
tomatic Re-ID paradigm. In particular, this thesis delved beyond state-of-the-art in four main
aspects.

First, a novel anthropometry based person Re-ID is proposed, by employing shape con-
text (SC) descriptor extracted on the head-to-torso region on frontal human silhouettes, be-
cause the upper torso region of the body presents less temporal variance and occlusions with
respect to other body parts thus producing more stable features. In the same work, we propose
a framework for person Re-ID, using natural human compliant labels known as soft biometric
traits. The generation of a novel synthetic dataset of virtual avatars (rendered by computer
graphics engines), is proposed to circumvent he need for time consuming manual labelling of hu-
man datasets. Second, a novel methodology of re-identifying people in frontal video sequences,
based on a spatio-temporal representation of the gait using optic flow features, is proposed. The
presented methodology was evaluated in different datasets, including the novel High Definition
Analytics (HDA) dataset developed in-house, with applications to re-identification in camera
networks. Third, a view-point invariant person re-identification (Re-ID) by multi-modal fea-
ture fusion of 3D soft biometric cues has been proposed by leveraging both anthropometric
and gait features. Two experiments were carried out under that work: (i) an extensive study
of the influence of various features in the Re-ID problem and (ii) an actual demonstration of
the view-point invariant Re-ID paradigm, by analysing the subject data collected in different
walking directions. Finally, a context-aware ensemble fusion framework based on soft-biometric
features, for long term person re-identification (Re-ID) in wild surveillance scenarios is pro-
posed. Since biometric feature extraction is strongly influenced by the viewpoint, we associate
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context to the viewing direction, and choose the best features for each viewpoint (context).
This work addresses key issues in Re-ID, with a strong focus on automated long term appli-

cations, thus strongly contributing towards the wide applicability of re-identification systems
in practical real-life scenarios.

Key words: video surveillance, person re-identification, soft-biometrics, human gait, con-
text analysis.



Resumo – Abstract in
Portuguese

A re-identificação de pedestres é uma das áreas mais importantes no domı́nio de sistemas de
v́ıdeo vigilância. A re-identificação consiste em reconhecer se um pedestre já foi observado
numa rede de câmaras e posteriormente associar a sua identidade numa outra câmara da rede.
A re-identificação de pedestres tem muitas aplicações em cenários reais, como por exemplo,
(1) na obtenção da identificação de um pedestre numa sequência de v́ıdeo, (2) re-identificação
e seguimento em tempo real de pedestres usando múltiplas câmeras, (3) sistemas de auten-
ticação em tempo real usando re-identificação. Tradicionalmente, as aplicações clássicas de
re-identificação exploram a aparência da cor ou da textura da roupa. Contudo, estes métodos
apresentam limitações em aplicações de longa duração, uma vez que as caracteŕısticas acima
indicadas têm grande variações significativas ao longo do tempo. Assim, uma nova estratégia
para re-identificação baseia-se no uso de atributos de biometria chamados suaves, como por
exemplo a forma do corpo e do modo de andar (marcha) do pedestre. A vantagem da biome-
tria suave face às caracteŕısticas de aparência é que estas são mais estáveis em peŕıodos de
tempo longos, sendo úteis às aplicações de re-identificação de longo prazo. O foco principal
desta tese é identificar caracteŕısticas de pedestres que possam ser usadas em aplicações que
envolvem longos peŕıodos de tempo e o desenvolvimento de novas tecnologias para o contexto
de re-identificação de longo prazo. Em particular, esta tese contribuiu para o estado da arte
em quatro aspectos principais.

Primeiro, é proposto um método para re-identificação baseado na antropometria do pedestre,
usando o descritor “contexto de forma” (shape context). O descritor é obtido na região da
cabeça e do torso da silhueta frontal do corpo do pedestre, porque a região da parte superior
do tronco do corpo apresenta menos variabilidade temporal e oclusões, comparado com outras
partes do corpo, por isso fornece caracteŕısticas mais estáveis. No mesmo trabalho, propomos
um método para re-identificação usando caracteŕısticas biométricas suaves do corpo humano.
Propõe-se a geração de uma nova base de dados sintética de avatares virtuais (gerados por
software de jogos em computador), para evitar a necessidade de efectuar a anotaçao man-
ual de bases de dados de humanos, o que pode ser muito dispendiosa em termos de tempo.
Em segundo lugar, é proposta uma nova metodologia para re-identificação de pedestres em
sequências com vista frontal, baseada numa representação espaço-temporal da marcha, obtida
a partir de caracteŕısticas de fluxo óptico. Este método foi avaliado em conjuntos de dados
diferentes, incluindo a nova base de dados HDA, desenvolvida por nós para aplicações de re-
identificação que integram redes de câmaras. A terceira contribuição consiste em métodos de
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re-identificação invariante ao ponto de vista da aquisição, usando fusão de caracteŕısticas 3D
antropométricas e de marcha. Dois estudos experimentais são apresentados: (i) um estudo
alargado, que permite verificar a influência de diferentes caracteŕısticas na re-identificação de
pedestres, (ii) uma demonstração real da invariância do ponto de vista da aquisição no processo
de re-identificação, analisando os dados adquiridos em diferentes direcções no deslocamento dos
pedestres. Finalmente, propõe-se um método de fusão baseado em contexto e caracteŕısticas
de biometria, para a re-identificação a longo termo em cenários de v́ıdeo vigilância. Uma
vez que a obtenção das caracteŕısticas de biometria é fortemente influenciada pelo ponto de
vista da aquisição, o contexto é associado à direcção do movimento do pedestre, procedendo-se
posteriormente à escolha das melhores caracteŕısticas para cada contexto.

Este trabalho estuda questões relevantes na re-identificação, dando ênfase em aplicações
automáticas de longo termo. Deste modo, fornecem-se contribuições significativas que podem
ser utilizadas em cenários reais e práticos com uma ampla aplicabilidade.

Palavras-chave: video vigilância, re-identificação, biometria, marcha, análise de contexto.
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Chapter 1

Introduction

The journey of a thousand miles begins with one step.

— Lao Tzu

1.1 Motivation & Context

With the increase in security and forensics concerns, surveillance camera networks are unprece-
dentedly proliferating in both public and private areas including airports, railway stations,
university campuses, shopping complexes, housing apartments, supermarkets and workplaces.
In addition to providing video footage of event occurrences, surveillance cameras also act as
a visible deterrent to criminals. Usually, they cover vast areas with non-overlapping fields of
views. Besides, cutting edge technologies have enabled the so-called smart security system,
which allows remote access from our smartphone, tablet or desktop, to either the home secu-
rity cameras or the CCTV’s at work.

As the video technology revolution brought not only cheaper access to the multimedia sys-
tems, but also large security threats on society, the number of surveillance cameras also have
exceeded exponentially during the last decade. Only in the UnitedKingdom, there are between
4 million and 5.9 million CCTV surveillance, accordingto a new report from the British Secu-
rity Industry Association (BSIA); one for everyeleven people [Barrett, 2013]. Each Londoner
is caught on camera on average 200 timeseach day, which reveals the real influence of surveil-
lance systems on our daily lives [Wiegler, 2008; Shitrit et al. , 2014; Berclaz et al. , 2011]. The
manual analysis of the extensive collection of acquired data by the security officials is quite
laborious, expensive, time-consuming and error-prone. Instead, the automated monitoring can
improve the data analysis speed and the quality of surveillance [Tu et al. , 2007; Gala & Shah,
2014].

The analysis of data collected in surveillance camera networks serves a significant role in the
evaluation and comprehension of the behaviour and activities of people. It enables to preempt
suspicious events and to provide real-time alarms and situational awareness to the security
personnel. The security paradigm can shift from reaction/ investigation of incidents to a more
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2 CHAPTER 1. INTRODUCTION

pro-active prevention of potentially catastrophic events [Hampapur et al. , 2003]. Fig. 1.1
shows a typical scenario of a security officer operating on a surveillance camera network, in
which he can report alarms and take immediate actions while observing intruders in the scene.
This kind of proactive steps not only serve towards public safety, but also act as primary
evidence in identifying the criminals, as in the 7/7 London Bombings (2005), or in Boston
Marathon bombing terrorist attack (2013).

Figure 1.1: A security guard monitoring the CCTV surveillance network, and reporting the
alarm in an industrial environment (Courtesy: City National Security [Sec, n.d.]- permission
requested)

The advances in computer vision, as well as machine learning techniques in the recent years,
have ameliorated this expedition towards smart surveillance at a fast pace and as a result, a
plethora of algorithms for the automatic analysis of the video sequences have been proposed.
They include, for instance, person detection, person tracking, activity monitoring, and person
re-identification. Some survey papers such as [Gavrila, 1999b], [Gowsikhaa et al. , 2014] have
presented them in detail.

Person detection is the process of detecting and localising each person in the images, rep-
resented via bounding boxes. This subject itself has been subject to an intensive research, see
for instance [Benenson et al. , 2012, 2014; Dollár et al. , 2009; Luo et al. , 2014; Hosang et al. ,
2015] that describe the state-of-the-art techniques. Regarding person tracking, the movement
of the individual from one frame to another is tracked to find out the temporal consistency
and the path followed in the scene (see refs [Shitrit et al. , 2014; Berclaz et al. , 2011; Niu
et al. , 2003; Siebel & Maybank, 2002]). It deals with maintaining the accurate representation
of the state and position (both the 3D space and 2D camera image plane) of the subject given
measurement [Forsyth & Ponce, 2002]. Activity recognition is yet another interesting topic in
video surveillance (e.g. [Hu et al. , 2008; Robertson & Reid, 2006a; Nascimento et al. , 2013]).
The goal of human activity recognition is to analyse automatically ongoing activities from a
video (i.e. a sequence of image frames) [Aggarwal & Ryoo, 2011]. The proposed works can
be framed in either short range [Hu et al. , 2004a; Aggarwal & Park, 2004; Gavrila, 1999b;
Moeslund. et al. , 2006] or far field [Robertson & Reid, 2006b] settings, depending on which
the pedestrian is near or far regarding the position of the camera. Excellent reviews concerning
the taxonomy of the methodologies proposed in the context are available in [Hu et al. , 2004b;
Gavrila, 1999a; Aggarwal & Ryoo, 2011].
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Figure 1.2: A classical person re-identification (Re-ID) diagram.

Person re-identification (Re-ID) is one of the very interesting and intricate problems. One of
the earliest definitions of person re-identification owes to metaphysics Plantinga [1961], where
Alvin Plantinga provided the definition to Re-ID in 1961 while discussing the relationship
between mental states and behavior, as “To re-identify a particular, then, is to identify it as
(numerically) the same particular as one encountered on a previous occasion”. Afterwards,
many works have been encountered in various fields such as psychology, logic, computer vision
etc. Zheng et al. [2016]. From vision and surveillance point of view, person Re-ID is a hot
topic with a high research and application significance, where the system has to re-identify
persons in camera networks, under unconstrained conditions.

When a person disappears from the view of one camera and then reappears in another in
the surveillance network, the system should be able to determine that the person has been
seen before. This process of establishing connections and thus extending the tracking beyond
‘blind gaps’1. [Doretto et al. , 2011] is known as Re-ID. Or in other words, re-identification is
the process of establishing correspondences between images of a particular person taken from
different cameras [Gala & Shah, 2014]. In Re-ID, the detected bounding box of the subject is
combined with a unique label that identifies each, so that the same person at different instances
will be re-identified with that unique identifier (ID).

Person Re-ID is an important task either for on-line tracking of an individual over a network
of cameras or for off-line retrieval of all videos containing a person of interest. In contrast to
the tracking problem, in Re-ID, the continuity constraints are much relaxed. As per mentioned
in [Vezzani et al. , 2013], the distinction between tracking and re-identification is quite narrow
and fading. Different from people tracking, the re-identification task aims to match people
instances during a time delay or a change in point of view. Also, [Vezzani et al. , 2013] high-
lights that Re-ID is the best approach for associating different images of individuals, captured
without a sufficient temporal or spatial continuity.

Fig. 1.2 shows a diagrammatic representation of a typical person Re-ID system. A typical
pipeline of a Re-ID system includes person detection, feature extraction and descriptor match-
ing. In the training phase, the video sequences for all individuals appearing in the surveillance

1Blind gaps are the gaps when the subject has left one camera and then reappeared in another camera
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scenario are acquired via one or more cameras in the network. This set is denoted as “Gallery”.
From those image sequences, the region of interest (i.e., people) are detected. Afterwards,
feature extraction is carried out and robust feature descriptors are generated. Features are the
values derived from the original data, intended to be informative and non-redundant, facilitat-
ing the subsequent learning and generalization steps. When the input data to an algorithm is
too large to be processed and is suspected to be redundant, then it can be transformed into
a reduced set of features named a features vector/ feature descriptor. These extracted feature
vectors are stored in a gallery database for later use. Whenever a test person (probe) enters
into the system in a different camera or at a different time, his feature vector is generated in
the same way explained for gallery feature vectors. Then, the probe feature descriptor will
be compared against the gallery database of feature descriptors by some similarity matching/
classification technique. At this stage, the Re-ID decision is made and the re-identified person
ID is retrieved.

1.2.1 Re-identification: Identification vs Recognition

Re-ID is classically applied to two problems: identification and recognition. The European
Commission EUROSUR-2011 [Fro, 2011] defines identification as the process to establish the
unique identity of the object (name, number), as a rule without prior knowledge. The defini-
tion for recognition is to establish that a detected object is a specific pre-defined unique object
[Fro, 2011]. In line with those definitions, re-identification is found to be lying in between
identification and recognition [Vezzani et al. , 2013].

In the identification task, the goal of Re-ID is to match different observations of people
using an unsupervised strategy without prior knowledge. The applications of Re-ID towards
identification are witnessed in situations like long-term trajectories in wide area surveillance,
open-set identification, where Re-ID helps in avoiding the identity switching, erroneous split
and merge of tracks, over and under-segmentation of traces [Vezzani et al. , 2013]. Similarly,
Re-ID is also associated with the recognition task whenever a particular query with a target
person is provided, and its corresponding instances are searched in an extensive database. The
result of such a query would be a set of ranked items, with the hypothesis that one and only
one element of the gallery will correspond to the query [Vezzani et al. , 2013]. In contrast to
identification scenario, recognition demands the probe to be within the database (closed-set
identification2).

However, there are certain differences between the traditional Re-ID and recognition prob-
lems, which lies in the conditions associated with them. In recognition, usually the operator
has the control over most of the conditions such as camera viewpoint (often single camera),
background, subject pose, illumination, the number of persons in the acquisition, chance of
occlusion, to quote a few. On the contrary, in re-identification, most of the conditions are
uncontrolled, e.g., changes in background and illumination over a large number of different
cameras, no control on the number of people and possible occlusions, also subjects’ direction

2Closed set identification is where every input image has a corresponding match in the database.
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varies a lot.

1.2.2 Challenges of Re-ID

There are many problems while automating Re-ID in real world surveillance systems. One of
the greatest is the variation in pose and appearance of the person in various cameras and
in time. This variability happens due to the different camera orientation and changes in
subject pose, camera resolution or visual appearance of the person itself. In addition to that,
inter-camera variations in lighting conditions, the changes in the scene illumination, different
camera parameters, occlusion of the body parts, impart more constraints into the automation
process. Occlusions could be either caused by other people or objects of the scene, or self-
occlusions caused by own body parts. This difficulty has also been addressed in the literature
(see for instance [Taiana et al. , 2014]). Long term Re-ID is yet another challenge because, the
longer the time and space separation between views, the greater the chance that people may
appear with some change of clothes or carried objects in different camera views [Gong et al.
, 2014]. To tackle these issues, we need to have a robust feature descriptor, which is scale,
pose and illumination invariant. Since generally in Re-ID, data is acquired in uncontrolled
environments, i.e., without the user collaboration and varying backgrounds, the extraction of
coherent discriminative feature vector demands great effort. Other complementary aspects of
the Re-ID also require the collection of contextual cues such as spatio temporal topology and
the situation context as well. Many works in this field are only a decade old, and all of the
challenges above makes Re-ID still an open problem in computer vision.

1.2.3 Typical approaches

Most of the traditional Re-ID approaches are based on the overall human appearance in the
multimedia content, viz. Apprearance based Re-ID. They leverage visual features based on the
appearance of people, determined by their clothing (color and texture) and objects carried or
associated with them. The visual descriptors include either color/ texture features or local
features such as key points and edges. Rich and vast literature have been conducted on these
approaches in [Bak et al. , 2010; Doretto et al. , 2011; Riccio et al. , 2014; Bialkowski et al.
, 2012; Liu et al. , 2012]. A common problem in those techniques using color for recognition
is color–constancy problem. Color constancy is the ability to assign the same color to the
same object under different lighting condition [Maloney & Wandell, 1986]. As a result, the
color histograms representing the very same subject look different if they are captured under
different lighting conditions. Another limitation of appearance-based techniques is their short
term time span, during which, the appearance described by the clothing and other attributes
are considered to be constant. However, if Re-ID is to be performed for many days/ weeks,
the techniques above will be quite ineffective since the holistic appearance will undergo drastic
variations. For such long-term scenarios, methods based on biometric traits are found to be
more suitable to be applied.
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1.3 Soft biometrics

Biometrics is defined as “the science of establishing the identity of an individual, based on his/
her inherent physical and behavioural traits” Ross & Jain [2007]. The term biometrics is coined
from two Greek words: bios meaning ‘life’, and metrics meaning ‘to measure’. A biometric-
based surveillance system identifies or validates the person by extracting the characteristic
biometric features of the people and comparing them with the registered gallery samples (refer
Fig. 1.2). Fig. 1.3 shows various biometrics commonly used in applications. The most ac-
claimed and popular biometrics, also known as hard biometrics, such as fingerprint, iris, face,
palm print, and voice, used in access control systems, demand the necessity for well-controlled
environments and detailed computational processing, which is difficult to attain in a real-world
surveillance condition. Instead, in typical video surveillance scenario, people move freely in
ways that may prevent the acquisition of hard biometrics. Another genre of biometrics viz.,
soft biometrics sounds more promising in these scenarios.

Soft biometrics are the physical, behavioural or adhered human characteristics, classifiable
in pre–defined human compliant categories which are established and time proven by humans
with the aim of differentiating individuals [Dantcheva et al. , 2010]. Different from hard
biometrics, they lack the distinctiveness and time invariance to identify a person with high
reliability. However, they have certain advantages over hard biometrics, making them best
suited to deploy in surveillance applications, e.g., non-obtrusiveness, acquisition from distance,
non-requirement for the cooperation of the subject, computational and time efficiency and
human interpretability [Nambiar et al. , 2016b; Reid et al. , 2014]. Soft biometric features
leverage characteristic human traits such as anthropometric measurements, height, body size,
and gait, which are more coherent for long term applications [Nixon et al. , 2015], than
the commonly used temporary appearance cues such as dress color and texture information
[Chunxiao et al. , 2012]. Recently, the arrival of sophisticated systems such as motion capturing
devices, 3D sensors (Kinect) and high definition cameras accelerated the exploitation of soft
biometrics in wide range. As a result, unprecedented many real time applications are being
reported in person Re-ID and other video surveillance applications. [Gianaria et al. , 2014;
Nambiar et al. , 2014a].

Hair/ beard/ 
mustache

Hard biometrics

Biometrics

Fingerprint Face DNA Iris/ Retina Palmprint Eyecolour
Body 

measurements
Gait

Soft biometrics

Figure 1.3: Overview of biometrics classified according to their physiological characteristics
(hard biometrics) and physical, behavioural or adhered characteristics (soft biometrics). Hu-
man gait is highlighted as an instance of soft biometric.
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1.3.1 Anthropometry

Anthropometry involves the systematic measurement of the physical properties of the human
body, primarily dimensional descriptors of body size and shape. The first use of anthropo-
metrics (the measurement of the human body) as a form of identification was introduced
in 1883 by Alphonse Bertillon to identify recurrent criminal offenders. He first proposed a
personal identification system based on biometric, morphological and anthropometric deter-
minations [Rhodes, 1956], which known as the Bertillonage system. It kept records indexed
by ten physical measurements: height, stretch (left shoulder to middle finger of raised right
arm), bust (torso from head to seat when seated), head length (crown to forehead) and width
(temple to temple), width of cheeks and the length of the right ear, left foot, middle finger
and cubit (elbow to tip of middle finger). The process for obtaining each measurement was
detailed within Bertillon’s manual [Bertillon, 1896] and a sample of the various procedures can
be seen in figure 1.4. Additional descriptions were also recorded including color of eye, hair,
beard and skin, facial feature shapes, clothing, race, voice, language and any marks etc. Thus,
bertillonage system is considered as one of the first sceintific recordings of anthropometric
measurements.

Figure 1.4: Techniques for obtaining accurate bodily measurements: Frontispiece from
Bertillon’s identification anthropométrique (1893), demonstrating the measurements needed
for his anthropometric identification system.

This was known as the ‘spoken portrait’ and was recorded using a standardized shorthand.
The measurements, descriptions and a standardized photograph of the individual (now known
as a ‘mug shot’) was recorded on an identity card/ anthropometric data sheet. An example
can be seen in figure 1.5. The cards were indexed in drawers each representing a specific range
of the 10 metrics. This allowed hundreds of records to be quickly searched based on a set of
measurements.
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Figure 1.5: Anthropometric data sheet (both sides) of Alphonse Bertillon (1853-1914), a pio-
neer of the scientific police, inventor of anthropometry, first head of the forensic identification
service of the prefecture de police in Paris (1893).

Today, anthropometry plays an important role in various arenas of life including indus-
trial design, clothing design, ergonomics and architecture where statistical data about the
distribution of body dimensions in the population are used to optimize products 3. It is also
employed in biometric and forensic applications as well. In terms of biometrics, it is used in
computer science as a form of identification and access control as well as identifying individ-
uals in groups that are under surveillance. A very interesting criteria of such anthropometric
biometric identifiers is its human interpretability. Since soft biometric traits use human under-
standable descriptions (for example height, gender, hairstyle, body size), soft biometric systems
can bridge the semantic gap between biometric traits and human descriptions. This presents
incredible possibilities such as searching surveillance footage and databases based solely on an
eyewitness’ description, even without any image of the suspect.

1.3.2 Human gait

From the multitude of personal traits that characterize an individual, one of the most interest-
ing for re-identification is human gait. It includes both the body posture and dynamics while
walking Lee & Grimson [2002]. Human gait has been mentioned in many famous early works
i.e., Aristotle (384-322 BC) in his book “De Motu Animalium” on the movement of animals,
and Leonardo Da Vinci (1452-1519) in his anatomic paintings. In cognitive science, gait is
considered as one of the cues that humans exploit to recognize people Stevenage et al. [1999].

Gait is the most prevalent human movement in typical surveillance spaces. It is unique for
each human and hard to fake. Several studies in neuroscience and psychology also highlight
the importance of gait in human perception of the identity of others. For instance in medical
situations like Prosopagnosia (face blindness), the victims use secondary cues such as gait and
body appearances for person identification4 Kress & Daum [2003]. Besides, observation of gait
is believed to be an important aspect of diagnosis for several musculo-skeletal and neurological

3https://en.wikipedia.org/wiki/Anthropometry
4https://en.wikipedia.org/wiki/Prosopagnosia

https://en.wikipedia.org/wiki/Anthropometry
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conditions, such as cerebral palsy, multiple sclerosis, parkinsonism and stroke Whittle [1996].
Gait is defined as a coordinated, cyclic combination of movements that results in human

locomotion [Boyd & Little, 2005]. A pictorial representation of various phases of gait is demon-
strated in Fig. 1.6. The way people walk is a strong correlate of their identity. Several studies
have shown that both humans and machines can recognize individuals just by their gait, given
that proper measurements of the observed motion patterns are available. In cognitive science,
gait is considered as one of the cues that humans exploit to recognize people [Stevenage et al.
, 1999]. To give some background and provide the motivation for identification by gait, we
refer to some early experiments in this field which came from psychophysical studies. One of
the pioneering works on the peculiar nature of human motion was proposed four decades ago
by Gunnar Johansson, a Swedish psychophysicist. In his famous study of biological motion
Johansson [1973], using Moving Light Displays (MLDs), they instrumented the main joints of
a human with bright light spots. Then, just from the observation of the motion patterns of
10-12 points, subjects reported a vivid impression of human locomotion. That work postulated
that observers were able to recognize human activity (walking, running etc.) using MLDs in
less than one-tenth of a second, and were able to make judgements on the gender and identity
checking whether the gait pattern is familiar. Later on, follow-up studies were conducted in
the paradigm by altering data acquisition conditions such as blurring the dots and relocating
the position of dots Blake & Shiffrar [2007], which further confirmed that, even under indis-
tinct conditions, motion perception is remarkably robust. In one of the famous studies Sumi
[1984], a hallmark attribute associated with human motion perception was proposed that it is
vulnerable to inversion. In that study, it was observed that with inverted (upside-down) MLD
patterns, subjects perceived motion as very strange, despite biological.

All these studies strongly suggest that motion signals constitute valuable information from
which the human brain can reliably perform detection and identification of persons, support-
ing the discriminative and unique nature of human gait. This has led to a large body of work
being developed in the past few years towards recognition and identification of humans using
gait Nixon et al. [2010]; Makihara et al. [2015]. This also accentuates the significance of gait
pattern as a potential biometric tool in the surveillance application realms.

Figure 1.6: Illustrating the phases of gait. Stance Phase is the phase during which the foot
remains in contact with the ground, and the Swing Phase is the phase during which the foot
is not in contact with the ground. The stance phase occupies 60% of the gait cycle while the
swing phase occupies only 40% of it [Loudon, 2008].

Despite the past work on gait analysis, the application of gait to re-identification only
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spawned about ∼7 years ago. There are fundamental differences between the gait based recog-
nition and Re-ID problems, which lie in the structure of the domains of application. In recog-
nition, usually the operator has the control over most of the acquisition conditions, such as
camera viewpoint (often single camera), background, subject pose, illumination, the number
of persons in the acquisition, chance of occlusion, to mention a few. On the contrary, in Re-ID,
most of the conditions are uncontrolled, e.g., changes in background and illumination over a
large number of different cameras, no control on the number of people and possible occlusions,
also subjects’ direction vary a lot. Furthermore, the recognition process can be generally done
off-line, without any significant time constraints, whereas Re-ID often requires online response.
Thus, techniques that may lead to high computational costs can not be applied. Re-ID can be
viewed as a new paradigm and traditional gait recognition techniques need to be reformulated
appropriately to handle it properly. Hence, due to the more realistic and unconstrained ap-
plication scenarios, gait based person Re-ID has been receiving enormous attention from the
computer vision and biometric communities Lee et al. [2014] and several works endorsed quite
promising results.

For surveillance applications, gait is attractive because, it does not require active collab-
oration from users and is hard to fake. In addition to that, gait is unobtrusive as well as
perceivable from a distance. Key advantages of gait based applications are presented in Table
1.1. Because of all these potential advantages, visual analysis of human gait for automated
person recognition/ re-identification has been receiving unprecedented attention from the com-
puter vision and biometric communities over the past few years [Lee et al. , 2014]. The arrival
of sophisticated systems such as motion capturing devices [Josinski et al. , 2014], Kinect sen-
sors [Gianaria et al. , 2014], high definition cameras [Nambiar et al. , 2014b], as well as novel
machine learning techniques also have further catalysed novel researches in the field.

Nevertheless, vision-based automatic gait recognition is not without its own problems. The
key advantages and challenges of the use of gait in applications are presented in Table 1.1.
Gait is sensitive to certain clothing and other challenges like illness, aging, occlusions, carrying
goods. In these situations, an individual can be easily distinguished for abnormality and can
be better processed by a manual authentication system [Phillips et al. , 2002]. Also, the acqui-
sition of good quality measures of a person’s motion patterns in surveillance systems has also
proved very challenging in practice. Existing technology (video cameras) suffer from changes
in viewpoint, daylight, clothing and wear accessories, as well as other variations in the person’s
appearance. Novel 3D sensors are bringing new promises to the field, but still many research
issues are open.

Gait has found forensic applications as well, for instance, securing the conviction of a bank
robbery case and a burglary case based on the gait of the suspects [Bouchrika et al. , 2011].
Furthermore, other applications of gait analysis were also reported in physiotherapy rehabilita-
tion [Eastlack et al. , 1991], medical applications [Thompson & Nutt, 2012], assessing frailty
syndrome by checking the fall risk in elderly people [Kressig & Beauchet, 2006].

Being a soft biometric, gait enables the process of identity establishment even for long term
scenarios, which was impossible with the traditional appearance-based Re-ID techniques. A
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Table 1.1: Pros and cons of gait as a soft biometric

ADVANTAGES DISADVANTAGES
• unobtrusive • varying with illness, aging and
• cooperation of the user not necessary emotional states
• measured at far distance • varying with walking surface, shoe,
• unique for each individual cloth types, carrying objects
• cannot be easily concealed and clutter in the scenario
• hard to fake

highlighting merit of gait in contrast to the other soft-biometrics like anthropometric or face
is that gait features can encode not only the static cues but also the dynamic cues related to
the movement, which is quite interesting in terms of the video surveillance because, the video
sequences contain more spatial and temporal cues of the moving person than an independent
images. Such dynamics as well as the spatio temporal information implicitly embedded in the
multiple frames of video sequences could be exploited via the complementary gait features. The
high recognition (99.84%) rate obtained using ground truth motion capturing systems [Josinski
et al. , 2014], accentuates the potential of gait to be employed towards re-identification tasks.
Different from other biometric cues, gait contains much contextual information (e.g., frequency
and phase of walking, behavioural and social traits) that might be valuable to address the
identity management problem.

1.4 Objectives

The research in this thesis aims to improve the performance of Re-ID system by producing an
original contribution in the following areas: (a) Long term Re-ID; (b) Pose invariant Re-ID; and
(c) Contextual fusion. These scenarios and research areas will be described as follows.

• 1) Long term Re-ID :

The classical methods of using appearance based Re-ID schemes (i.e., color or texture)
encounter the issue of short-term, where the appearance based features undergo radical
changes with the change in appearance. Biometric based systems overcome such issues
by exploiting robust and stable biometric descriptors, and thus motivate towards long
term applications. One of the main objectives of this thesis is to analyse the influence of
various soft-biometric systems such as anthropometric features and human gait, in long
term 5 Re-ID. Regarding this concept, we contemplate to carry out substantial research on
the discriminative biometric features of interest, various methodologies and technologies,
as well as their verification in real world scenarios.

Another interesting study we also intend to carry out in this direction is semantic bridg-
ing, i.e., to bridge the semantic gap between biometric space and use human descriptions
to search a biometric database. Since human interpretability is one of the interesting
criteria of soft-biometrics, human can describe our peers via verbal descriptions. For in-
stance, an eyewitness description in a crime scene can help the authority to identify the

5In the context of this thesis, by Long term, we mean the time spanning over different days or weeks or even
some months. The long term span over years could be affected by many factors such as aging, illness, dressing
styles or other abnormalities. Hence, such a very long term is not considered in our work.
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criminal. Semantics based Re-ID is a relatively untouched area of research and is highly
desirable to be part of our research.

• 2) Pose invariant Re-ID :

One of the major challenges of Re-ID is the pose of the person. Based on the direction
of walking, the selected features can undergo drastic changes. Hence, in this thesis, we
also would like to conduct research on pose invariant Re-ID approaches and to propose
some novel ideas in this direction. This research aims to investigate ways to incorporate
multi-view data to solve the problem of view-dependency.

The state-of-the art methods leverage either some view transformation methods, invariant
features or 3D methods. Among them, we intend to progress towards 3D pose invariant
approaches, in which we can have view independent 3D information of the person. We
aim at implementing 3D models by dint of latest emerging technologies like KINECT,
Motion Capture (MoCap) technology, and then projecting the dynamics in 2D space for
improving the Re-ID.

• 3) Contextual fusion :

Another vital objective of this thesis work is to employ the idea of contextual fusion,
i.e., to exploit the context specific information in Re-ID system. In order to facilitate
this idea, we propose to enrich the system by incorporating with some contextual cues –
geographical and chronological information of the video sequence, position and the orien-
tation of the pedestrian related to the camera point (which can prioritize the appropriate
modality/feature for the situation) – as well as topology of the network. These cues can
help to prioritize the features based on the context. For example, when a person is far
away in the field of view, gait and appearance based attributes dominates and when he
is closer, part-based strategies (limbs, face) overwhelms the former. We anticipate to
achieve this goal by integrating the information on spatial and temporal relationships
between camera-subject or intercamera, as well as other contextual cues.

Also, we envisage to amalgamate different biometric modalities/features and thus to
make the system more robust. The rationale became evident from the prior literature
review that multi-modal fusion raises the performance level of re-identification.

1.5 Original Contributions

As per the objectives mentioned in previous Section 1.4, some proposals have been already
addressed during this thesis. In this section, we briefly highlight the works and scientific con-
tributions till date. And the remaining research directions are pointed out in Chapter7.

During this thesis, we have already proposed some novel ideas towards soft-biometry based
long-term person re-identification by dint of anthropometrics and gait. Regarding the anthro-
pometric soft biometrics, we leverage human shape as a potential biometric cue to discriminate
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people. We consider the human shape of the upper torso region, as it presents less temporal
variance with respect to arms and legs motions and thus producing more stable features. In
addition to that, since person re-identification is carried out in an uncontrolled environment,
there are less chances for clutter and other interacting objects to make the upper body part
occluded, compared to the lower parts. Similarly, another soft-biometric cue we employ in
this thesis work is dynamic features. In addition to the static body features, gait features
can also impart the dynamic information of the moving subject in the video sequences. Both
of them have tremendous potential for immediate real-world use without upgrading the vast
surveillance infrastructure. Also, two vital concepts related to Re-ID are discussed in this dis-
sertation viz., pose-invariance and contextual cues. Many often, the information related to the
direction of the data acquisition is quite significant as far as the biometric feature extraction is
considered. Hence, the impact of various view-points in those feature computation and a new
concept of Context-aware Re-ID leveraging the knowledge of view-points are studied in this
thesis.

Original contributions resulting from the research presented in this thesis are detailed in
the following section.

1.5.1 Shape based Re-ID

In this thesis, we introduce a novel descriptor for the analysis of pedestrians and its appli-
cations to person re-identification and database retrieval. A SC descriptor of the head-torso
region of persons’ silhouettes is shown to have a very good discrimination ability and appli-
cation to Re-ID. For database retrieval using human queries, we train a map from the SC to
interpretable soft biometric quantities that can be reasoned about by humans. In order to pro-
vide the best model for the regression analysis, we conducted an extensive study on the impact
of various regression schemes (both linear and nonlinear) as well as cross validation schemes
on shape context- biometrics pairs of our simulated dataset of virtual reality avatars. We
show that a nearly linear correlation exists between SC descriptors and soft biometrics quan-
tities in the upper human torso and illustrate its application to retrieval in databases from
human queries. shape context to biometrics maps are learned from virtual avatars rendered
by computer graphics engines, to circumvent the need for time-consuming manual labelling
of datasets. We obtained promising results of SC based person re-identification and database
retrieval from human compliant description of biometric traits, in both synthetic data and real
imagery.

• Athira Nambiar, Alexandre Bernardino and Jacinto Nascimento, “Shape context for soft
biometrics in person re-identification and database retrieval”, Pattern Recognition Let-
ters, 2015.

• Athira Nambiar, Alexandre Bernardino and Jacinto Nascimento, “Person Re-identification
based on Human query on Soft Biometrics using SVM Regression”, VISAPP -11th In-
ternational Conference on Computer vision Theory and Applications, Rome, Italy, 2016.
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1.5.2 Gait based Re-ID

Also in this thesis work, we analysed the impact of gait features in re-identifying people. As an
initial research, we conducted a substantial overview of different approaches in gait based re-
identification conducted in the past. As a byproduct, we also made a survey paper on the same
topic, compiling the literature survey findings. The survey paper presents a review of the work
done in gait analysis for Re-ID in the last decade, looking at the main approaches, challenges
and evaluation methodologies. We identify several relevant dimensions of the problem and
provide a taxonomic analysis of the current state-of-the-art. Finally, we discuss the levels
of performance achievable with the current technology and give a perspective of the most
challenging and promising directions of research for the future.
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Figure 1.7: A multi dimensional overview/ taxonomic analysis of the gait based Re-
identification as per carried out in our survey paper.

• Athira Nambiar, Alexandre Bernardino and Jacinto C. Nascimento, “Gait based Person
Re-identification: a Survey”, acm Computing Surveys, 2017 (submitted).

As a first proposal in gait analysis, we presented a novel methodology of re-identifying people in
frontal video sequences, based on a spatio-temporal representation of the gait based on optic
flow features, which we call Histogram Of Flow Energy Image (HOFEI). Optic Flow based
methods do not require the silhouette computation thus avoiding image segmentation issues and
enabling online Re-ID tasks. Not many works addressed Re-ID with optic flow features in frontal
gait. Here, we conduct an extensive study on Institute of Automation, Chinese Academy of
Sciences (CASIA) dataset, as well as its application in a realistic surveillance scenario- HDA

Person dataset. Results show, for the first time, the feasibility of gait re-identification in
frontal sequences, without the need for image segmentation.

• Athira Nambiar, Jacinto C. Nascimento Alexandre Bernardino, and Jose Santos-Victor,
“Person Re-identification in frontal gait sequences via Histogram of Optic flow Energy
Image”, Advanced Concepts for Intelligent Vision Systems ACIVS, 2016.

1.5.3 Towards view-point invariant Person Re-ID

After studying the performance of human shape and gait in person Re-ID, we conducted an
extensive study to analyse the influence of various features both individually and jointly. In



1.5. ORIGINAL CONTRIBUTIONS 15

particular, we applied multi-modal feature fusion of 3D soft biometric cues viz., anthropo-
metrics and gait. We exploited the MS KinectTM sensor v.2, to collect the skeleton points
from the walking subjects and leverage both the anthropometric features and the gait features
associated with the person.

In the same study, we worked towards an actual demonstration of the view-point invariant
Re-ID paradigm, by analysing the subject data collected in different walking directions. In
that analysis, we defined three different levels of pose-invariance, which we term as pseudo,
quasi and full view-point invariance, that reflect the quantity of view points available both
in the probe and in the gallery sets. Initial pilot studies were conducted on a new set of 20
people walking along four different directions, collected at the host laboratory. We illustrated,
for the first time, gait-based person re-identification with truly view-point invariant behaviour,
i.e. the walking direction of the probe sample being not represented in the gallery samples.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Towards
view-point invariant Person Re-identification via fusion of Anthropometric and Gait Fea-
tures from Kinect measurements”, VISAPP, 12th International Conference on Computer
vision Theory and Applications, Porto, Portugal, 2017.

1.5.4 Context-Aware Person Re-ID

In the previous work, we presented a soft-biometric enabled long term Re-ID framework by
exploiting human anthropometrics and gait features. We could observe that, the computation
of these features depend strongly on the view-point. For instance, a person with a short stride
gait is better perceived from a lateral view, whereas a person with a large chest is more distinct
from a frontal view. Based on this rationale, we proposed a new framework by incorporating the
information associated to the view-points (contexts), termed as ‘Context-aware ensemble fusion
Re-ID framework’. The major proposals of this work were (i) Model each view-point(context)
with a specific set of features selected with Sequential Forward Selection (SFS) algorithm, to
maximize Re-ID score in each context and (ii) Proposal of a ‘Context-aware ensemble fusion
framework’ to fuse information from different context specific classifiers using the runtime
estimate of the current context, given by an automatic context detector.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Context-
Aware Person Re-identification in the Wild via fusion of Gait and Anthropometric fea-
tures”, 2nd International Workshop on Biometrics in the Wild (BWild), in conjunction
with IEEE Conference on Automatic Face and Gesture Recognition, Washington DC,
USA, 2017.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Context-
aware Person Re-identification via Fusion of Anthropometric and Gait Features”, One
day BMVA Technical Meetings- Security and Surveillance, British Computer Society,
London, UK, 2017.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento, Ana Fred and Jose
Santos-Victor,“A context-aware method towards view-point invariance in ’in-the-wild’
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long-term Re-identification”, Special Issue on Biometrics in the Wild, Image and Vision
Computing, 2017. (submitted).

1.5.5 HDA Person dataset

Another contribution of this thesis work was the collaboration in the creation of a fully la-
belled image sequence dataset for benchmarking video surveillance algorithms. The dataset
was acquired from 13 indoor cameras distributed over three floors of one building, recording
simultaneously for 30 minutes. The dataset was specially designed and labelled to tackle the
person detection and re-identification problems. Around 80 persons participated in the data
collection, most of them appearing in more than one camera. The dataset is heterogeneous:
there are three distinct types of cameras (standard, high and very high resolution), different
view types (corridors, doors, open spaces) and different frame rates. This diversity is essential
for a proper assessment of the robustness of video analytics algorithms in different imaging
conditions. We illustrate the application of pedestrian detection and re-identification algo-
rithms to the given dataset, pointing out important criteria for benchmarking and the impact
of high-resolution imagery on the performance of the algorithms. More detais on the dataset
is available from the host institution’s dataset web page 6.

• Athira Nambiar, Matteo Taiana, Dario Figueira, Jacinto Nascimento and Alexandre
Bernardino, “A Multi-camera video dataset for research on High-Definition surveillance”,
International Journal of Machine Intelligence and Sensory Signal Processing, Special Is-
sue on Signal Processing for Visual Surveillance, Inderscience Journal, 2014.

I acknowledge with many thanks all the participants in the recording and labelling sessions
especially, Matteo Taiana and Dario Figueira. In collaboration with them, some more contribu-
tions also have been made towards fully automated person Re-ID. In those works, we proposed
an architecture for fully automated person re-identification in camera networks. Most works
on Re-ID operate with manually cropped images both for the gallery (training) and the probe
(test) set. However, in a fully automated system, Re-ID algorithms must work in series with
person detection algorithms, whose output may contain false positives, detections of partially
occluded people and detections with bounding boxes misaligned to the people. These ef-
fects, when left untreated, may significantly jeopardise the performance of the re-identification
system. To tackle this problem we proposed modifications to classical person detection and
re-identification algorithms, which enable the full system to deal with occlusions and false
positives. We show the advantages of the proposed method on a fully labelled video dataset
acquired by 8 high-resolution cameras in a typical office scenario at working hours. Since
these works are collaborative tasks and not the core of this thesis, are not explained in this
dissertation. Nevertheless, the papers resulting from this research are listed below:

• Matteo Taiana, Dario Figueira, Athira Nambiar, Jacinto Nascimento and Alexandre
Bernardino, “Towards Fully Automated Person Re-Identification ”, VISAPP 2014, 9th

6http://vislab.isr.ist.utl.pt/hda-dataset/

http://vislab.isr.ist.utl.pt/hda-dataset/
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International Conference on Computer vision Theory and Applications, Lisbon, Portugal,
January, 2014.

• Dario Figueira, Matteo Taiana, Athira Nambiar, Jacinto Nascimento and Alexandre
Bernardino, “The HDA+ dataset for research on fully automated re-identification sys-
tems”, Proc. of ECCV2014 Workshop on Visual Surveillance and Re-identification,
Zurich, Switzerland, 2014.

1.6 Outline of thesis

The remaining chapters of this thesis are structured as follows:

• Chapter2 provides a detailed literature review of existing shape and gait based re-
identification tasks. Under the gait analysis literature, detailed survey of techniques used
for feature extraction as well as robust pose invariance are also described. In addition to
that, various datasets and the evaluation metrics used for Re-ID, are also detailed.

• Chapter3 describes the implementation of the shape based person Re-ID framework used
in this thesis, with a shape context based regression approach. The system architecture,
methodology and the experimental results for both nonlinear and linear regression anal-
ysis schemes are explained in this chapter.

• Chapter4 illustrates our work of gait based Re-ID leveraging optic flow features, in the
frontal views. As a part of this, generation of a novel feature vector called Histogram Of
Flow Energy Image (HOFEI) is described by fusing the Histogram Of Flow (HOF) into the
Gait Energy Image (GEI) baseline architecture. System framework, methodology used
and the experimental results on two datasets (CASIA & HDA) are presented here.

• Chapter5 deals with the multi-modal fusion as well as pose-invariant Re-ID studies
carried out in this dissertation. Regarding the former, a thorough study of the impact of
biometric features (i.e., anthropometric and gait features) in Re-ID is carried out both
individually and jointly. To deal with the latter, a benchmark assessment is conducted
by experimenting with different view-points in the probe and gallery samples.

• Chapter6, provides another interesting aspect of context-aware re-identification, where
we incorporate the information associated to the view-points (contexts) and thus proposes
a novel ‘Context-aware ensemble fusion Re-ID framework’. In the studies conducted in
Chapter5 and Chapter6, we exploited MS KinectTM v.2 based indoor person Re-ID
set up (a new pose invariant dataset collected in house) as the test bed,by leveraging 3D
skeleton joints of the subjects.Several case-studies were conducted and the experimental
results are explained in detail in the respective chapters.

• Chapter7 concludes this dissertation with a summary of the research and a discussion
of the advantages and limitations of the work. It also provides some suggested directions
for future research in this area.
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• Appendix demonstrates our HDA dataset generation (for video surveillance benchmark-
ing applications) and KS20 Vislab Multi-view Kinect Skeleton dataset acquisition pro-
cedures.



Chapter 2

Literature Review

If I have seen further, it is by standing on the shoulders of Giants.

— Sir Isaac Newton

Pioneering research in video surveillance applications using soft biometry has been wit-
nessed in the last decade, which was enhanced with the introduction of advanced motion
capturing devices and high definition cameras. In this chapter, we mainly discuss two soft bio-
metrics - anthropometry and gait - and their major state-of-the-art researches towards person
re-identification.

2.1 Anthropometry based Re-ID: Related works

Physical body descriptions (anthropometric features) have also been used in biometric tech-
niques as an ancillary data source where they are referred to as soft biometrics, as opposed to
primary biometric sources such as iris, face etc. As mentioned earlier, soft biometric traits lack
the distinctiveness and permanence to accurately identify a person, in contrast to the hard
biometrics. In order to cope with this issue of any single soft biometric, fusion of multiple soft-
biometric traits have received huge acclaim in the biometric and computer vision communities.
The basic idea behind is that by agglomerating many soft-biometric features could construct
a reasonably unique signature. For example, in [Dantcheva et al. , 2010], a bag of soft bio-
metric traits (e.g., facial and body soft biometrics) was presented for person re-identification.
They proposed a general framework by integrating both the primary biometrics (i.e. face, iris)
and soft biometric system (i.e. height, gender)- and thus reinforce the signature uniqueness.
Similarly, [Barbosa et al. , 2012a] presented a set of 3D soft biometric cues related to an-
thropometric measurements, obtained from KINECT RGB-D sensors and employed in person
re-identification. The retrieval using soft biometrics is also addressed in [Reid & Nixon, 2011],
where they proposed a method of comparative human descriptions for soft biometrics.

The major advantages of the soft biometrics over hard biometrics are two fold: they can be
acquired even at a distance without the subject collaboration, and they are human interpretable
and hence can bridge the semantic gap between biometric traits and human descriptions. In
this thesis, we focus on the latter characteristic feature of soft biometrics which enables the

19
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system to retrieve the person right away from the human verbal description of the person.
[Sridharan et al. , 2005] proposed a facial image retrieval system that is queried using verbal
descriptions. Queries can include up to 14 defined features, composed of five Boolean descrip-
tors (e.g. presence of beard) and nine categorical labels (e.g. nose width, face length, hair
colour). In another work, [Samangooei & Nixon, 2010] developed a soft biometric system
which identifies subjects from video footage (Soton gait database). This description was com-
posed of 23 absolute categorical labels of the soft biometric traits /categorical attributes, like
hair colour, hair length, height, hip length, chest, arm length, etc., and they were described
using absolute labels. [Reid & Nixon, 2011] extended the work further by leveraging com-
parative human descriptions, which used visual comparisons between subjects. However all
the aforementioned works required laborious manual annotations over real world dataset, by a
large number of human users. We, try to automate this process by exploiting machine learning
technique and modern computer graphics technology herein. Details of the experiments carried
out are further explained in Chapter3.

In this thesis, we consider the shape information (shape context descriptor) of the upper
torso as the anthropometric traits (eg., parameters of neck, head, chest) from the edge infor-
mation of the silhouettes. Hence, here we particularly mention some of the prior works carried
out on similar approaches in the literature.

Silhouettes: Most of the state-of-the-art methods leverage either color information or local
feature descriptors inside the human body after segmenting the silhouettes. In [Truong et al. ,
2010], a robust classification procedure exploited the discriminative nature of sparse represen-
tation to perform people re-identification. [Aziz et al. , 2011a] presented a person Re-ID method
based on appearance classification and silhouette part segmentation using various descriptors
such as SIFT, SURF and SPIN. In this thesis, instead of appearance cues, we exclusively de-
pend upon contour information and propose a new way of long-term person re-identification
using silhouettes. To the best of our knowledge no complete work for person re-identification,
leveraging solely the edge information of the silhouette is reported in the literature.

Shape Context: The application of shape context (SC) in human video surveillance
systems are reported in the state-of-the-art. Some works are found in pedestrian detection
by [Leibe et al. , 2005], highlighting that SC descriptor trained on real edge images exhibited
high performance, particularly on difficult images and backgrounds. Some application of SC

have also been employed in gait recognition [Zhang et al. , June 2009] where SC is used to com-
pute the similarity between two Procrustes Mean Shape, which is a compact representation of
gait sequence. A similar application of SC is found in human pose estimation [Agarwal & Triggs,
2004]. However, the literature is scarce concerning the use of SC in Re-Identification (Re-ID)
applications. One exception is [Wang et al. , 2007] that created shape labeled images by means
of shape and appearance models which was inspired from the idea of shape context. Another
work [Kviatkovsky et al. , 2013], used SC descriptors to represent the intra distribution of colors
for person re-identification. In our work, we propose shape context features computed on the
contour of the silhouette of frontal images of persons. Our studies on the topic is discussed in
Chapter3.
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2.2 Gait based Re-ID: Related works

The traditional approaches for gait feature extraction are classified into two major categories:
model free approaches and model based approaches [Wang et al. , 2010]. Model free ap-
proaches acquire gait parameters by performing measurements directly on 2D images, without
adopting specific model of human body or motion (e.g. silhouettes, optic flow, history of move-
ments). Thus, they are simple and faster. However, they are data- driven and hence highly
prone to the occlusions, pose and scale variance, camera view angle, direction of walking, cloth-
ing/appearance change [Chen et al. , 2009]. On the contrary, model based approach makes
use of explicit gait models, whose parameters are estimated using the underlying kinematics of
human motion in a sequence of images (e.g., step dimensions, cadence, human skeleton, body
dimensions, locations and orientations of body parts and joint kinematics). These methods
mostly focus on gait dynamics and are more resistant to problems like changes of view and
scale. However, the model based methods are often computationally expensive due to the
large number of parameters that need to be fitted [BenAbdelkader et al. , 2004], necessity for
high-quality data, and other difficulties of determining the position of joints in arms and legs.

Classical model based approaches consist in structural models (usually 2D or 3D) and mo-
tion models. Structural models define the human topology as functions of the body parameters,
whereas the motion models determine the kinematics of the motion of each body part. The
model based techniques either model the body or the walk of the person as it will appear in
the imagery. They are more robust to a variety of factors (changes in the appearance of walk-
ing person due to clothing, carrying goods, background) and typically yield better recognition
results compared to model free approaches in inter-class conditions [Sivapalan, 2014]. Some
acclaimed works in model based approaches are [Bobick & Johnson, 2001; Sivapalan et al. ,
2011; Gianaria et al. , 2014], to quote a few.

The model free approaches, in contrast to model based approaches, don’t require interme-
diate 2D or 3D geometric or kinematic models. Model free methods characterize the whole
motion pattern of the human body by analysing the variations in the silhouette shapes or body
motion over time, regardless of the underlying structure. They circumvent the difficulties in
fitting models to data and are computationally simpler compared to the model based approach.
Nevertheless, they are sensitive to view angle, pose and scale. Since the model fitting process
is very challenging in complex backgrounds, uncontrolled environments, and occlusions, most
works on these conditions use model free approaches. Some acclaimed works in model based
approaches are [Han & Bhanu, 2006; Sarkar et al. , 2005; Goffredo et al. , 2008; Nambiar et al.
, 2012], to quote a few.

In this thesis, we consider the model-free gait analysis technique, leveraging optic flow fea-
tures. Hence, here we particularly mention some of the prior works carried out on similar
approaches in the literature. Nevertheless, we have already conducted a rich survey on the
various gait based Recognition/ re-identification schemes in our survey paper.

Energy Image: One of the most acclaimed research in model free gait recognition viz.,
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GEI by [Han & Bhanu, 2006], presented the idea of generating spatio-temporal description
by averaging the normalized binary silhouette over gait cycle. Afterwards, a large number
of variants of GEI’s were introduced, which formed the basis of many recent model free gait
recognition systems e.g., Active Energy Image (AEI) [Zhang et al. , 2010], Gait Entropy Im-
age (GEnI) [Bashir et al. , 2010], Gradient Histogram Energy Image (GHEI) [Hofmann &
Rigoll, 2012], Frame Difference Energy Image (FDEI) [Chen et al. , 2009] etc.

Optic flow: The idea of HOF was adopted from Histogram of Oriented Gradients (HOG),
which divide the image into cells and compile a histogram of gradient directions, weighed by
its magnitude for the pixels within each cell [Dalal & Triggs, 2005]. The same approach has
been extended to the optic flow and the spatial derivatives of its components [Dalal et al.
, 2006; Moreno et al. , 2015]. Optic flow and their histograms have also been proposed for
gait analysis such as in [Bashir et al. , 2009] by using motion intensity and direction from
optical flow field, while in [Lam et al. , 2011] a silhouette based gait representation has been
used to generate gait flow image. In the field of optic flow based gait recognition also some
energy image concepts were proposed in the recent works by [Yang et al. , 2014] and [Lam
et al. , 2011]. However, both of those works were reasonably insufficient to convey the motion
information of the whole human body since their optic flow measurements are on the binary
silhouette edges.

Much inspired from the aforementioned literature studies, here we propose a novel spatio-
temporal gait representation termed as Histogram Of Flow Energy Image (HOFEI), which is
a dense descriptor computed over the entire body parts. Different from the aforementioned
literature on Optic flow based gait recognition conducted in the lateral view, we demonstrate
the potential of our proposal in the front view (in HDA and CASIA dataset), for which no similar
state-of-the-art using Optic flow has been reported (explained in Chapter 4). However, there
have been some works in CASIA dataset frontal sequences, leveraging the binary silhouettes for
gait recognition. Chen et al [Chen et al. , 2009] demonstrated the performance of various gait
features including GEI, Gait History Image (GHI), Gait Moment Image (GMI), FDEI. in each
view angle, from frontal to rear view. We will show that our proposed method is competitive
with this state-of-the-art, while using an optic flow method, which does not require silhouette
segmentation.

2.3 View-invariant person Re-ID: Related works

Many of the classical Re-ID systems found in the literature were built on appearance based fea-
tures [Doretto et al. , 2011; Riccio et al. , 2014], exploiting the colour/ texture of the clothing.
Some works discussed view-point invariant techniques by exploiting 3D scene information, pose
priors etc. [Bak et al. , 2014, 2015; Wu et al. , 2015]. However, those approaches were not
pertinent towards long term Re-ID applications, where the appearances change drastically. In
recent years, a new trend employing biometric information has blossomed, owing to the pre-
cise and advanced data capturing machines (e.g. HD cameras, motion capture, kinect sensor),
especially in analysing the 3D body information that enables view-point invariance.

Many works have been proposed towards view-point invariant Re-ID. In [Zhao et al. , 2006],
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[Iwashita et al. , 2010] multiple 2D cameras were used to reconstruct the 3D volumes and thus
achieve view-point invariance. Other works use multiple 2D cameras to fit 3D models in the
volumetric data e.g. 3D ellipsoids [Sivapalan et al. , 2011], articulated cylinders [Ariyanto &
Nixon, 2011] and 3D volume shape by the intersection of projected silhouettes [Seely et al.
, 2008]. Current state-of-the-art view-point invariant techniques are presented in [Iwashita
et al. , 2014], [Fernández et al. , 2016]. In [Iwashita et al. , 2014], a method using a 4D gait
database was proposed. At each frame of a gait sequence, the observation angle is estimated
from the walking direction by fitting a 2D polynomial curve to the foot points. Then, a vir-
tual image corresponding to the estimated direction is synthesized from the 4D gait database.
[Fernández et al. , 2016] presents a multi-view-point gait recognition technique based on a
rotation invariant gait descriptor derived from the 3D angular analysis of the movement of the
subject. In addition to them, many multi-view gait recognition methodologies have also been
developed in the last decade, which also could be extended towards person identification appli-
cation e.g., a multi-view gait recognition method using activity-specific biometrics [Johnson
& Bobick, 2001], incorporating view transformation models (VTM) to facilitate the mapping
among different view angles [Kusakunniran et al. , 2009], fusion of different feature subspaces
of aperiodic feature representations [Padole & Proença, 2017], cross capture modality named
BackfilledGEI(BGEI) [Sivapalan et al. , 2012] etc. to name a few.

Some works exploiting view-point invariant RGBD sensors (e.g. kinect) have also been
proposed in the literature. In the work by [Barbosa et al. , 2012b], they leveraged the soft-
biometric cues of a body for person Re-ID. However they used only the static body information
i.e. skeleton based features and surface based features, in the frontal view. Later, some works
employed the gait features as well, e.g. stride and arm kinematics [Gabel et al. , 2012], knee
angles [Aarai & Andrie, 2013], anthropometric and dynamic statistics [Gianaria et al. , 2014],
anthropometric and angles of lower joints [Andersson & Araujo, 2015].

In our work, we build on the aforementioned state-of-the-art works by proposing some
novel ways of improving the Re-ID algorithm, in terms of feature extraction, feature fusion and
impact of view angles. In particular, we examine the Re-ID accuracy of various anthropometric
and gait features via both individual as well as joint schemes. In addition, we explicitly
conduct a view-point invariant Re-ID scenario by collecting video sequences of people walking in
different directions, whereas previous related works collect data in a much controlled predefined
single direction say, frontal or lateral. Our reserach work on pose-invariant Re-ID is described
in Chapter5.

2.4 Context-aware person Re-ID: Related works

The arrival of KinectTM RGBD sensor gave rise to unprecedented advancements in the bio-
metric and computer vision community, to devise many sophisticated techniques allowing view
point invariance. Many Re-ID works utilizing Kinect data have been reported in the literature.
By exploiting soft-biometric cues in contrast to the primarily appearance cues (colour or tex-
ture), they promote long term person Re-ID. In one of the earlier works viz., [Barbosa et al.
, 2012b], a specific signature built from a composition of several soft biometric (e.g., skeleton
and surface based features) cues extracted from the depth data, was computed for each sub-
ject. Then, Re-ID was accomplished by matching these signatures against the test subjects
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from the gallery set. Similarly, person re-identification from soft biometric cues was also ad-
dressed in another work [Munaro et al. , 2014b], where skeleton descriptors (by computing
several limb lengths and ratios) and shape traits (using point cloud shape) were used in order
to re-identify people. In [Gianaria et al. , 2014] both anthropometric features (e.g., height, leg
length, etc) and dynamic parameter related to gait (e.g., knees movement, head oscillation)
were used. Also, in [Andersson & Araujo, 2015] a methodology to extract anthropometric and
gait features was addressed showing the results of applying different machine learning algo-
rithms on subject Re-ID tasks. However, in those approaches, the acquisitions were conducted
in a constrained manner i.e., in a particular view-point. In our work, we build upon the state-
of-the-art works but in a less constrained conditions, by explicitly imposing view-point changes
in the dataset and by exploiting relevant features in each of those view-points (contexts). See
Chapter6 for details.

Many definitions of context were encountered in the literature, depending on its field of ap-
plication. According to the dictionary, context is defined as “the surroundings, circumstances,
environment, background or settings that determine, specify, or clarify the meaning of an event
or other occurrence” [wik, n.d.]. In our work, we define context as the view-point setting, un-
der which features are computed. The application of context has been reported in diverse
fields, for instance, in customer behaviour applications [Palmisano et al. , 2008], where the
context is viewed as the intent of a purchase (e.g. context of a gift). In [Ding et al. , 2011],
an application for Re-ID of the subject from instant messaging in a web surfing navigation
is proposed. The context is the special characteristics of chatting text (e.g. content, token,
syntax and structural based features). In [Panniello et al. , 2016] context was used for on-
line customer re-identification, where the intent was to investigate whether customer behavior
models of the context (in which a transaction takes place), can increase client re-identification
performance. The contextual information is interpreted as the time of day when or the location
where digital data was created. Few works, however, addressed the concept of context within
the re-identification setting as we propose in this paper. In particular, [Zhang et al. , 2014]
proposed a Re-ID paradigm which leveraged heterogeneous contextual information together
with facial features. In particular, they used clothing, activity, human attributes, gait and
people co-occurrence as various contexts, and then integrated all of those context features us-
ing a generic entity resolution framework called RelDC. Some other recent Re-ID works utilized
context as a strategy for refining the classical Re-ID results via re-ranking technique [Leng
et al. , 2015; Garcia et al. , 2015]. In those works, in addition to the content information of the
subjects, they also paid attention to the context information (k-common nearest neighbors) to
fine tune the Re-ID results. From our literature review, it was comprehended that context is
a new tool whose effectiveness in Re-ID applications is yet to be completely explored.

2.5 Datasets available for soft-biometrics based Re-ID

In this section, we describe the various datasets available towards long-term person Re-identification
exploiting soft-biometrics. Since we focus our research upon static and dynamic body biomet-
ric measurements (i.e., anthropometric and gait) in order to identify people, we herein mention
concerned datasets in both of those areas. Section 2.5.1 refers to the gait based datasets pub-
licly available. Since gait analysis is independent of the appearance cues and hence make it
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available for long term invariance, we include all the possible unconstrained gait databses. For
the anthropometry based long term Re-ID (see Section 2.5.2), we ignore all the appearance
based Re-ID since they are short-term oriented, and concentrate on the datasets acquired via
depth sensors. These sensors provide depth and skeleton data which are less subject to daily
variations of a person’s appearance than RGB images.

2.5.1 Gait based Re-ID datasets:

There are a plethora of publicly available datasets for video surveillance applications such as
traffic monitoring, action recognition, subject tracking, person detection, etc. Among them,
only a few can be adopted for gait based Re-ID. Since the gait based Re-ID demands a spatio-
temporal evaluation of the walking pattern, gait based Re-ID datasets require multiple-shot
image sequences with several complete gait cycles. The databases for gait Re-ID research usu-
ally necessitate a large number of subjects and camera angles which are captured in realistic
surveillance scenarios under very general conditions. In this section, we enumerate the datasets
available for gait based Re-ID, i.e., those containing different view angles of walking as well as
multiple-shot (continuous gait frames) video data sequences, which more faithfully represent
the conditions of gait based Re-ID scenario. Hence, even though there are many gait analysis
and person Re-ID data sets available publicly1, not all of them could be used towards gait
based Re-ID since they contain either controlled gait sequences (e.g., MoBo [Gross & Shi,
2001], Multi Biometric Tunnel [Seely et al. , 2008]) or single or nonsequential frame images
( e.g., VIPeR [Gray & Tao, 2008], GRID [Loy et al. , 2009], CAVIAR4REID [Cheng et al.
, 2011]). The nature of the background, the type of cameras employed in the framework, and
the viewpoint and gait direction in the image sequences have a significant influence on the
analysis algorithms and the performance evaluation.

–CASIA: It is one of the largest and more popular databases in gait analysis and related
research2. It contains four different datasets: Dataset A Wang2003 is an outdoor gait dataset
consisting of 20 people walking in 3 directions (lateral (90 degrees), frontal (0 degrees) and 45
degrees). Dataset B is an indoor gait dataset composed of 13640 samples acquired from 124
subjects at 11 different views Yu2006. Dataset C is collected using an infrared camera from 153
subjects at four different conditions (normal, slow, fast, normal with a bag). Dataset D was col-
lected simultaneously with a camera and a Rscan Footscan 3 on 88 subjects. In most of the gait
analysis works, Dataset A and Dataset B are widely used due to their realistic mode of data
acquisition Liang2003,Sivapalan2012. Specifically for Re-ID applications, Dataset B is well
suited since it addresses the issue of pose, by acquiring the scene with a network of 11 cameras,
each with a view angle separation of 18 degrees. In Wei2015,Nambiar2016b,Liu2015,Lu2014 it
was employed in gait based Re-ID.

–SOTON: The SOTON4 database Nixon2006 was developed at the University of Southamp-
1This page collects all public datasets that have been tested by person Re-ID algorithms.

https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/
reiddataset.html

2http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
3http://www.rsscan.com/footscan/
4http://www.gait.ecs.soton.ac.uk/

https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html
https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
http://www.gait.ecs.soton.ac.uk/
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(a) (b)

(c) (d)

Figure 2.1: Shot examples from (a) CASIA indoor dataset (b) CASIA outdoor dataset [Wang
et al. , 2003b] and (c) SOTON large dataset [Nixon & Carter, 2006] (d) Multi-biometric tunnel
[Seely et al. , 2008]. Both CASIA and SOTON database contain the indoor and outdoor
scenarios. Nevertheless, they are captured in highly controlled conditions, very dissimilar to
a typical surveillance environment. Hence, these databases are well suited for gait recognition
rather than re-identification.

ton, with the principal aim of developing new technologies for recognising people at a distance.
It is composed of a large and a small database. The former consists of nearly 114 subjects
and over 5000 samples but contains little variability (each subject was filmed from only two
different views over three separate scenarios). The small database contains only 12 persons but
is more complete regarding the covariates (change in clothing, accessories and different speeds).
For the large database three scenarios are analyzed, namely outside, inside track, and inside
treadmill, whereas the small database contains subjects walking with different appearances,
and at various speeds, all collected in the indoor scenario. The SOTON dataset has been used
for gait recognition Bashir2010,Wang2012,Wei2015 as well as gait based Re-ID [Wei et al.
, 2015].

–USF: The USF5 dataset Sarkar2005 contains 1870 sequences acquired from 122 subjects.
It comprises elliptical movements of people walking in front of cameras. For each person, up
to five covariates were manipulated such as shoe type, bag carried, type of surface, viewpoint
and time instants. The data was collected over four days, in which 33 subjects were the same.
Some of the works using the USF dataset are [Han & Bhanu, 2006; Zhang & Viola, 2007;
Wang et al. , 2012]. Human identity recognition using USF database has been presented in
Lu2014.

–SAIVT: Recently, a multi-camera surveillance database SAIVT6 was created by Bialkowski
et al. [Bialkowski et al. , 2012] for the evaluation of person recognition and Re-ID models
in realistic surveillance scenarios. The database consists of unconstrained walking video se-
quences of 150 people, collected inside a building. Eight surveillance cameras acquired images

5http://figment.csee.usf.edu/GaitBaseline/
6https://wiki.qut.edu.au/display/saivt/SAIVT-SoftBio+Database

http://figment.csee.usf.edu/GaitBaseline/
https://wiki.qut.edu.au/display/saivt/SAIVT-SoftBio+Database
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(a)

(b)

(c)

Figure 2.2: Example of video frames from (a) SAVIT [Bialkowski et al. , 2012], (b) AVAMVG
[López-Fernández et al. , 2014] and (c) HDA Person dataset [Nambiar et al. , 2014b] . All of
these datasets are collected indoor under multi-camera networks. They provide data of realistic
uncontrolled conditions, with significant variation in the pose, illumination and camera view
angle.

of resolution 704×576 pixels at a framerate of 25 frames per second. The dataset provides
a highly unconstrained environment for testing person Re-ID models in conditions that are
closer to real scenarios. Gait based Re-ID employing SAIVT dataset has been published in
the literature [Bedagkar-Gala & Shah, 2014].

–AVAMVG: The AVA Multi-View Dataset for Gait Recognition AVAMVG7 [López-
Fernández et al. , 2014] is another recent dataset directed towards robust recognition. It
collects data of 20 people walking along ten trajectories each, using six calibrated cameras
with different views angles. Images have a resolution of 640 x 480 pixel and are acquired at
25Hz. The database has been specifically designed to test gait recognition algorithms based
on 3D data. The binary silhouettes of each video sequence are also provided. Some works in
multi-view and viewpoint-independent gait analysis using the AVAMVG dataset are [Castro
et al. , 2014; Fernández et al. , 2016].

–HDA person dataset: HDA8 dataset is a multi-camera video dataset mainly dedicated

7http://www.uco.es/investiga/grupos/ava/node/41
8http://vislab.isr.ist.utl.pt/hda-dataset/

http://www.uco.es/investiga/grupos/ava/node/41
http://vislab.isr.ist.utl.pt/hda-dataset/
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to benchmarking video surveillance algorithms such as person detection and Re-ID [Nambiar
et al. , 2014b]. It is a fully labeled image sequence dataset, collected using 13 indoor cameras
for a duration of 30 minutes. More than 64,000 annotations were performed on a total of more
than 75,000 frames. The dataset is quite diverse in terms of types of cameras (standard, high
and very high resolution), environment types (corridors, doors, open spaces) and frame rates
(5fps, 2fps, 1fps). Several of the acquired image sequences are in the HR range (1,280×800
pixel and 2,560×1,600 pixel), which makes the HDA dataset the first one to include labeled
video sequences of such resolution. Extended versions of the dataset have been published viz.,
HDA+ dataset [Figueira et al. , 2014] along with a novel framework towards fully automated
person Re-ID [Taiana et al. , 2014]. Some gait based Re-ID works employing HDA datasets
are also available in the literature [Nambiar et al. , 2016c; Wang et al. , 2016].

–i-LIDS: The Imagery Library for Intelligent Detection Systems i-LIDS is the U.K. gov-
ernment’s benchmarking dataset towards video analytics systems. It comprises a library of
CCTV video footage collected from various scenarios mainly categorized as event detection
and object tracking scenarios. Among them, the i-LIDS multiple camera tracking (MCT) sce-
nario was collected inside a busy hall using five cameras at 25fps. 119 people were captured,
but the average image count per person is four, which is very few for gait based applications.
The presence of occlusions and quite large illumination changes make this dataset very chal-
lenging for the Re-ID task. An extended versions of i-LIDS dataset, iLIDS-VID9 is presented
in [Wang et al. , 2014]. Re-ID research works using i-LIDS have been conducted in the recent
years [Zheng et al. , 2009]. In particular, [Bouchrika et al. , 2016] presented identity tracking
across multiple cameras using i-LIDS and [Wang et al. , 2016] presented gait based Re-ID
using i-LIDS-VID dataset.

–TUM-GAID:A new freely available database or multimodal gait recognition was pro-
posed by [Hofmann et al. , 2014]. It is denoted GAID10 (Gait from Audio, Image and Depth)
and contains RGB video, depth, and audio concurrently. It is composed of recordings from
305 people in three variations, making it as one of the largest to-date. A second subset of 32
people was recorded to further investigate challenges of temporal variability. Some gait based
Re-ID research works employed TUM-GAID dataset are [Geiger et al. , 2014; John et al. ,
2013].

–PRID2011: This dataset was created for the purpose of testing person Re-ID ap-
proaches11 [Hirzer et al. , 2011]. It consists of image frames extracted from two static camera
recordings, depicting people walking in different directions. Images from both cameras con-
tain variations in viewpoint, illumination, background and camera characteristics. 475 and
856 person trajectories were recorded via individual cameras, with 245 persons appearing in
both views. The dataset has two versions: a single-shot scenario and a multi-shot scenario.
PRID2011 has been employed in gait based Re-ID applications in [Wang et al. , 2016].

9http://www.eecs.qmul.ac.uk/˜xz303/downloads_qmul_iLIDS-VID_ReID_dataset.html
10https://www.mmk.ei.tum.de/verschiedenes/tum-gaid-database/
11https://lrs.icg.tugraz.at/datasets/prid/

http://www.eecs.qmul.ac.uk/~xz303/downloads_qmul_iLIDS-VID_ReID_dataset.html
https://www.mmk.ei.tum.de/verschiedenes/tum-gaid-database/
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–PETS2009: A widely known dataset is PETS12 [Ferryman & Shahrokni, 2009] presented
at the 2009 edition of the international workshop on performance evaluation of tracking and
surveillance. It was recorded in a public space outdoor scene at University of Reading, UK. It
is a multi-camera system consisting of 8 cameras, and it contains three sequences with different
crowd activities in a real world environment. The partial dataset that addresses person track-
ing consists of three subclasses based on their subjective difficulty level, associated with the
density of the crowd. Refer to [Baltieri et al. , 2011b] for some benchmarking results. Since
the dataset provides multi-shot sequences with multiple viewpoints, this is useful towards gait
based Re-ID. In [Bouchrika et al. , 2016], gait based Re-ID and tracking across multiple
non-intersecting cameras have been applied to the PETS2009 dataset.

–ETZH: The ETZH13 dataset [Ess. et al. , 2007] is a dataset originally proposed for
human detection. It contains four video sequences captured with a moving stereo rig, thus pre-
senting an additional challenge given by the moving cameras. Albeit people’s pose, appearance
and scene illumination have a reasonable degree of variation, most of the viewing angles are
quite similar (frontal). It consists of full frames and bounding box annotations. Some works
using the ETHZ dataset in Re-ID application are [Farenzena et al. , 2010; Zhao et al. , 2013].
Since full frames with multi-shot sequences are available, this dataset could be employed for
gait based Re-ID applications.

–3DPeS: 3D People Surveillance Dataset 3DPes14 [Baltieri et al. , 2011a] is a dataset
designed mainly for person Re-ID and tracking. The dataset was captured by a multi-camera
network of eight different cameras within a real surveillance scenario. Data were collected on
different days. Since it is an outdoor dataset, it presents high variations of light conditions.
Background models of the cameras are available and the 1012 snapshots of 200 persons are
provided with silhouette masks and bounding box information. Some more details and bench-
marking results on person Re-ID can be found in [Vezzani et al. , 2013; Baltieri et al. , 2015].
Some works have already proposed to use 3DPeS dataset in future work for gait based Re-
ID [Kawai et al. , 2012].

–KinectREID: One of the few person Re-ID datasets collected using the Kinect sensor
in an unconstrained environment is KinectREID 15 [Pala et al. , 2015]. The purpose of the
dataset is to provide data to test and evaluate algorithms of person re-identification using
features extracted from the Kinect sensor: anthropometry, gait and appearance of the clothes
using both the skeleton features and RGB-D data. It is composed of many video sequences of
71 people, acquired indoor at various illumination conditions and various angles: three front,
three behind and a side. Also, appearance variations i.e., carrying backpacks, bags or other
accessories were incorporated in the dataset.

–Vislab KS20: The KS20 Vislab Multi-view Kinect Skeleton dataset16 [Nambiar et al.

12http://www.cvg.reading.ac.uk/PETS2009/a.html
13https://data.vision.ee.ethz.ch/cvl/aess/dataset/
14http://www.openvisor.org/3dpes.asp
15http://pralab.diee.unica.it/it/PersonReIdentification
16http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/

http://www.cvg.reading.ac.uk/PETS2009/a.html
https://data.vision.ee.ethz.ch/cvl/aess/dataset/
http://www.openvisor.org/3dpes.asp
http://pralab.diee.unica.it/it/PersonReIdentification
http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/
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Table 2.1: Characteristics of the main public datasets applicable to gait based Re-ID
Name #Camera #Image

resolution
#People Scenario Main application

CASIA-datasetA 1(3 views) 352x240 20 Outdoor Gait recognition
CASIA-datasetB 11 320x240 124 Indoor Gait recognition
SOTON (large) 6 20 114 Indoor Gait Recognition
USF 2 720x480 122 Outdoor Gait recognition
SAIVT 8 704x576 150 Indoor person recognition & Re-ID
AVAMVG 6 640 x 480 20 Indoor Gait recognition
HDA dataset 13 2560x1600

(max)
85 Indoor Person detection & Re-ID

i-LIDS (MCT) 5 576x704 119 Indoor Person tracking
TUM-GAID 1(Kinect) 640x480 305 Indoor Gait recognition
PETS2009 8 768x576 (NA) Outdoor Person detecion
PRID2011 2 64 x 128 245 Outdoor Person Re-ID
ETHZ 1(stereo) 640 x 480 (NA) Outdoor Person detection & tracking
3DPeS 8 704x576 200 Outdoor People Tracking and Re-ID
KinectREID 1(Kinect) vary 71 Indoor person Re-ID
Vislab KS20 1(Kinect) NA 20 Indoor person Re-ID

, 2017a] is a new dataset collected by the authors, in the context of long-term person re-
identification. It comprises of multi-view Kinect skeleton (KS) data sequences collected from
20 walking subjects using Kinect v2. The major motivation behind the creation of this dataset
was the lack of similar Kinect datasets consisting of people walking in different view-points,
in order to assess the pose invariant long term Re-ID. Multiple walking sequences along five
different directions i.e., Left lateral (LL at ∼0◦), Left diagonal (LD at ∼30◦), Frontal (F at
∼90◦), Right diagonal (RD at ∼130◦) and Right lateral (RL at ∼180◦) were collected. Alto-
gether it has 300 skeleton image sequences collected from 20 subjects (3 video sequences per
person in a particular viewpoint) in the aforementioned directions.

There are many other datasets individually available for Re-ID (e.g., Viper [Gray et al.
, 2007], CAVIAR4REID [Cheng et al. , 2011]) and gait analysis (e.g., TUM-IITKGP Gait
Database [Hofmann et al. , 2011], KY 4D Gait Database B [Iwashita et al. , 2014]). However,
since we focus on the gait based Re-ID, we confine the search for the best among the set that
serves our goal. Only those datasets made available for public access are described in this
section; the other datasets proposed by single authors, as well as the local datasets are not
considered. The details of the datasets above are summarized in Table 2.1.

(a) (b) (c)

Figure 2.3: Image samples from (a) PETS2009 (b) ETHZ and (c) 3DPeS datasets. All of them
are outdoor surveillance scenarios, among which ETHZ has mobile cameras.
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2.5.2 Anthropometry based Re-ID datasets:

In this section, we explain the datasets acquired using depth sensors which can provide the 3D
body information, which is mostly insensitive to the appearance variations, and thus facilitate
towards long-term person Re-ID.

–RGB-D Person Re-identification Dataset: The RGB-D dataset17 [Barbosa et al. ,
2012b] is a dataset proposed for person re-identification using depth information. The key
objective of this dataset was to promote RGB-D re-identification research. It is composed of
four different groups of data viz., Collaborative, Walking1, Walking2 and Backwards, collected
using the Kinect upon 79 people. The acquisitions were performed in different days, with
changes in appearances. Thus, this dataset is very well suited towards anthropometric based
long-term person Re-iD analysis, leveraging RGB-D sensor information. Five synchronized
data channels for each person were provided : 1) a set of 5 RGB images, 2) the foreground
masks, 3) the skeletons, 4) the 3d mesh (ply), 5) the estimated floor.

–BIWI RGBD-ID dataset: Another similar RGB-D dataset proposed to perform long-
term people re-identification from RGB-D cameras was BIWI RGBD-ID18 [Munaro et al. ,
2014b].It consists of video sequences of 50 different subjects, performing a certain routine of
motions in front of a Kinect, such as a rotation around the vertical axis, several head move-
ments and two walks towards the camera.The dataset includes synchronized RGB images,
depth images, persons’ segmentation maps and skeletal data, in addition to the ground plane
coordinates. The videos are acquired at about 10fps.

–IAS-Lab RGBD-ID Dataset: Yet another long-term people re-identification dataset
leveraging depth information is IAS-lab RGBD-ID19 [Munaro et al. , 2014a].It contains 11
training and 22 testing sequences of 11 different people. The dataset includes synchronized
RGB images, depth images, persons’ segmentation maps and skeletal data, in addition to the
ground plane coordinates. These videos have been acquired at about 30fps. For every subject,
three sequences were collected making rotations and walkings, also in different clothings and
at different room.

–RobotPKU RGBD-ID dataset: Another very recent dataset is RobotPKU RGBD-ID
dataset20 [Liu et al. , 2017]. The motivation behind this dataset was to perform more extensive
experiments on a larger amount of data, and they collected RGB-D dataset called RobotPKU
RGBD-ID Dataset with Kinect sensors. This dataset contains 180 video sequences of 90 per-
son, and for each one the Still and Walking sequences were collected in two different rooms.
This dataset includes RGB images, depth images, persons’ segmentation maps and skeletal
data.

17https://www.iit.it/research/lines/pattern-analysis-and-computer-vision/pavis-datasets/
534-rgb-d-person-re-identification-dataset

18http://robotics.dei.unipd.it/reid/index.php/8-dataset/2-overview-biwi
19http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
20https://github.com/lianghu56/RobotPKU-RGBD-ID-dataset

https://www.iit.it/research/lines/pattern-analysis-and-computer-vision/pavis-datasets/534-rgb-d-person-re-identification-dataset
https://www.iit.it/research/lines/pattern-analysis-and-computer-vision/pavis-datasets/534-rgb-d-person-re-identification-dataset
http://robotics.dei.unipd.it/reid/index.php/8-dataset/2-overview-biwi
http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
https://github.com/lianghu56/RobotPKU-RGBD-ID-dataset
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-TVPR dataset: The TVPR (Top View Person Re-identification)21 [Liciotti et al. , 2016]
dataset is a recently released dataset for top-view based person Re-ID. It stores depth frames
(640x480) collected using Asus Xtion Pro Live in top-view configuration. This setup choice
is primarily due to the reduction of occlusions and it has also the advantage of being privacy
preserving, because faces are not recorded by the camera. The 100 people of TVPR were
acquired in 23 registration session.

Also, the Kinect based datasets mentioned in the gait based Re-ID i.e.,KinectREID dat-
set,Vislab KS20 datasets are also available for anthropometry based Re-ID, since they comprise
of multiple frames of walking image sequences. Hence, they are not repeatedly mentioned here.
The summary of the anthropometry based long-term Re-ID datasets are presented in Table
2.2

Table 2.2: Characteristics of the main public datasets applicable to anthropometric based
long-term Re-ID

Name #People #View-points #Frame
rate

#Video sequence Depth
sensor

RGB-D 79 Front, Rear 20 316 sequences Kinect v1
BIWI RGBD-ID 50 Rotation, front 10 50 training and 56

testing sequences
Kinect v1

IAS-Lab RGBD-ID 11 Rotation, front 30 11 train and 22 test
sequences

Kinect v1

RobotPKU
RGBD-ID

90 Front, rear, rotation 30 180 video sequences Kinect v1

TVPR 100 Top 30 23 registrations Asus
Xtion

KinectREID 71 Front, rear, lateral 30 483 video Kinect v1
Vislab KS20 20 Left/ right lateral, left/

right diagonal, frontal
30 300 walking video se-

quences
Kinect v2

2.6 Re-ID performance evaluation metrics

Depending on the scenario and context of the application, the evaluation metrics employed in
the Re-ID task may also vary accordingly [Vezzani et al. , 2013]. One noteworthy point is that
for either appearance based or biometric based Re-ID, the evaluation metrics used are the same
and therefore, in this section we analyse the performance evaluation metrics used for person
Re-ID problem, in general. Here we present the different alternatives available for particular
implementations of re-identification as either recognition or identification, as mentioned in
Section 1.2.1. The major difference between recognition and identification is that the former
has to point detected subject as a specific pre-defined unique subject (classification problem),
whereas the latter has to establish the unique identity of the subject, without prior knowledge
in an unsupervised manner (clustering problem).

2.6.1 Re-ID as recognition

CMC curve: To evaluate the performance of Re-ID algorithms in closed-set scenarios, the
cumulative matching characteristic (CMC) curve [Grother & Phillips, 2004; Phillips et al. ,

21http://vrai.dii.univpm.it/re-id-dataset

http://vrai.dii.univpm.it/re-id-dataset
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2000] is the most acclaimed and popular method of choice. The CMC curve shows how often,
on average, the correct person ID is included in the best K matches against the training set,
for each test image [Nambiar et al. , 2014b]. In other words, it represents the expectation of
finding the correct match in the top K matches. Suppose a test sample (probe) is given rank-k,
i.e., the subject is ranked in position k by the identification system. Since the identification
rate is an estimate of the probability that a subject is identified correctly at least at rank-k,
the identification rate is necessarily an increasing function of k and hence the name cumulative
matching curve.

CMC measures how well the system ranks the identities in the enrolled database given the
“unknown” probe image. Hence, the Re-ID task is considered as a recognition problem, with
the assumption that only one sample class in the gallery corresponds to the query. As a result,
the Re-ID output is given as a ranked list of gallery classes, based on some matching similarity
to the query probe. Many often, this analysis is conducted by the forensics analysts during
their investigation process, while evaluating a large set of image sequences against the probe
[Vezzani et al. , 2013]. A comprehensive characterization of the CMC curve for evaluation or
recognition problems is given in [Moon & Phillips, 2001], where it was originally proposed for
the evaluation of face-recognition algorithms (on FERET image sets).

Fig.2.4(a) shows a typical CMC curve for the re-identification of a gait sample on a dataset
of 8 people (an experiment conducted by the authors). Five persons were correctly re-identified
in the first rank, which is represented by 62.5% in the cumulative rank 1. While considering
top two matches, two more people were correctly re-identified (7 correct matches) thus im-
proving the CMC curve towards 87.5%. And, this continues until all the people are properly
re-identified. One key feature of CMC is that in a plot that includes all possible ranks (e.g.,
if the dataset has eight people, and the CMC goes through rank 8), the probability of iden-
tification is 100% at the highest rank (i.e., at rank 8). As a closed set identification process,
it is showing the identification rate for the entire database. Many works in the area of gait
analysis, as well as re-identification, employ CMC e.g., [Kale et al. , 2003; Farenzena et al. ,
2010; Bialkowski et al. , 2012; Nambiar et al. , 2012, 2014b].

(a) (b)

Figure 2.4: Simple gait re-identification test with 8 persons with 2 sequences for training and 1
sequence for testing, per person. (a) Cumulative Matching Characteristic (CMC) curve showing
the re-identification rate against the rank score (Rank1 accuracy= 62.5%);(b) Confusion Matrix
showing the Re-ID accuracy.
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Confusion Matrix: Another way of depicting the results of the re-identification is with
the help of the confusion matrix. Each column of the matrix represents the instances in a
predicted class, and each row represents the instances in an actual class (some examples are
found in [Nambiar et al. , 2015; Middleton et al. , 2005; Bialkowski et al. , 2013; Aziz et al.
, 2011b]). Each entry of the matrix contains the fraction of predicted cases classified as the
actual ones. Diagonal terms express the accuracy of recognizing each class, and off-diagonal
elements represent false classifications. The more “diagonal” is the matrix, the more accurate
is the method. The confusion matrix inherits its name by the ability to inspect the cases
of confusion, i.e. which classes are similar to the correct one and may lead to erroneous
classifications. For instance, the confusion matrix of the Re-ID case conducted above for 8
people is depicted in Fig. 2.4(b). We could observe that Person ID 1, 2, 4, 7 and 8 were
correctly classified leading to an accuracy of 62.5% while matching the predicted person ID
vs actual person ID (i.e., person ID 3,5 and 6 were confused). This accuracy is same as the
percentage of persons correctly re-identified in the first rank of CMC curve.

Performance visualization: A common qualitative method for representing the ranked
list of gallery class against the test query is via visual representation. This is usually accom-
plished by plotting the ranked set of persons’ bounding boxes (see Fig. 2.5). For the subjective
analysis and the on-the-fly interpretation of the achieved result, this qualitative method is of
great help. See some similar Re-ID results in [Vezzani et al. , 2013; Layne et al. , 2012].

(a)

(b)

Figure 2.5: Performance visualization: Examples of queries made in HDA person dataset
reidentified by the methodology described in [Figueira et al. , 2013]. The probe query is
shown at the left side and the top 8 results in the ranked Re-ID order is shown. The correct
match is highlighted in green. (a) Test person is correctly identified in rank 1 (b) Test person
correctly identified in rank 2.

2.6.2 Re-ID as identification

Precision-Recall (P/R) statistics: In Re-ID scenarios related to identification/ verification,
there may be instances to classify that are outside of the knowledge base. In this case, evalua-
tion typically uses precision and recall (P/R) statistics. Another scenario where these metrics
are suitable is, for instance in a shopping mall, where we want to track people in a camera
network, but do not require their real identity. This scenario is similar to data clustering,
where the correspondences among the set of people instances without prior knowledge have to
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be established. Then, each cluster relates to an individual.

The performance evaluation of such a system works similar to a verification system, where
it checks if two instances belong to the same person (1:1 biometric verification system). This
analysis includes checking occurrences of false positives 22 and missed detections 23. To fairly
evaluate false positives, and appreciate the effect of missed detections, precision and recall
statistics are more suitable than the CMC.

Precision =
CorrectIdentifications

TruePositiveDetections + FalsePositiveDetections

=
CorrectIdentifications
NumberofDetections

(2.1)

(a) (b) (c)

Figure 2.6: Traditional curves used to evaluate the performance of Re-ID as a biometric iden-
tification/ verification system; (a) Precision-recall curve in the Re-ID experiment [Hamdoun
et al. , 2008]; (b) FAR and FRR measures; (c) receiver operating characteristic (ROC) curve.

Recall =
CorrectIdentifications

TruePositiveDetections + MissedDetections

=
CorrectIdentifications

NumberofPersonAppearances

(2.2)

An excerpt from [Hamdoun et al. , 2008] depicting a P/R curve is presented in Fig. 2.6
(a). Also some other Re-ID works employing PR curves are [Aziz et al. , 2011b; Figueira
et al. , 2014; Satta et al. , 2014; Shi et al. , 2015]. Another interesting metric derived from
precision-recall pair is F1-score (also F-score or F-measure), which acts as a measure of a test’s
accuracy. The F1 score can be interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and worst at 0 (see some works in [Figueira et al.
, 2014; Cancela et al. , 2014]).

FAR and FRR: There are some other standard biometric evaluation measures used in
particular identification/ verification problems, viz., FAR, FRR, Receiver Operating Charac-
teristics (ROC) curve and Decision Error Trade-off (DET) curve, that can also be used for
re-identification. In biometric access control systems, it is common to use the trade-off be-
tween false acceptance rate (FAR) and false rejection rate (FRR). FAR is the percentage of

22False positive is an error in data reporting in which a test result improperly indicates presence of a condition,
when in reality it is not

23Missed detection (false negative) an error in which a test result improperly indicates no presence of a
condition, when in reality it is present
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accepted non-genuine (impostor) individuals with the total acceptance made by the system.
It is a measure of the likelihood that the system incorrectly accepts an access attempt by an
unauthorized user. Similarly, false rejection rate (FRR) is the percentage of rejected genuine
individuals compared to total rejects made by the system. It is the measure of the likelihood
that the system will incorrectly reject an access attempt by an authorized user. Fig. 2.6 (b)
shows a pictorial representation of false acceptance rate (FAR) and FRR.

An ideal human identification system requires the recognition performance with both FAR

and FRR at zero level. Since it is impractical in real world applications, the threshold is
determined by the type of application. For example, if Re-ID is to provide access control/
authentication purposes, the system prefers to keep FAR as low as possible (lower the access
chance for impostors). In some other situations like forensic scenarios, the preference would be
to reduce FRR, since we don’t want to reject genuine individuals connected to the crime activ-
ity. FAR-FRR application to gait based person Re-ID was reported in Jungling et al. [Jungling
& Arens, 2010], as well as in gait recognition [Wang et al. , 2003a].

Receiver Operating Characteristics: Receiver operating characteristic (Receiver Op-
erating Characteristics (ROC)) curves are a well-accepted measure to express the performance
of 1:1 matches. ROC curve plot is created by plotting the true positive rate (TPR- genuine users
accepted) against the false positive rate (FPR- impostor users accepted) at various threshold
settings (see Fig. 2.6 (c)). Since TPR is equivalent to sensitivity and FPR is equal to 1 - speci-
ficity, the ROC graph is sometimes called the sensitivity vs (1 - specificity) plot as well. Each
point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular
decision threshold. The best possible prediction method would yield a point in the upper left
corner or coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives)
and 100% specificity (no false positives). Therefore, the closer the ROC curve is to the upper
left corner, the higher the overall accuracy [Zweig & Campbell, 1993].

An alternative to the ROC curve is the DET graph. A DET curve plots the false negative rate
(missed detections) vs. the false positive rate (false alarm) on non-linearly x- and y-axes. Some
instances of the applications of ROC and DET measures in gait analysis and Re-ID scenarios
could be found in [Sivapalan et al. , 2012; Wang et al. , 2003a; Sivapalan et al. , 2011; Liao
et al. , 2014].

2.6.3 Re-ID in forensics

In addition to the application in surveillance, Re-ID has found applications in forensics as well.
As we have already mentioned the application of FAR and FRR evaluation metrics in forensic
scenarios, there are also other standard measures commonly used for the same.

Likelihood Ratio: The likelihood ratio (LR) is a traditional measure in the forensics
arena [Aitken & Taroni, 19995]. The LR is a standard measure of information that summarizes
in a single number, the data support for a hypothesis [Perlin, 2010]. It is a good legal and
scientific standing that underlies the credibility of forensic science in court by quantifying the
belief in a hypothesis. Basically, LR is the ratio of two probabilities of the same event under
different hypotheses. For two events, say A and B, the probability of A given B is true, divided
by the probability of event A given B is false, is termed as a likelihood ratio [Vezzani et al. ,



2.6. RE-ID PERFORMANCE EVALUATION METRICS 37

2013].

Likelihoodratio(LR) =
P r(A|B)

P r(A|¬B)
(2.3)

In crime scenarios, Pr(E|S) is the probability of the evidence (E) if the suspect is the source
(s) of evidence, and Pr(E|U) is the probability of the evidence if an unknown (U) is the source
of evidence, then likelihood is calculated as follows

Likelihoodratio(LR) =
P r(E|S)
P r(E|U)

(2.4)

Some applications have been reported in DNA analysis [Perlin, 2010] and in gait recognition
[Muramatsu et al. , 2014].
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Chapter 3

Anthropometry based Person
Re-ID

Don’t look for me in a human shape. I am inside your looking.

— Rumi

The direct computation of soft biometric features from video images is not trivial and exist-
ing methods rely on human manual measurements made on individual images [Reid & Nixon,
2011]. Instead, automated computer vision analysis methods have been more successful with
features that are not interpretable by humans, like SIFT [Lowe, 2004], HOG [Dalal & Triggs,
2005], Shape Context [Belongie et al. , 2002] and others. These features, though useful in
automated methods, are hard to reason about by humans and thus not suited for formulating
verbal descriptions of search queries in databases. For instance, we would like to be able to
search on a database for persons with large torso, thin neck, long head, etc. Thus, we propose
a methodology to infer soft biometric person characteristics from their computer vision based
descriptors, using regression analysis.

Obtaining a predictive model of soft biometric features from computer vision features in-
volves several challenges and difficulties: (i) which computer vision features are more adequate;
(ii) how to obtain the ground truth biometric features to train the model and; (iii) hwhich re-
gression model is more suitable.

With respect to the first point, we propose the use of shape context (SC) features com-
puted in the upper-torso part of the frontal human silhouettes, where we capture the human
images from their video clips walking towards the camera. The upper torso region of the body
presents less temporal variance with respect to arms and legs motions, thus producing more
stable features. In addition to that, since person Re-Identification (Re-ID) is carried out in an
uncontrolled environment, there are chances for clutters and other interacting objects making
the lower body part occluded. In many indoor surveillance systems cameras are placed along
corridors at high positions and tilted down, which makes the legs and lower torso occluded
when persons are close to the camera. However, the head to chest region, unlike the waist and
legs, maintain a relatively consistent shape through a broader range of walking frames. A real
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world example (video sequence in the HDA dataset 1) where this effect is clear is shown in Fig.
3.1.

Figure 3.1: Image showing the relevance of head-to-chest region for person re-identification: A
forward walking sequence captured in our HDA dataset highlights the visibility of head-to-chest
region in most of the frames, while the other parts are occluded.

The use of a silhouette based feature is motivated by the fact that it is less sensitive to
the color and texture of the inner region of person’s images and thus making itself a better
candidate towards long term based person Re-ID. Furthermore, the shape context (SC) feature
computes the density of boundary points at various distances and angles. As such, it more
directly encodes soft biometric traits such as lengths, curvatures and size ratios in the human
body. We explore this idea with the goal of recovering the soft biometric features encrypted in
the SC descriptors of body silhouettes using regression methods.

The second challenge is the availability of ground truth biometric features to train the
regression model. It is not easy to model this in a real environment due to the necessity of a
range of variations of discriminative biometric features in relatively large population. Also, it
is laborious to annotate the human biometrics manually on real data. In order to tackle this
issue, we used Synthetic Avatars in a Virtual reality platform. In contrast to [Reid & Nixon,
2011], where the training set was generated by manual annotations done on real imagery by
a large number of human annotators, here we avoid such a troublesome training phase by
generating the ground truth with the help of modern computer graphics technology.

We leverage on the ability to simulate thousands of variations in biometrics on avatars
according to our choice for two purposes. First we conduct a baseline study to verify the im-
pact of our descriptor for Re-ID, since the simulated avatars provide flawless silhouette images.
Second, we model the regression between computer vision based features SC and human inter-
pretable Biometric Features (BF) and thus bridge the gap between the human and machine
interpretations of human body shape. Thus we present a novel automatic person retrieval sys-
tem which could work in dual mode (viz., multimedia mode or human query mode) depending
on the test data.

For obtaining some geometric features of the head to chest region, distinguishable from per-
son to person, some measurable metrics which vary significantly within the population should
be chosen. The measurement and study of such features and their variation is the domain of
anthropometry. An anthropometric survey (ANSUR) was conducted by the U.S. military in
1988 upon more than 150 anthropometric dimensions, measured from 9000 soldiers [Gordon

1http://vislab.isr.ist.utl.pt/hda-dataset/

http://vislab.isr.ist.utl.pt/hda-data set/
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Figure 3.2: The scheme presents the framework of our human identification system. The probe
data can be either the images/videos of the subject to identify (Scenario#1 ), or a description
of the subject provided by a human operator such as eyewitness statement in a criminal scene
(Scenario#2 ).

et al. , 1989]. A statistical summary of those standard biometric features related to the upper
torso regions is provided in Table 3.1. In our study, we consider some of those key biometric
features described here.

Table 3.1: A summary of anthropometric data taken from [Gordon et al. , 1989] relevant in
the upper torso region. These statistical summaries reveals significant variation in the head
and chest measures (all measurements are in centimeters). The features shown in bold letters
are some of the soft biometric cues used in our study

Measurement Name Mean Standard
Deviation

Min Max

Biacromial Breadth 39.70 1.80 33.0 45.10
Bideltoid Breadth 49.18 2.59 41.0 59.3
Head width 15.51 0.60 13.6 17.7
Head circumference 56.77 1.54 51.4 62.7
Head Length 20.02 0.72 17.6 22.6
Chest Breadth 32.15 2.55 25.70 42.20
Thelion length 27.24 1.81 22.2 34.2
Neck circumference 37.96 1.97 31.6 47.0
Shoulder circumference 117.52 6.04 96.6 142.4
Shoulder-elbow length 36.9 1.79 29.7 44.6
Shoulder length 15.05 1.10 11.4 18.5

The third challenge is to find the best regression model, indicating the relationship between
biometric features and image features. Concerning this, we employ both choices - linear and
non-linear regression schemes under the Support Vector Regression (SVR) framework. i.e., by
employing SVR as the instance of regression, with linear as well as nonlinear kernels. We also
conduct an extensive study on the selection of meta parameters for each of these kernels and
finally, we devise the best among them for the design of the regression block in our system.
A detailed explanation of our experimental dataset, SVM regression, the choice of basis, meta
parameters and the cross validation strategies are provided in section 3.2.2.
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3.1 System Architecture

The general framework of our Re-ID system is presented in Fig. 3.2. Our scheme is designed
to work in two different modes depending on application scenarios. In the first scenario
(Scenario#1 ), the test images/ videos of the subject to identify are provided, whereas in
the second mode (Scenario#2 ) the probe is solely a verbal query or a description of the
subject provided by a human operator. The former scenario mainly concerns the use of mul-
timedia content for re-identification of a suspect in a video surveillance network by extracting
his feature descriptors and matching with gallery database. The latter scenario instead does
not require any multimedia content but exploits the eye-witness description of the suspect
related to biometrics cues such as short neck, large chest etc. We note here that these human
descriptions are analogous to human compliant labeling referred by [Dantcheva et al. , 2010]
or semantic annotation referred by [Samangooei et al. , 2008]. Rather than re-identifying,
this mode is more pertinent towards categorizing the population based on their respective
human compliant traits and thus retrieving their identifier (#ID). Since many people could
have similar semantic labels resulting in subject interference, grouping them into classes with
similar traits could be the best technique to tackle this issue. This is a kind of pruning method,
which normally the security people do manually on receiving the human queries; we do it here
automatically.

The general framework of the system is presented in Fig. 3.2. In the training phase, human
video footage is acquired in a video surveillance system and stored in gallery. The camera
network is connected to the SC descriptor module, where the acquired persons’ SC features
are extracted. These extracted SC features are stored in a gallery database for later use. The
database is accessible by the feature matching module, which has the purpose to compare the
feature descriptor of the person we want to identify (i.e., the probe) with the ones stored in
the database. In Scenario#1 , when a new image frame of the person is acquired, his SC

descriptor is extracted and compared with those in the gallery set. In the decision module,
based on the matching similarity measurements, the most similar person ID in the training set
is retrieved thus facilitating the system for person Re-ID.

Soft biometric 
values

Rendering 
Graphics 
engine

Shape context  
descriptor 
extraction

Gallery 
Database of  
SC features

Train Regression 
parameters

Figure 3.3: Framework for training the regression model

Another major module of the system in the training phase is a regression block connected to
the database of SC features. It divulges the relation of SC descriptors with soft biometrics, and
it estimates BF corresponding to each sample. These estimated biometric values are stored in
a gallery database of biometrics, which is connected to decision module. The decision module
analyses these biometric data and carries out a statistical analysis among the population. In
Scenario#2 , when the probe input in terms of human query enters in the decision module,
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it will examine the statistical profile of the population and retrieve the category of suspect.
As a result, all the person IDs’ in the suspected category, as well as the tentative ranked list
of suspect are published.

To learn the regression module, we require a vast and vivid benchmarking dataset to sub-
stantiate the mapping between SC feature space and biometric space. For that purpose, we
generate avatars in virtual reality and carry out regression analysis. When a new SC feature
is received, the corresponding output biometric values are estimated based on this regression
model. In addition to that, a virtual reality population is also employed to verify our method-
ology towards person re-identification and to compare with the counterpart experiment in real
scenario.

3.2 Methodology

This section describes the main ingredients of the proposed approach. Basically it comprises:
(i) computation of the SC features from the images containing the head and torso, (ii) matching
the SC between two head-torso silhouettes and (iii) the statistical regression analysis between
SC and the space of BF.

3.2.1 Feature extraction

Shape Context

The original idea of shape context (SC) was described in the paper of [Belongie et al. , 2002].
In order to achieve the shape similarity or the shape distance, they introduced a new descriptor
called shape context, which measures the distribution of points in a shape relative to each point
in that shape.

Fig. 3.4 depicts the method of obtaining SC descriptors. The silhouette of an object is
sampled at N discrete points along the contours, P= (p1,p2,....,pN). For a point pi, a coarse
histogram hi of the relative co-ordinates of the remaining N-1 points is identified and is termed
as the SC of pi:

hi(k) = #{q 6= pi : (q− pi) ∈ bin(k)} (3.1)

Thus, a compact and highly discriminative descriptor is computed as the distribution over
these relative positions. A uniform binning scheme in log-polar space is adopted making the
descriptor much more sensitive to nearby sample points than to those farther away. As shown in
Fig. 3.4(c), we use 12 equally spaced angle bins and 5 equally spaced log-radius bins, altogether
making the dimension of the SC as 60. In contrast to the closed object shapes proposed in
the original work, we apply the re-sampling on the open shape of the silhouette, i.e., we don’t
consider the cropping line in the chest. To represent each silhouette (Fig. 3.4(a)) we used
40 points uniformly sampled from the Canny edges (Fig. 3.4(b)). Then we flattened and
concatenated the complete set of 40 sample point SC each with 60 dimensions, thus producing
a SC histogram of dimension 2400.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Shape context computation. (a) Silhouette of upper human body part (b) Sampled
edge points of the silhouette shape (c) Diagram of log-polar histogram bins used in computing
the SC. We have used five bins for logr and 12 bins for θ. (d,e,f) corresponds to the SC for
reference samples marked by 4, © and �. Visual similarity of the SC for nearby points 4, ©
is pretty obvious whereas the SC of the � point, is quite different. (Note: Dark= large value)

Matching Shape Context

In order to compare two different shapes we must define a similarity metric. To mitigate
problems of misalignments of the silhouettes’ sampling points due to discretization, a previous
alignment step is necessary. Two criteria are to be met while matching SC features: (1)
corresponding points should have very similar descriptors, and (2) the correspondences should
be unique.

First criteria is handled via cost matching technique. Let Cij denote the cost of matching
two sample points pi and qj in two different shapes, by means of χ2 test statistics

Cij = C(pi, qj) = 1
2

K∑
k=1

[hi(k)− hj(k)]2

[hi(k) + hj(k)] (3.2)

where, hi(k) and hj(k) denote the K -bin normalized histogram at pi and qj, respectively. Given
the set of costs Cij between all pairs of points, the uniqueness criterion is addressed as follows.
To match two shape contours say, P and Q, we minimize the total cost of matching

H(π) =
∑
i

C(pi, qπ(i)) (3.3)

subject to the constraint that the matching is one-to-one, i.e., π is a permutation. This
is an instance of the square assignment (or weighted bipartite matching) problem. In our
experiments, we make use of the Hungarian algorithm [Harold, 1955].

3.2.2 Regression

Regression analysis is a statistical process for estimating the relationships among variables.
The technique is widely used in machine learning for prediction and forecasting. It is also
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helpful to understand which among the independent variables are related to the dependent
variable, and to explore the forms of these relationships. Here, the relationship between SC

and BF features is learned via Regression analysis. We exploit Support Vector Regression (SVR)
as an instance of regression, and we experiment with linear and non-linear kernels.

Referring to Fig. 3.5, we can understand that a semantic bridge between machine derived
computer vision features and the human interpretable biometrics features is realised via a
Regression module. The rationale is that, by dint of this regression module, the relationship
of verbal descriptions and their corresponding images could be learned a priori. And, hence,
when a verbal query is made in the biometric space, the system can easily relate it to with its
counterpart in the image space.

Figure 3.5: The functional diagram of the Regression scheme in our proposed architecture.

Support Vector Regression

Support Vector Machines [Cortes & Vapnik, 1995] can be applied not only to classification
problems but also to the case of regression [Smola & Schölkopf, 1998], [Chapelle & Vapnik,
1999]. Analogous to Support Vector Classification, the produced model depends only on a
subset of the training data, in SVR as well. In ε-SVR [Vapnik, 1995], the goal is to find a
function f(x) that has at most ε deviation from the desired targets yi for all the training data.
In other words, ignore errors as long as they are less than ε, but will not accept any deviation
larger than this.

Training the original SVR as per [Smola & Schölkopf, 2004] is mentioned below. Suppose
the training data {(x1, y1), ....(xn, yn)} ⊂ X × R where, X denotes the space of the input
patterns. (e.g. X = Rd). More specifically, (x1, , ....xn) is the set of independent variables and
(y1, , ....yn) is the set of corresponding dependent variables in the training set. Consider linear
functions f, taking the form

f(x) =< w, x > +b, w ∈ X , b ∈ R (3.4)
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where < ., . > denotes the dot product in X with w being the normal vector to the separating
hyper plane, and b being the bias term. Solving this convex optimization problem according to
[Vapnik, 1995] yields the formulation below. In order to cope with the infeasibile constraints
of the optimization problem, slack variables ξi, ξ∗i are introduced.

minimize
1
2 ||w||

2 + C

n∑
i=1

(ξi + ξ∗i ),

s.t.


yi− < w, xi > −b ≤ ε+ ξi

< w, xi > +b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(3.5)

The constant C > 0 determines the trade-off between the flatness of such a function f and
the amount up to which deviations larger than ε are tolerated. This corresponds to dealing
with a so called ε-insensitive loss function |ξ|ε described by

|ξ|ε =

0, if |ξ| ≤ ε

|ξ| − ε, otherwise
(3.6)

To extend this towards nonlinear functions, the main strategy is dual formulation. Hence,
the optimization problem could be transformed into a dual problem and its solution is given
by:

f(x) =
n∑
i=1

(αi − α∗i )K(xi, xj) + b, s.t.,

0 ≤ α∗i ≤ C,

0 ≤ αi ≤ C
(3.7)

where, αi, α∗i are the dual variables and K(xi, xj) is the Kernel function.
The performance (estimation accuracy) of Support Vector Regression (SVR) depends on

a good setting of meta parameters. The problem of optimal parameter selection is further
complicated by the fact that SVM model depends on those kernel parameters.

Choice of Basis

We tested two kinds of regression bases: (i) Linear basis

K(xi, xj) ≡< xi, xj > (3.8)

which implies that the regressor is linear with respect to the input vector; (ii) Radial basis
kernel as an instance of nonlinear basis, where

K(xi, xj) ≡ exp(−γ||xi − xj||2), γ = 1
2σ2 (3.9)

The kernel trick avoids the explicit mapping that is needed to get linear learning algorithms to
learn a nonlinear function; instead we use Kernel functions. We apply various regression anal-
ysis, on both of these Linear SVR and Nonlinear SVR, also by tuning their meta parameters.
The forthcoming section explains the process in detail.
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Kernel Parameters

We leverage the ε-SVR package from LIBSVM 2 library for SVM regression analysis. The
meta-parameters to set are the cost, the kernel width, and the width of the insensitive zone,
respectively C, γ and ε in equations (3.5), (3.9) and (3.6).

Parameter C determines the tradeoff between the model complexity (flatness) and the de-
gree to which deviations larger than ε are tolerated in optimization formulation. For example,
if C is too large (infinity), then the objective is to minimize the empirical risk only, without
regard to model complexity part in the optimization formulation.

Parameter ε controls the width of the ε-insensitive zone, used to fit the training data. The
value of ε can affect the number of support vectors used to construct the regression function.
For lower ε, fewer support vectors are selected. On the other hand, bigger ε values results in
more ‘flat’ estimates. Hence, both C and ε values affect model complexity.

Another important RBF parameter is γ, which will determine the width of the Gaussian
kernel used i.e., γ = 1

2σ2 . Increasing γ will increase the curvature of the fitting curve. Intu-
itively, γ defines how far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. The gamma parameters can be seen as the
inverse of the radius of influence of samples selected by the model as support vectors.

Grid search and Cross validation

It is not known beforehand which values of C and γ are best for our problem. Consequently,
we carry out some kind of model selection (parameter search) by means of exhaustive “grid
search”. The ultimate goal is to identify good (C,γ) so that the SVR can accurately predict the
unknown data (testing data). In “grid search”, different pairs of values are tried and the one
with the best cross-validation accuracy will be chosen. We applied the baseline approach of
trying exponentially growing sequences of C and γ. (C =2-15,2-13.....,215; γ=2-15,2-13.....,215).
For each pair, we measure the prediction error (Mean Squared Error (MSE)), and the lowest
MSE corresponds to the best result. MSE of a predicted value ŷ of a regression’s dependent
variable y is computed for n different samples as follows:

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (3.10)

Consequently, the corresponding C and γ values which produced the least MSE are considered
as the best meta parameters.

Also, in order to overcome the problem of overfitting, we carry out cross-validation. Cross-
validation is a model validation technique for assessing how the results of a statistical analysis
will generalize to an independent dataset. One round of cross-validation involves partitioning

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm


48 CHAPTER 3. ANTHROPOMETRY BASED PERSON RE-ID

a sample of data into complementary subsets, performing the analysis on one subset (called
the training set), and validating the analysis on the other subset (called the validation set). To
reduce variability, multiple rounds of cross-validation are performed using different partitions,
and the validation results are averaged over the rounds. In our experiment, we analyzed two
different modes of cross validation:

(a) K-fold cross validation: We first divide the training set into k subsets of equal size.
Sequentially, one subset is tested using the regressor trained on the remaining k-1 subsets.
This rotation estimation will go on k times, and finally, the prediction errors MSE over k folds
will be averaged to produce a single estimation.

(b) Stratified K-fold cross validation: In stratified k-fold cross validation, the folds
are selected such that each set contains approximately the same percentage of samples of each
target class as the complete set. “Stratified” cross-validation is a simple variant of classical k
fold cross-validation. When we do the initial division into k parts, we ensure that each fold
has got approximately the correct proportion of each of the class samples. It basically makes
sure that we choose a division that has approximately the right representation of class values
in each of the folds. It helps reduce the variance in the estimate a little bit more.

After the cross validation is done, we will get a single estimation of the measure of fit
viz., the average MSE Train3 and the corresponding meta parameters. Based on this model,
we train the whole system so that whenever the test data enters, it will estimate the output
variables.

3.3 Experimental setup

We conducted the experiments in two modes (refer to our Re-ID system in Fig. 3.2). First, we
carry out experiments in Scenario#1 to study the feasibility of upper torso SC for person
Re-ID. Initially we conduct a study with an existing person Re-ID dataset. However, the real
world scenario is prone to segmentation noise. Thus, in order to validate our system in a noise
free environment, we conducted our second experiment in a simulator platform, using virtual
reality avatars. We simulated custom avatars corresponding to the humans in the real world,
and conducted our experiments on them as well.

The second mode of experiments is done in Scenario#2 . Here, we explore the relationship
between SC descriptors and BF by means of regression. Thus, we bridge the gap between human
and the machine definition of biometrics with aid of computer vision and machine learning
techniques. One noteworthy aspect is that in both experimental modes, the system doesn’t
require the co-operation of the subject as in hard-biometric data acquisition, thus making this
soft biometric system very suitable for surveillance applications, where such cooperation is
hard to achieve.

3Note that, we define MSE Train and MSE Test as the MSE obtained in both the training and test sets.
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(a) (b)

Figure 3.6: (a) Sample images and corresponding silhouettes in our real-world experiment. (b) Pixel
count value curve facilitating the automatic cropping of the upper body region by observing the minima
point in the neck.

Scenario#1

We conducted a pilot study in the real world, where we incorporate the human silhouettes
captured using KINECT camera in RGB-D person re-identification dataset 4 [Barbosa et al.
, 2012a]. Along with each human image, corresponding human silhouette information is also
provided. An example of the dataset is seen in Fig. 3.6(a). For our studies, we made use
of their ‘walking1’ and ‘walking2’ categories, where we can obtain frontal appearance of the
walking people. As a case study we only used 20 people, each one with 4 samples. There are
images with different backgrounds, and the same person in different dressing, thus making the
dataset very suitable to study the impact of our methodology in long-term person identification
based on shape of the silhouette.

Since we are interested only in the upper torso region, we split the body into two parts and
select only the region of interest i.e., upper part. Then we try to localize the neck location,
which could be acted as key point. As seen in Fig. 3.6(b), the pixel count along the row of
the image is plotted against the row number, which depicts the variation of the silhouette’s
thickness. We apply moving average filter to smooth out the fluctuations in the data curve. A
key point corresponding to the neck is found by searching the minimum in the curve. Next,
a standard amount of height equal to head to neck, is added towards bottom onto the chest
region from the neck point in order to define the crop line in the chest. Afterwards, we nor-
malize the height and rescale the width of the cropped region, maintaining the aspect ratio.

Prior to conducting the experiment of person re-identification, we had to apply some initial
pre-processing steps to address the problem of silhouette imperfection mostly occurring due to
segmentation errors and pixel noise. To get rid of the void spaces in silhouettes and to attain
data quality, we applied morphological operations such as dilation followed by erosion. After-
wards, while the silhouettes are ready for our experiment, we equally split the dataset into half.
Former set is the training set and the latter is the test set. In real world scenario, out of 80
sample images, we have 40 samples in both gallery and probe, i.e., 2 samples per 20 different
persons are made available in both training and test set. Afterwards, the SC descriptor for
each silhouette in the gallery is calculated. When the test set is provided, its matching cost

4http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html

http://www.iit.it/en/data sets-and-code/data sets/rgbdid.html
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towards each of the 40 gallery samples is found using the Hungarian method. Then, each test
sample will search for the minimal cost between itself and the gallery descriptors. The gallery
sample with minimal cost (i.e., maximum similarity) and is selected as the best matching.

Custom avatars for re-identification: In the previous section we discussed about the
experiments conducted in real database. In this section we evaluate the influence of the noise
of the segmentation while extracting the head-to-torso region. To perform this study, we
replicate the real dataset with virtual reality avatars leveraging computer graphics tool (the
game engine Unity3D R©) that allow us to render and manipulate the shape of synthetic humans.

We used some standard avatar packages viz. Male character pack and female character
pack from Mixamo 3D5 character animation service and Character Pack 02 from Animation
arts Creative GmbH6. We modelled the custom avatars as close as the corresponding human
instances by matching their shape traits and incorporating the posture and inclination of shoul-
ders. Samples of the real human instances and their corresponding custom avatar models are
illustrated in Fig. 3.7. After generating the custom avatars, we executed walking animations
of these avatars and captured random 4 frames for each person which resembled the video
surveillance image acquisition. Thus our virtual reality dataset also consisted of 80 synthetic
samples corresponding to the 20 human instances in real world experiment. Then, we split
them into gallery and probe and conduct descriptor matching in the same way conducted for
real world dataset.

(a) #female1 (b) #female2 (c) #male1 (d) #male2

Figure 3.7: Sample instances of custom virtual avatars simulated corresponding to the real
world dataset.

Scenario#2

Generic Avatars for regression: Albeit we simulated Custom avatars in our previous ex-
perimental setup, the dataset was limited in terms of variability of biometric features since
only 20 human instances were generated in the simulator. In order to compute the regression
model between SC features and BF, this was not enough to represent variation range of the real
human population. Thus, we introduced a more global avatar set called as Generic avatars,
by imposing larger variabilities as observed in the human population. Such a generic popula-
tion is preferred over custom avatars for modelling the regression map, since it covers wider
ranges of features. By incorporating extremal shapes, the generic dataset provides a higher

5https://www.assetstore.unity3d.com/en/#!/publisher/150
6https://www.assetstore.unity3d.com/en/#!/publisher/6659

https://www.assetstore.unity3d.com/en/#!/publisher/150
https://www.assetstore.unity3d.com/en/#!/publisher/6659
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signal-to-noise ratio7 available for regression analysis.

Figure 3.8: Six standard avatars used in the synthetic platform for the generation of large
dataset by changing the biometric features. We make use of only the upper-torso region
including head, shoulder and chest.

Again we exploit the graphics engine Unity3D R© to simulate the multiple avatars in virtual
reality. Here we used 6 standard avatars viz. Male character pack and female character pack
(shown in Fig. 3.8) from Mixamo 3D character animation service, as the baseline avatars. The
default avatars models available in the package were considered as standard models, in which
we assumed a unitary scale factor of each biometric measurement (see Fig. 3.9(a)). Afterwards,
we generated the other avatars by imposing variations to the biometric features with respect to
this standard model in the Unity3D R© platform. The scale parameters of the avatar examples
are defined by analysing the variability in real world human population. Here are the biometric
features we employ in our experiment:

• Neckness (N) : length of the neck
• Chestsize (C) : horizontal distance between the lateral margins of the upper torso
• Bodysize (B) : Overall body size
• Headlength (HL) : maximum vertical length of the head
• Headwidth (HW) : maximum horizontal width of the head

Table 3.2: Chart showing the soft biometric scale factors for the simulated avatar versions
in Figure 3.9. Values highlighted in bold characters in each row represents the modification
imposed for that particular avatar.

Avatar
Index

Neckness
(N)

Chestsize
(C)

Bodysize
(B)

Headlength
(HL)

Headwidth
(HW)

Human
description label

(a) 100% 100% 100% 100% 100% Standard
(b) 200% 100% 100% 100% 100% Large neck
(c) 300% 100% 100% 100% 100% Very large neck
(d) 100% 200% 100% 100% 100% Large chest
(e) 100% 300% 100% 100% 100% Very large chest
(f) 100% 100% 50% 100% 100% Thin body
(g) 100% 100% 200% 100% 100% Fat body
(h) 100% 100% 100% 125% 100% Long head
(i) 100% 100% 100% 100% 125% Wide head

Table 3.2 shows the soft biometric parametrization imposed for simulating generic avatar
population. Each value in the table corresponds to the scale applied to the standard model
counterpart of that anthropometric measurement. We alter the biometric values one at a time
by keeping other features intact. Thus, as per mentioned in the table, we can have 8 different

7Considering the noise in the SC features as constant (discretization noise), a higher variability in the range
of the features (signal) will result in a better signal-to-noise ratio that will improve the quality of the regression
model.
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modified avatar models generated out of the standard avatar, by altering each biometric feature
individually. Fig. 3.9 shows an example of the different virtual avatar samples generated out
of a single basic standard avatar.

Fig. 3.9(a) shows a standard avatar where all the parameters are normalised (100%). Fig.
3.9(b) and Fig. 3.9(c) correspond to 200% and 300% Neckness, which intuitively means those
models’ neck length is twice and thrice longer compared to the standard one. Fig. 3.9(d)
and Fig. 3.9(e) illustrate the 200% and 300% chest sized avatars respectively. Thin body size
and Fat body are generated in Fig. 3.9(f) and Fig. 3.9(g) by setting scaling the body size
parameter by 50% and 200% respectively. The last two avatars concentrate on the geometric
parameters of head, by increasing 25% horizontally (head width) and 25% vertically (head
length). Thus, we managed to generate an approximate variation of biometric features in syn-
thetic population as observed in the human population. The idea was to be able to cover the
range of variability as much as possible with the least number of examples. This way we could
enhance the signal-to-noise ratio of the regression analysis.

Altogether 9 variations were generated out of each of 6 standard avatar. Then, we executed
walking animations and captured random 4 frames for each person which resembled the video
surveillance image acquisition. Thus our Generic avatar dataset consisted of 216 images.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.9: The nine variations of biometrics simulated in the generic avatars. Only the upper
torso region is shown since it is the region of our interest. Please refer to the Table 3.2 for
measurement details.

Dataset for Regression

Suppose the regression is carried out from an input space of dimension IRp to an output
space of dimension IR. Each element in the input space is a feature vector of size p × 1. i.e.
x =

[
x1, · · · , xp

]T . We collect n such samples and represent them as a matrix X ∈ IRn×p as
follows:

X = [x1 | · · · | xn]T (3.11)

Each row in the X matrix represents a feature vector corresponding to the n’th sample in
the dataset. We collect the response variables yi corresponding to each input sample xi and
represent them as a vector y ∈ IRn×1, as follows:

y =
[
y1, y2, y3 . . . , yn

]T
(3.12)

In our case, X contains the input SC descriptors and y holds the Biometrics values of the
simulated avatars. We have 216 avatar samples corresponding to 4 different views of each of
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the 54 different shapes. The Shape Descriptors are composed of 40 points across the edge
of the upper torso silhouette, each with 60D shape context descriptor and thus producing a
2400 dimensional feature vector corresponding to a person, i.e., input matrix X is of dimension
IR216×2400. The output biometric consists of 5 biometrics say, BF= (N, C, B, HL, HW). In our
experiment, we conduct regression analysis individually for each of the biometrics in the set
BF. More specifically, y in equation (3.12) will be a vector of dimension 216 containing a given
biometric feature for all the avatars. Thus, each regression analysis will be from IR216×2400

matrix to IR216 vector.

For the learning phase of the regression, we needed to have a benchmark dataset, with the
corresponding image descriptor-biometric pair information. In order to employ this task, we
used the same Generic avatars, we used in Scenario#2. Altogether 9 variations were generated
out of each of the 6 standard avatars. Then, we executed walking animations and captured
random 4 frames for each person which resembled the video surveillance image acquisition.
Thus our Generic avatar dataset consisted of 216 images.

3.4 Results & Discussion

3.4.1 Person re-identification using Shape Context

Regarding both the experiments in Scenario#1 (refer Fig. 3.2 and Section 3.3), the goal is to
retrieve the most similar person in the gallery set for a given test person, by matching its SC

descriptor with those in the gallery. Or in other words, when the probe imagery of the suspect
is provided, its shape similarity with all the other training images in the gallery is measured by
bipartite graph matching technique on SC features and the person re-identification is carried
out.

100 

2 

90 

4 

80 

6 

70 

8 

60 

10 

50 

12 

40 

14 

30 

16 

20 

18 

10 

20 

2 4 6 8 10 12 14 16 18 20 
0 

(a)

100 

2 
90 

4 
80 

6 
70 

60 

10 
50 

12 
40 

14 
30 

16 
20 

18 
10 

20 

5 10 15 20 
0 

(b)

Figure 3.10: (a)Confusion Matrix showing a re-identification accuracy of 92.5% among the
20 humans in the real world scenario.(b)and 95% among the 20 custom avatars simulated
corresponding to the instances in the real human dataset.

We depict the result of re-identification with the help of confusion matrix. Our results
of person Re-ID is illustrated in Fig. 3.10. The first result in Fig. 3.10 (a) is the Confusion
Matrix corresponding to our study with 20 real world instances and showing a re-identification
accuracy of 92.5%. Fig. 3.10(b) is the counterpart Confusion Matrix in virtual setup with 20
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custom avatars, and it achieved 95% accuracy in Re-ID. In both cases, we could observe high
performance of our proposed SC algorithm to re-identify people. This accentuates the feasibil-
ity of utilizing shape as an effective soft-biometric cue in re-identification scenarios. Moreover,
by conducting the comparative study in virtual setup, we could observe the influence of seg-
mentation noise in reducing the Re-ID rate in the real world scenario.

3.4.2 Regressor performance

In this experiment, we analyse the regressor performance, to test linear and nonlinear mod-
els on the ability to predict biometric features from image data. As we explained earlier, we
conducted experiments using the database of 54 avatars, with 4 samples each. Then, the re-
gression analysis is conducted from the input space of IR2400 to output space of IR. Among
the output biometrics to be estimated say, BF= (N, C, B, HL, HW), we perform regression
analysis individually for each of them i.e., we regress the scalar estimate of each biometric from
a 2400-D shape context vector. In our experiments, we selected 2 random avatars, each with
4 samples (total 8 samples), as the test set and the remaining 52 people, each with 4 samples
as the training set (total 208 samples).

We conducted 6 different experiments on our data, over different kernels as well as different
cross validation schemes. Out of these experiments, we report the Mean Squared Error (MSE)
viz., MSE Train and MSE Test in both the training and test sets, as well as the best meta
parameters (the ones leading to the least MSE Train).

Table 3.3 summarizes the test and train set performances of the various regression meth-
ods studied on a single biometric feature (Neckness). Linear and kernelized basis versions
were tested with different cross validation schemes, at manual and optimal regularizer settings.
MSE Train corresponds to the MSE obtained for the training set obtained via cross validation,
and the MSE Test is the the MSE obtained for the test set. In the default parameter setting,
the default meta parameters are activated (C=1, γ=1/num features, ε=0.1), whereas in ex-
haustive grid search, the optimal values of meta parameters are selected as the pair of (C,γ)
producing the least MSE Train in the training set. A sample grid search selection of optimal
meta parameters for Expt.5 (in Table 3.3) is depicted in Fig. 3.11(a).

In order to verify the repeatability/consistency of the measure of fit, we executed 10 runs
of random trials (with Cross validation of 2 fold) for the same biometric. The boxplot repre-
sentation of the variability of regression performance in terms of Mean Squared Error for both
train and test sets are shown in Fig. 3.11(b) and Fig. 3.11(c), respectively.

Next, we try to extend the case studies conducted on a single biometric feature (Neckness),
over all the 5 biometrics say (Neckness, Chest width, Body size, Head length and Head width).
In addition to Mean Squared Error (MSE), as a measure of the absolute difference errors
between the true and estimated biometric values, we report Root Mean Squared Error (RMSE)
as a standard error metric. The RMSE of predicted values ŷ of a regression’s dependent variable
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(a) (b)

(c)

(d) (e)

Figure 3.11: (a) Contour and surface plots of the MSE Train distribution for various C and
γ meta parameters. Blue corresponds to lowest MSE Train. log2(C)= 10 and log2(γ)= -12
produces the least prediction error (lowest MSE Train) (b) MSE for the trainset (MSE Train)
over 10 random runs (c) MSE for the testset (MSE Test) over 10 random runs (d) Summary of
our various regressors’ performance on different biometrics estimation (e) The overall regressor
performance on different biometrics estimation.

y is computed for n different predictions as the square root of the mean of the squares of the
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deviations:

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (3.13)

Normalizing the RMSE facilitates the comparison between datasets or models with different
scales. Though there is no consistent means of normalization in the literature, the range of the
measured data defined as the maximum value minus the minimum value is a common choice:

NRMSE = RMSE

ymax − ymin
(3.14)

Since the biometrics ranges are different, we leverage NRMSE value for the evaluation of
our regressor’s performance over different biometrics. The visualization of the NRMSE values
for all the regression methods over all biometrics under consideration, is given in Fig. 3.11(d).
Another visualization of the overall regressor performance is also depicted in Fig. 3.11(e).

Table 3.3: Performance of Linear and Nonlinear regression models studied in this work on
biometric1 (Neckness), for different parameter settings as well as cross validation schemes.
The experimental results over 2-fold as well as 4-fold cross validation settings are shown below.
Least values of MSE Train and MSE Test are shown in bold characters and the second least
in italics.

Expt Kernel Parameter
Setting

Cross
validation
(CV)

No.
of CV
fold

MSE Train MSE Test Meta parameter

(1) Linear Default - - 0.0100 1207.5 default
(2) Linear Gridsearch Stratified 2 17.2178 991.1524

C= 0.54 94.1696 1319.5
(3) Linear Gridsearch K-fold 2 95.24996 1347.6

C= 0.254 468.1726 2986.8
(4) RBF Default - - 4726.4 19211 default
(5) RBF Gridsearch Stratified 2 0.3974 985.2449

C=1024; γ=0.000244144 0.00010061 1240.0
(6) RBF Gridsearch K-fold 2 41.5721 1033.1433

C=1024; γ= 4.8828e-44 0.5671 1924.0950

Following are the main findings from our experiments conducted above:

1) Grid-search on meta parameters can fine tune the measure of fit, and thus the optimal
nonlinear experiments outperforms the others in all the cases: Our experiments with linear
function and RBF kernel show that kernelization gives a slight improvement in performance.
For e.g., referring to Table 3.3 and Fig. 3.11(b) and (c), we can observe that the default values
of parameters produce worse results for RBF kernel (worst results among all) whereas the grid
search of the meta parameters could fine tune the performance. Similarly, applying grid search
in linear regression also can reduce the estimation error to some extent.

2) We observed a nearly linear relationship between SC descriptors and the corresponding
Biometrics; In other words, Linear Regression lies very close to cross validated nonlinear regres-
sion modalities: In the boxplots of Fig. 3.11 (b) and (c) as well as the barplots in Fig. 3.11(d)
and (e), we could observe that linear kernels, as well as the cross-validated RBF kernel produced
more or less the same range of estimation errors. Also in terms of consistency of estimation
errors also similar results are observed. So we conclude that, the nonlinear kernelization could
bring only a small advantage over purely linear regression against our descriptor set. This
intuitively indicates that there exists a nearly linear relationship between the Shape Context
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descriptor and the corresponding Biometrics.

3) Cross validation influences in the system performance: Among two types of cross valida-
tion schemes we applied on our data, we could observe that Stratified k-fold CV outperforms
the k-fold CV, in terms of accuracy and consistency. After learning the relationship among
the Shape Context descriptors and the Soft Biometrics, we built the best regression model for
our Re-ID system using Nonlinear regression with RBF stratified CV.

Table 3.4: Chart showing the meta parameters settings of RBF for the best regression perfor-
mance.

Index Biometric Kernel
type(t)

Cost
(C)

Gamma
(γ)

Epsilon
(ε)

1 Neckness(N) RBF 1024 0.00024414 0.01
2 Chestsize(C) RBF 1024 0.00048828 0.01
3 Bodysize(B) RBF 128 0.00024414 0.01
4 Headlength(HL) RBF 64 0.00048828 0.01
5 Headwidth(HW) RBF 64 0.00048828 0.01

After we learnt the relationship among the Shape Context descriptors and the Soft Biomet-
rics, we built the best regression model for our Re-ID system (see Fig. 3.2) based on the results
achieved from our experiments - Nonlinear regression with RBF stratified CV. We designed our
regression block using the best meta parameters obtained for each biometric in the simulator,
and predict the counterpart biometrics in real world dataset using them. The RBF kernel basis
meta parameters for each biometrics is provided in Table 3.4.

3.4.3 Re-identification from verbal queries

Refering to system architecture in Fig. 3.2, human query based categorization is related to
Scenario#2. Here, the input to the system is a human query specifying the biometric fea-
tures of the probe, rather than an image query. With this query, our system will not produce
a unique human#ID as if working with a Re-ID Scenario#1. Instead, the output will be a
set of people belonging to that particular category according to the probe description.

Figure 3.12: Biometric data distribution predicted for the real human population, using the
regression model learned using simulated avatars.

As explained earlier, the input is a human query conveying some qualitative information
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regarding the biometric features of the person. The regression coefficients obtained from the
Generic avatar regression model is applied to the SC descriptors of the real human silhouettes
in the gallery database and corresponding biometrics are estimated and stored in a gallery
database of soft biometrics. Our system collects this gallery dataset of soft biometrics and
analyse the distribution of the estimated biometric data in the training population. The most
common semantic categories such as Short (S), Medium (M) and Large (L) are interpreted in
terms of data ranges in this distribution profile. When a human query is available (eyewitness
makes a statement regarding the characteristics of the suspect), it is compared against the
aforementioned semantic categories, and the valid category of interest retrieved.

Consider a real human dataset as in Figure 3.13. The statistical analysis of estimated
biometric values on this dataset is presented in Fig. 3.12. We could observe a range of vari-
ances along the biometrics estimated among the dataset. The distribution of Neckness ranges
between 90% to 200% of the trained simulator models. Larger necks above that range (like
Fig. 3.9(c)) are unexpected in real scenario. The parameter distribution of Chestsize ranges
between 100% and 300%, with median close to 220%. This makes sense while checking with
similar avatar models in Fig. 3.9(d), which is a common candidate in the real world. Bodysize,
Headwidth and Headlength are centered near the 100%, and have lower variances.

It is important to have certain biometrics with large variance in the population in order
to avoid the problem of subject interference and to improve the distinctiveness among peo-
ple. They act as the most discriminative features. One interesting fact to notice is that,
from the survey results in Table 3.1, we observed the variance in the chest width, viz., bidel-
toid breadth8(2.59) is larger compared to the others. In our sample real world population in
Fig. 3.12, we could also observe that chest size shows large variance and happens to be very
good discriminative feature.

At the same time, head length and width do not show the same level of variances. A very
similar analysis was reported in the real human dataset in Table 3.1, showing smaller variances
for head length (0.72) and head width (0.60). These are very interesting observations high-
lighting the intuitive fact that, our regression model trained in virtual world, could generate
similar test result statistics in the real world.

3.4.4 Person Re-ID in real world

We conduct a sample test of person retrieval. Consider a sample real world human dataset
of 10 people shown in Fig. 3.13, taken from RGB-D Person re-identification Dataset9. We
assume 3 categories among the population for each biometric viz. Short (S-less than lower
quartile), Medium (M -lower quartile to upper quartile) and Large (L-above upper quartile).
For example, in search of a person with large chest size, we try to retrieve the people whose
chestsize ≥ 260%, which is more than the upper quartile of the distribution. Similarly, for

8Bideltoid breadth is same as the chest width we denoted.
9http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html

http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html
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the short chest, we can identify the people category chestsize ≤ 210%, which is less than the
lower quartile in the data distribution profile. The result thus retrieves a ranked list of people
trained in those respective category along with their #IDs. Retrieval based on chest query is
depicted in Figure 3.14. According to the results, human index #6, #7 and #8 were classified
with Large chest, and #2, #3 and #5 found to have a Short chest. The retrieval based on
other parameters is analogous. Albeit, we considered the aforementioned 3 classes (S,M and
L) as default in our case study, it could be reduced to 2 classes or increased to 4 or more classes
(like XXS, XS, XL, XXL). The selection of the number of classes and range for each class are
the choice of the operator. According to the requirement, he can either split or merge classes.
However, with the increase in the number of classes, the retrieval performance decreases due
to increase of noise influence in class assignment and inter-class ambiguity.

Among 10 people sample test set each with 4 samples, our retrieval rate for each biometric
feature is given in Table 3.5. Since there is no availability of the ground truth for the perfor-
mance evaluation in the real human dataset, we rely on visual inspection of the probe images
and define our ground truth (GT). The rate of correct category retrieval obtained for each
person with respect to the ground truth is denoted in retrieval rate. Average retrieval accuracy
is found to be the highest for Chest size (77.5%), thus proving to be the best discriminative
features among the biometrics.

(a)
#P1

(b)
#P2

(c)
#P3

(d)
#P4

(e)
#P5

(f)
#P6

(g)
#P7

(h)
#P8

(i)
#P9

(j)
#P10

Figure 3.13: A sample real world dataset for the retrieval test based on human queries on
biometric info.

(a) #P6
(285%)

(b) #P8
(276%)

(c) #P7
(263%)

(d) #P5
(157%)

(e) #P3
(160%)

(f) #P2
(185%)

Figure 3.14: Human categorization based on biometric query: The results for Large chest (L)
query and Short chest (S) query are presented in (a)-(c) and (d)-(f) respectively. The retrieved
ranked list of human #IDs along with the predicted Biometric data value are shown.

3.5 Summary

In this work, we presented a novel proposal towards identifying people in a video surveillance
system either through the multimedia data acquired via video cameras or solely by means of
manual queries describing natural human compliant labels known as soft biometric traits. Our
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Table 3.5: Results of Person retrieval based on Biometric feature vectors estimated by regres-
sion. GT refers to the Ground truth biometrics defined by manual inspection, and Retrieval
rate is the rate with which our retrieved category agrees with that of Ground truth.

Person index Neckness(N) Chestsize(C) Bodysize(B) Headwidth(HW) HeadLength(HL)
(#ID) GT Retrieval rate GT Retrieval rate GT Retrieval rate GT Retrieval rate GT Retrieval rate

#1 M 0.25 M 1 M 1 M 0.75 M 0.25
#2 L 1 S 0.5 S 0.5 S 0 L 1
#3 L 0 S 1 M 0.5 M 0.25 M 0.25
#4 M 1 M 1 M 0.5 M 1 M 0.75
#5 L 0 S 0.25 S 1 S 1 M 0.25
#6 S 0.5 L 1 L 0 L 0 S 0.75
#7 L 1 L 1 M 0.75 M 0.5 M 0.25
#8 S 0 L 0.25 L 0 L 0 S 0
#9 S 1 M 1 L 1 M 0 M 0.75

#10 M 1 M 0.75 M 0.5 S 0 L 0
AverageAccuracy 57.5% 77.5% 47.5% 35% 42.5%

automatic dual mode system is found quite appropriate in the search of an incident happened
in a video surveillance, where the security personnel could opt collecting either multimedia
info from the camera or eyewitness description of the suspect, which are the common ways of
manual person Re-ID.

We introduced a novel feature descriptor, SC descriptor extracted on the head-to-torso re-
gion on frontal human silhouettes. Then, the relationship between SC descriptors and soft
biometrics, was analysed via Support Vector Regression (SVR), leveraging both linear and
nonlinear regression kernels. Such a Regression phase filled the gap between the manual and
machine interpretation of human profile and equipped the system to retrieve the person merely
by soft biometric description of the subject. In order to provide the best model for the regres-
sion analysis, we conducted an extensive study on the impact of various regression schemes,
as well as cross validation schemes on SC- BF pairs of our simulated dataset of virtual reality
avatars. We observed that the grid search for the best meta parameterized model can fine
tune the system for the best performance. In our experiments nonlinear kernel (RBF) basis
with stratified cross validation excels in performance compared to all the other schemes. In-
terestingly, linear regression models are also found to provide good and fast results. This gives
us the intuition that the correlation between the SC and biometrics are nearly linear. We
substantiated the performance of our system by carrying out person retrieval not only in the
simulated platform, but also in a sample real surveillance database. In future work, we plan to
extrapolate the feature extraction over full body and to exploit a large set of soft biometrics.
Also, we will combine other modalities (e.g., color, texture, face, gait) along with soft biometric
features using multimodal fusion techniques.



Chapter 4

Gait based Person Re-ID

High’st Queen of state, Great Juno comes; I know by her gait

— Shakespeare, The tempest

4.1 Gait for person Re-ID

Over the last decade, a number of gait analysis techniques have been proposed towards Per-
son Re-identification/ Recognition. Re-Identification (Re-ID) is associated with change in ap-
pearance (carrying bags and different clothings etc.) and uncontrolled conditions (changes in
illumination, pose and background). Recognition is a special case of Re-ID, where there is no
apparent change in the appearance of the subject and the operator has much control on the
conditions (same camera, no change in pose/ background/ illumination etc.).

In order to have a better comprehension of the state-of-the-art techniques, we conducted
a substantial overview of different approaches in gait based re-identification conducted in the
past, and produced [Nambiar et al. , 2016a] by compiling the literature survey findings. The
survey paper presents a review of the work done in gait analysis for re-identification in the last
decade, looking at the main approaches, challenges and evaluation methodologies.

In classical gait analysis, the most commonly used views are lateral and frontal views.
Most of the state-of-the-art techniques address the lateral case, in which the gait can be bet-
ter observed. Lateral views have the advantage of minimizing perspective distortion and the
amount of self occlusion, however, they cannot be applied in narrow passages, since very few
gait cycles are observed in these conditions. Hence, in many real world scenarios like indoor
narrow corridors and confined spaces, systems that rely on frontal gait analysis are preferred
due to the convenience to be installed in confined spaces, as well as the capability to capture
longer video sequences, at the same time impose more challenges in terms of perspective and
occlusions.

In this thesis, we propose a novel framework for model-free and frontal gait analysis for
person Re-ID, by amalgamating the HOF [Dalal et al. , 2006] into the the framework of Gait
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Energy Image GEI [Han & Bhanu, 2006], and building upon the advantages of both represen-
tations. First, the HOF represents the dynamic gait characteristics by encoding the pattern of
apparent motion of the subject in a visual scene. Second, GEI enables to average the energy
information over a gait cycle to obtain the spatio-temporal gait signature. Our major contri-
butions are as follows:

• A new technique (termed as HOFEI) for person Re-ID in frontal videos leveraging optic
flow features.

• Our proposal does not require binary silhouettes, instead computes global dense motion
descriptors directly from raw images. This not only bypasses the segmentation and
binarization phases, but also facilitates online Re-ID.

• Proposal of a new gait period estimation directly from the temporal evolution of the HOF

computed at the lower limbs.
• The demonstration, of the applicability of an optic flow-based method to frontal gait

recognition, to the best of our knowledge, is absent in the literature.

The pipeline of our proposed algorithm is shown in Fig. 3.2, which will be detailed in the
forthcoming sections.

Video 
sequence of  
human gait 

Optic flow 
histogram 

(HOF) 
computation

feature 
extraction 
over gait 

cycle 
(HOFEI)

gait period 
estimation 

(from HOF of 
lower limbs)

Optic flow 
computation

Pedestrian 
detection

Figure 4.1: Proposed pipeline of the gait analysis.

4.2 Methodology

In this section, the target representation strategy via HOF, gait period estimation and the
generation of gait signature Histogram Of Flow Energy Image (HOFEI) are explained in detail.

Histogram of flow: We leverage the Histogram Of Gradients (HOG) encoding scheme
mentioned in [Dalal & Triggs, 2005] on the human detection Bounding Box (BB). We provide
2 choices for the human detection BB: either by using the ‘Ground truth’ annotations provided,
or by using the ‘Optic flow’ features to detect the moving section in the image. In this work,
we use the default ‘Ground truth’ BB. Then, the relative motion distributions of the peripheral
human body parts - heads, arms and legs - are described within this BB. In contrast to the
original HOG encoding scheme using grid of rectangular cells which overlap, here we use polar
cells which better represent the spatial locations of limbs and head along time. Fig. 4.2(a)-(c)
show the optic flow computation over a continuous walking sequence of frontal gait and Fig.
4.2(d)-(f) illustrate the sampling scheme of HOF.

When an optic flow image is provided, the first step is to divide it into cells according to the
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Figure 4.2: Optic flow computation (top) and polar sampling scheme for the computation of Histogram
Of Flow (HOF) (bottom); (a) and (b) show the adjacent video frames of gait. (c) shows the optic flow
of the person computed. (d) The cuboid represents a slice of the video sequence spanning a gait cycle
(n frames). The shaded regions are the Bounding Box (BB) of the person detected in each frame. (e)
A sample of person’s optic flow inside the BB. (f) Polar sampling of histogram of flow HOF in each of
the images during a gait cycle, whose average results in the HOFEI gait signature.

polar sampling strategy mentioned above, followed by the computation of histogram of flow
orientation weighed by its magnitude. Let nR be the number of angular regions (i.e. cells) and
nB be the number of bins that define each cell. Hence, the HOF features are parameterised as
follows:

HOFt =
[
HOF t1 · · ·HOF ti · · ·HOF tnR

]
∈ IRnR×nB (4.1)

where HOF ti denotes the normalized HOF computed at cell i at frame t. Fig. 4.2 illustrates
this, where it is shown a polar sampling scheme with 8 angular cells, HOFt is of dimension
64, (with nR=8 and nB=8 ). We compute the HOFt for each frame throughout the video
sequence S and the representation for the HOFS is expressed as follows:

HOFS =
[
HOFt | · · · | HOFt+τ ]> ∈ IRτ×nR×nB. (4.2)

where τ denotes the number of frames in the video sequence.

Gait cycle estimation: Humans walk in a periodic fashion. In order to have coherent and
reliable gait signature, it is necessary to estimate the gait features over a gait cycle, which acts
as the functional unit of gait. A gait cycle is the time period or sequence of events/ movements
during locomotion in which one foot contacts the ground to when that same foot again con-
tacts the ground. In our proposal, the estimation of gait period is computed directly from the
optic flow measured within the subjects’ BB in raw images. This bypasses the computational
load related to the traditional image segmentation and other image pre-processing steps in gait
period computation.
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We extract the periodicity encoded in the HOF sampling cells corresponding to the lower
limbs. This choice is motivated by the fact that, the periodic information can reliably be
obtained using the dynamic motion cues from the legs. The periodicity of right and left legs
induces a similar periodic pattern in its corresponding optic flow. For instance, in a frontal
gait sequence, as shown in Fig. 4.3(a) and Fig. 4.3(b), the polar sampling of cells 2 and 3,
correspond to the location of legs in the image. More specifically, cell 2 and cell 3 correspond
to the right and left leg, respectively.
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Figure 4.3: (a) Cells 2 and 3 represent sampling cells corresponding to the lower limbs. (b) person’s
BB under polar sampling scheme depicts that the major area of motion pattern is described by the
lower limbs cells. (c) magnitude of the highest peak of the histogram of the right and left legs (cell 2
and 3) during a walking sequence. It is worth mentioning that the minimum value corresponding to
the stance phase in one leg follows the maximum value corresponding to the swing phase in the other
leg. (d) estimation of gait period. The frames within two adjacent peaks (in magenta markers) denote
a gait cycle.

In order to estimate the gait period, we leverage the subset of histogram bins corresponding
to cells 2 and 3, i.e., HOF t2 and HOF t3, which represents the lower limbs motion patterns,
whose amplitude provides a good signal-to-noise ratio for detection. Then, we compute HOFt

throughout the video sequence corresponding to either HOF t2 or HOF t3 (since both are com-
plementary). We can notice that this evolution undergoes a periodic pattern as depicted in Fig.
4.3(c),(d). Fig. 4.3(d) shows a periodic sinusoidal curve generated by plotting the HOF peaks
of a single leg against the frame (as a function of time). A moving average filter is employed
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to smooth the obtained curve measurements (see green dashed curve), and the peaks of the
filtered gait waveform allow us to identify the gait cycles. The frames between two consecu-
tive peak points represent a gait cycle. Fig. 4.3(c) visualizes the simultaneous evolution of the
HOF pattern peaks of both legs i.e., the amplitude of the highest peak in the histogram of each
corresponding leg over time, are complementary since stride phase in one leg is accompanied
by the stance phase in the other and vice versa.

Histogram of flow Energy Image: Based on the gait period estimation, as well as the
HOF features over video sequences, we compute Histogram Of Flow Energy Image (HOFEI),
which is used as the key descriptor of each person. Inspired by the GEI scheme, HOF energy
image is obtained by averaging the HOFt representations over a full gait cycle, as follows:

HOFEI = 1
t2 − t1

t2∑
t=t1

HOFt (4.3)

where t1 and t2 are the beginning and ending frame indices of a gait cycle and HOFt is the
histogram of flow of the person at time instant t, as defined in Equation. (4.1). More intuitively,
the HOFEI gait signature provides the relative motion of each body part with respect to the
other, over a complete gait cycle.

4.3 Experimental Results

Experiments are conducted in two scenarios: Re-ID in controlled scenario vs Re-ID in uncon-
trolled (busy office) scenario. For the former, we use CASIA dataset B which contains multiple
videos of subjects including normal and apparel change (bag, overcoat) conditions, which makes
it suitable for Re-ID scenario. Nevertheless, there is much control over the pose, illumination
and background. Hence, it is also suitable to study the recognition of the subject under sim-
ilar conditions. Hence, we conduct an extensive study on both the re-identification as well as
recognition analysis in CASIA dataset. After this feasibility analysis, we apply our algorithm
on a more realistic dataset (HDA Person dataset [Nambiar et al. , 2014b]) which is used for
benchmarking video surveillance algorithms. In contrast to the CASIA dataset, HDA provides
uncontrolled environment conditions (change in illumination, pose changes and occlusions), as
well as lower frame rate (5fps) similar to a real world video surveillance system, which enables
to conduct a Re-ID task in realistic scenario.

4.3.1 Re-ID in controlled scenario : CASIA dataset

CASIA is one of the largest database available for gait recognition and related research 1. Among
the available four different datasets, we used Dataset B for our experiments. Dataset B is a
large multiview gait dataset collected indoor with 124 subjects and 13640 samples from 11
different views ranging from 0 to 180 degrees. In our experiments, we consider only the frontal
walks (0 degrees), i.e., walking towards the camera. Database B contains three variations,
namely view angle, clothing and carrying condition changes, and also presents the human sil-
houettes for each case. For each person, it contains 10 different video sequences (6 ‘normal’

1http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp

http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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(a) (b) (c)

(d) (e) (f)
Figure 4.4: Some sample images from CASIA database and HDA database. (a)-(c) show various
appearance (’normal walk’, ’carrying bag’, ’wearing coat’) conditions of subjects in CASIA dataset B.
(d)-(f) depict the position of subjects at various distances Dfar, Dmiddle and Dnear respectively.

walk, 2 ‘bag carrying’ walk and 2 ‘overcoat wearing’ walk). Please refer to Fig. 4.4(a)- (c) for
samples from CASIA dataset.

In order to evaluate the performance of our system towards long term re-identification, we
conduct experiments not only under normal scenario, but also in the apparel change situations
such as wearing coat/ carrying bag. For each of these experiments we considered 105 subjects,
out of all the available 124 subjects. Videos in which the optical flow information can not be
successfully extracted are excluded. For each of these available 1050 videos, we could get at
least 3 gait cycles, in order to have enough data for training and testing. Then, for each gait
cycle, the corresponding HOFEI is extracted. Regarding the dense optical flow computation,
we use Stefan’s implementation 2, which provides robust flow estimation by various methods
of which, we select the Lucas- Kanade method [Lucas & Kanade, 1981].

Three main experiments are carried out in this dataset: First is to verify the recognition
performance under the same appearance and similar conditions. Second experiment is the Re-
ID test conducted in order to verify performance under different appearance conditions. And
the third experiment is to test the influence of the distance of the subject in the performance
of our system.

Experiment 1) Recognition in regular conditions: In this experiment, we only con-
sider the ‘normal’ type videos. The first four sequences are used for training and the last
two are placed into the probe set. Then for each person’s probe sequences, we compute the
minimal Euclidean distance between any of the HOFEI descriptors in the probe and those of
each person on the gallery. The minimal distance (most similar) gallery sequence is selected as

2http://www.mathworks.com/matlabcentral/fileexchange/44400-tutorial-and-toolbox-on\
-real-time-optical-flow

http://www.mathworks.com/matlabcentral/fileexchange/44400-tutorial-and-toolbox-on\-real-time-optical-flow
http://www.mathworks.com/matlabcentral/fileexchange/44400-tutorial-and-toolbox-on\-real-time-optical-flow
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Figure 4.5: Re-ID results: (a) presents the CMC curves obtained for Experiment 1 and 2 for different
probe cases viz., normal case, bag carrying case and coat wearing case. A chance level of 0.95% is
also denoted in magenta. The Rank1 recognition achieved for normal, bag and overcoat are 74.29%
(78 times the chance level), 66.67% (70 times the chance level), 59.05% (62 times the chance level)
respectively. (b) depicts the CMC curves obtained for Experiment 3 at various distance probes viz.,
Dfar, Dmiddle and Dnear. Middle case outperforms the others. (see online version for colours).

the best matching and sets the identity of the recognized person. The distances to the other
persons in the gallery are used to provide a ranked list of identifications, for evaluation. Blue
dotted curve in Fig. 4.5(a) shows the Correct Classification Rate (CCR) of this experiment,
in terms of Cumulative Matching Characteristic (CMC) Curve. CMC curve shows, how often
on average, the correct person ID is included in the best K matches against the training set
for each probe. We could observe that a high CCR rate of 74.29% (78 times the chance level),
has been achieved under the regular ‘normal walking’ conditions.

A similar evaluation strategy, but using silhouette-based approach, had been carried out
in [Chen et al. , 2009] in all the view angles in CASIA dataset ‘normal’ sequences. In order
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Table 4.1: Comparative analysis of our method against silhouette-based approaches in [Chen
et al. , 2009], for the frontal gait sequences of CASIA dataset B. The proposed method (HOFEI)
is shown in bold letters.

GMI GHI HOFEI GEI FDEI
68.5% 71.8% 74.3% 91.1% 95.2%/100%

to conduct a reasonable comparison with our approach, we select the frontal view results they
obtained by using various gait features (GEI, GHI, GMI, FDEI). Table 4.1 shows the com-
parison results of our strategy (HOFEI) against them in the ascending order. We can observe
that CCR of our approach lies in between the others. The higher performance of FDEI and
GEI could be attributed to their usage of segmented binary silhouettes and a more powerful
classification method (HMM), whereas we use more flexible optic flow based features and a
simpler classification method (Euclidean distance). Therefore, we consider the proposed fea-
ture competitive with the state-of-the-art, while more versatile. Since it does not require any
pre-segmentation phase, it is easier to use in automatic RE-ID systems.

Experiment 2) Re-identification under change in appearance: In this experiment,
we use all the 6 ‘normal’ type videos for training, and ‘wearing coat’/ ‘carrying bag’ type
videos for testing. In the ‘bag’ case, we keep both the bag carrying sequences as the probe
whereas all the 6 ‘normal’ video sequences as the training set. A similar method is employed for
overcoat scenario as well. Classification is similar to Experiment 1 (NN classifier+ Euclidean
distance). The recognition results obtained are presented in Fig. 4.5(a). The apparel change
recognition rates for bag (red curve) and coat (green curve) scenarios are 66.67% (70 times the
chance level) and 59.05% (62 times the chance level), respectively. The lower CCR of overcoat
condition could be ascribable to the global change in the flow features, whereas the bag either
influence only a local flow change, or being occluded in some cases (occluded by hand, as in
Fig. 4.4(b) or occluded while wearing as a backpack). No similar results in the appearance
change conditions have been encountered in [Chen et al. , 2009] for comparative evaluation.

Experiment 3) Variable distance to camera: Here, we are testing the robustness of
the system when the subject is at different distance to the camera. In frontal sequences, the
variability of the gait features with distance may have a significant impact on performance.
Here we study the ability of the method in recognizing persons at a distance for which there are
no gallery examples. We consider the ‘normal’ type of videos for this experiment. In order to
verify the impact of different distances, we conduct 3 case studies. In contrast to the previous
experiments carried out on sets of videos, here we are conducting the analysis on each gait
cycle instance. Hence, performance will be lower than in the previous experiments, that used
all gait cycles in the sequence for the classification. However, in this experiment we are not
comparing absolute performance, but relative performance according to camera distance.

There are minimum of 3 gait cycles in each video sequence. In the first case study we keep
all the ‘normal’ gait cycle snippets seen at far distance Dfar as the probe. The training set
in this case is the ‘normal’ Dmiddle and ‘normal’ Dnear. Hence per person, we have 6 Dfar

probe and 12 training set (Dmiddle and Dnear). Then, in the second case study, the Dmiddle
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is considered as the probe and Dfar and Dnear are kept as the training sets. Similarly, in
the third case study, Dnear videos are the probe and the others are kept as the training set.
The Re-ID results are shown in Fig. 4.5(b). We can observe an expected drop in the CCR
rate while conducting Re-ID with each gait cycle as the probe in this Experiment 3, rather
than sets of videos as the probe in Experiment 1 & 2. Dmiddle case outperforms the other
two cases, with 33.81% rate (35 times the chance level) whereas the far and near cases have
recognition rates 20.48% (21 times the chance level) and 21.75% (22 times the chance level)
respectively. In the case of Dmiddle as the probe, higher recognition rate could be attributed
to the fact that, trained on the extreme ranges the classifier performs an interpolation when
predicting values for the middle range, whereas in the other two Dfar and Dnear cases it has
to extrapolate to one of the extremes, which is often an ill-posed operation.

4.3.2 Re-ID in uncontrolled scenario: HDA Person Dataset
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Figure 4.6: Recognition results: (a) presents the CMC curves obtained on 3 different probe cases
viz., Dfar, Dmiddle and Dnear. A chance level of 8.333% is also denoted in magenta. The Rank1
recognition achieved for Dfar, Dmiddle and Dnear are 50% (6 times the chance level), 75% (9 times
the chance level), 58.33% (7 times the chance level) respectively. (b)-(d) show the confusion matrices
for the 3 probe cases Dfar, Dmiddle and Dnear respectively.

HDA dataset [Nambiar et al. , 2014b] 3, is a labelled image sequence dataset for research on
3http://vislab.isr.ist.utl.pt/hda-dataset/

http://vislab.isr.ist.utl.pt/hda-data set/
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high-definition surveillance. The dataset was acquired from 13 indoor cameras distributed over
three floors of one building, recording simultaneously for 30 minutes during a busy noon hour
inside a University building. Among the 13, we select only a single camera recording (Cam-
era19), containing frontal gait sequences. The camera has the VGA resolution of 640 × 480,
with a frame rate of 5fps. In this experiment we considered 12 people that crossed the whole
corridor, and for which we could get at least 3 gait cycles in order to have enough data for
training and testing. We collect each subject’s walking frames, and from them we extract
minimum three gait cycles and their corresponding HOFEI. Unlike the CASIA dataset, HDA is
uncontrolled scenario since it contains varying illumination conditions during the walk, chang-
ing backgrounds, break points in between the walks (entry/ exit in the room along the way),
occlusions by other person/ wall/ image boundary, self occlusions, slight changes in the pose
and limb movements during the walks.

Due to the limitation of larger video sequences as well as varying appearance conditions
per person, we exclude the CASIA counterpart Experiment 1 and Experiment 2 in HDA dataset.
Here we only conduct Experiment 3, quite similar to the one carried out in CASIA dataset. We
consider three cases in which we compute the HOFEI descriptor: far (Dfar), middle (Dmiddle)
and near (Dnear) sequences, as depicted in Fig. 4.4(d)-(f). Under this set of descriptors, we
perform a leave-one-out evaluation where one set is kept as the probe and the other two sets
as the gallery (i.e, a total of three trials). Thus, in each trial we have 24 training descriptors in
the gallery and we test against 12 test probes. Then, each test sample will search for the min-
imal Euclidean distance between itself and the gallery descriptors, under the nearest neighbor
classification method. Fig. 4.6 demonstrates the recognition results in terms of Cumulative
Matching Characteristic (CMC) curve and confusion matrix. The highest Rank-1 recognition
rate of 75% (9 times the chance level) is achieved while using Dmiddle as the testing data. At
the same time, the Rank-1 accuracy achieved by the test sets Dfar and Dnear are 50% and
58.33% respectively.

Referring to the CMC curve, another interesting observation is that the cumulative recog-
nition rate improves drastically for both Dmiddle as well as Dfar cases in comparison with
Dnear, with the number of trials. This accentuates that gait sequences are better observed
in far sequences than the closer ones since video frames close to the camera may undergo
occlusions and thus result in poor encoding of the body flow features.

4.4 Summary

We analysed the potential of exploiting histogram of optic flow for frontal human gait analysis
for person Re-Identification (Re-ID). The main advantage of such a methodology is that no
silhouette segmentation is required and thus can be facilitated towards online Re-ID system.
A novel idea of flow based gait period estimation as well as a novel Histogram of Optic flow
Energy Image (HOFEI) over the entire body are proposed in this work. We experimented
the proposed framework upon a controlled benchmarking gait dataset (CASIA dataset) and
a more unconstrained, thus harder, benchmarking video surveillance dataset (HDA Person
dataset). We verified the effectiveness of the proposed method in both cases, under very
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different background clutter and sampling rates (25Hz in CASIA vs 5Hz in HDA). Extensive
studies were conducted in CASIA dataset, i.e., regular case, change in appearance and influence
of variable distance. Promising results were reported in each experiment, showing a Re-ID rate
of 74.29% (78 times the chance level) in the normal scenario. In HDA dataset person Re-ID
also a good performance rate of 75% (9 times the chance level) was reported, under different
camera distance conditions. In future work, we plan to extrapolate this work towards pose
invariant person re-identification scenario.
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Chapter 5

Towards view-point invariant
Person Re-ID

In theory there is no difference between theory and practice. In practice there is.

— Yogi Berra

5.1 Introduction

As we have already mentioned in the dissertation, Re-ID has many challenging issues that re-
sult from the high variability of the people’s appearance in the camera images due to different
illumination, different clothes, occlusions, postures and camera’s opto-electric characteristics
and perspective effects. Among them, pose is the most challenging one since it creates drastic
changes in the feature in different directions. In order to tackle such scenarios, certain pose
invariant Re-ID scheme has to be learned.

With this in mind, we propose towards pose invariant gait based Re-ID leveraging 3D in-
formation. In order to facilitate this, we employ existing cutting edge technologies such as
KINECT systems to collect quite precise and detailed information of the human dynamics in
the scene. The key advantage of use KINECT like systems is that it can collect 3D skeleton
data that are view-invariant and scale-independent, along with other sensory information viz.,
color and depth. So, in this work, we employ 3D KINECT data to facilitate towards pose
invariant long term person Re-ID.

Another key idea to incorporate is multi-modal fusion i.e., to fuse either multiple biometric
features or biometric+ appearance features, in order to enhance the Re-ID system performance.
Some traditional fusion strategies towards multi-modal fusion has been explained in the hand-
book of Multibiometrics by [Ross, 2007]. According to that, there are many levels at which
the fusion could be carried out, i.e., sensor level fusion, feature level fusion, score-level fusion,
rank level fusion or decision level fusion. In this work, we also exploit this idea of ‘Multi-modal
fusion’ by leveraging score-level fusion strategy upon different biometric features.

In detail, we propose a biometric enabled person re-identification system, using two kinds

73
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of soft biometric features i.e. anthropometric features and gait features, extracted from the
human body skeleton computed by a Microsoft KinectTM sensor v.2. Anthropometry involves
the systematic measurement of the physical properties of the human body, primarily dimen-
sional descriptors of body size and shape. Human gait includes both the body posture and
dynamics while walking [Lee & Grimson, 2002]. The cues are extracted from range data which
are computed using an RGBD camera. Hence, the great constraint of appearance constancy
hypothesis can be relaxed and facilitated towards long-term person Re-ID. To the best of our
knowledge only a very limited number of works have been employed in this regard, furthermore,
they employ view-point dependent approaches i.e. data is collected and algorithms are tested
with a single walking direction with respect to the camera.Barbosa et al. [2012b], [Gianaria
et al. , 2014] and [Andersson & Araujo, 2015]. In this paper, we propose a view-point invariant
person re-identification method tested with subjects walking in different directions, by using
multi-modal feature fusion of anthropometric and gait features.

The major contributions of the paper are two fold:

• First, to validate the effect of various anthropometric and gait features in distinguishing
a person among the population and facilitate towards person Re-ID from those soft-
biometric cues. In order to better understand this, we conduct a thorough study by
exploiting individual features or combination of features (via fusion).

• Second, is the actual demonstration of the real impact of view-point on the Re-ID
paradigm. Since skeleton coordinates provided by kinect data are, in principle, view-
point invariant (can be normalized to a canonical view-point by a roto-translation trans-
formation), many works assume view point invariance from the start and do not validate
experimentally this assumption. Despite skeleton coordinates are naturally view point
invariant, their computation is not (the skeleton reconstruction process depends on view
points and self-occlusions). Most work in the literature do single-view probe and sin-
gle (same)-view gallery (which is basically the view-point dependent approach), which
does not allow assessing the view-point invariant characteristics of the algorithm. In
order to perform a benchmark assessment, we experiment in this work explicitly different
view-points in the probe and gallery samples. In addition, we conduct several tests of
view-point invariance: (i) single-view-point probe with multi-view-point gallery (pseudo
view-point invariance); (ii) novel-view-point probe with multi-view-point gallery (quasi
view-point invariance) and (iii) novel-view-point probe with single-view-point gallery (full
view-point invariance). The former two require a large effort in the gallery creation. The
latter, is the easiest and most flexible form since only a single camera is required and the
person enrollment stage is very simple (one pass only).

This chapter is organized as follows. In Section 5.2, we explain the proposed methodology.
In particular, we present the data acquisition set up, feature extraction, signature matching
and evaluation methodology. In Section 5.3, we detail the various experiments conducted
and the results achieved. We summarize our work and enumerate some future work plans in
Section 5.4.
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(a) (b)

(c) (d) (e) (f)

Figure 5.1: Data acquisition: (a) System set up (b) Subject walking directions in front of the
acquisition system (c) Sample frames from our data acquisition, in four different directions-
frontal(∼90◦), right diagonal(∼60◦), left diagonal(∼30◦) and lateral(∼0◦) respectively.

5.2 Methodology

In this section, we explain the data acquisition and proposed methodology. More specifically, we
detail the set up and the data collection procedure conducted in the host laboratory. Then, we
describe various stages of data analysis including pre-processing, feature extraction, signature
matching and experimental evaluation strategies.

5.2.1 Data acquisition set up

For the data acquisition, we used a mobile platform, in which the kinect sensor was fixed at
a height of an average human (See Fig. 5.1(a) for the data acquisition system). This mimics
normal surveillance scenarios as well as changes in the position of camera over time, as in a
long term person Re-ID scenario. The kinect device is composed of a set of sensors, which is
accompanied with a Software Development Kit (SDK), that is able to track movements from
users by using a skeleton mapping algorithm, and is able to provide the 3D information related
to the movements of body joints. We acquired all the three available data i.e. skeleton, colour
and depth. Since the proposed gait algorithm employs the skeleton information, it necessitates
to be of multiple frames with high frame rate, and hence captured at the full frame rate of the
sensor @ 30fps. In this second version of the device, it is able to track 25 joints at 30 frames
per second. Colour and depth information are employed for appearance based features, which
generally require single frame, and hence was captured at 1fps. However, these were not used
in the current work.

2For body joint types and enumeration, refer to the link: https://msdn.microsoft.com/en-us/library/
microsoft.kinect.jointtype.aspx

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx


76 CHAPTER 5. TOWARDS VIEW-POINT INVARIANT PERSON RE-ID

(a) (b)

Figure 5.2: (a) Skeleton positions relative to the human body2(b) A sample skeleton body
visualization from our collection.

(a)

(b)

Figure 5.3: (a) The abnormal shifts towards the ending of each sequence are due to the jerks
of skeleton occurring at its respective frames. (b) Abnormal frames are filtered out. Now we
have the cleaned frames selected.

In order to ensure view-point invariance in our acquisition set up, we collected multiple
views of 20 subjects in four different directions, along both ways, as shown in Fig. 5.1(b). We
define the direction angle with respect to the image plane. Lateral (L) is at ∼0◦ and Frontal (F)
is at ∼90◦. And there are two diagonal walks at different view angles. Right Diagonal (RD)
begins at one of the corners of the hall, which has ∼60◦, whereas Left Diagonal (LD) begins
somewhere in the half way, thus defining ∼30◦. In each of these four directions, a minimum
of three walking sequences were collected both in the front and rear views (refer Fig. 5.1(c)-
(f)). During the walking, the people are assumed to walk with their natural gait. Altogether
we have 240 video sequences comprising 20 subjects (12 video sequences per person) in the
aforementioned directions. Since kinect gets the joint information of the skeleton data, it is in
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principle, view-point and scale invariant. In addition to that, we hypothesize that the subject
makes straight walks during a single gait acquisitions, as kinect depth range is limited (80cm
to 4 meters) .

Kinect can track in real-time a skeleton model, composed of 25 body joints, as shown in Fig.
5.2(a). The skeleton joints can be used to describe the body measurements (anthropometrics)
as well as the body movements (gait) in real time and in 3D space [Shotton et al. , 2013].

5.2.2 Pre processing

Prior to the feature extraction, we applied some pre-processing for noise removal. The primary
effect of noise are jerks/ abnormalities in the skeleton data, during the sequences (see examples
in Fig. 5.4). In addition, in some frames, the skeleton is not detected. We could observe that,
when the person approaches the boundary of the kinect range, these issues occur very often.
In order to handle such situations, we propose a semi- automatic approach to select the best
frames to retain and further analyse out of a video sequence.

(a) (b)

Figure 5.4: (a) Some views confuse the joint positions making the skeleton based approach
quite difficult (b) Abnormal jerks occuring at certain frames, during the video sequence.

Table 5.1: List of anthropometric and gait features used in our experiments. (L& R correspond
to ‘left and right’ and x& y correspond to ‘along x and y axes’)

Anthropometric
features

Gait features

Height Hip angle(L&R) Hip position(L&R)(x& y)
Arm length Knee angle(L& R) Knee position(L&R)(x& y)
Upper torso Foot distance Ankle position(L&R)(x& y)
Lower torso Knee distance Hand position(L&R)(x& y)
Upper-lower ratio Hand distance Shoulder position(L&R)(x& y)
Chestsize Elbow distance Stride
Hipsize Head position(x& y) Stride length

Spine position(x& y) Speed

Humans walk in a periodic fashion. It is necessary to estimate the gait feature over each of
these periods of walking, known as gait cycle, which acts as the functional unit of gait. A gait
cycle comprises of sequence of events/ movements during locomotion since one foot contacts
the ground until the same foot again contacts the ground. Prior to getting the gait period,
we intend to filter out the unwanted jerks by means of exploiting the evolution of hip angles
over time. We noticed that the jerks made these angles to grow abnormally, which also created
drastic variations in the corresponding signals. An example of such a situation is depicted
in Fig. 5.3(a). In order to clean/ remove such unwanted frames, we put a threshold on the



78 CHAPTER 5. TOWARDS VIEW-POINT INVARIANT PERSON RE-ID

Figure 5.5: Gait cycle estimation. The two adjacent markers (3 consecutive peak) within a sequence,
represent a gait cycle.

angular values (usually, the normal expected values of hip angles are in between 70◦ <hip
angle<105◦). Only the frames containing the angles in between the upper and lower threshold
are selected. This step automatically cleans our noisy data. A cleaned version of the previous
signal is depicted in Fig. 5.3(b).

The next step is gait cycle estimation. In order to have a better overview of how the lower
limbs move along the video sequences, we compute the distance between the feet during a gait
sequence. The three consecutive peaks in such a signal provides a gait cycle. Referring to Fig.
5.5, we can see that in each video sequence, the frames between adjacent markers (stars in
same colour) make a gait cycle3. At this point, we make this step manually. Albeit we provide
the method to automatically select the adjacent peaks defining a gait cycle, we carry out a
manual verification by checking the real video sequence and the signal peaks to verify that
they are aligned. Also, the phase is verified at this point by checking which leg is in movement.
From the peak signal alone, this information is not easy to extract.

After selecting the frames defining gait cycle, we extract the features.

5.2.3 Feature extraction

After data acquisition and filtering, attributes were extracted for each walk, both static physi-
cal features defining the anthropometric measurements and dynamic gait features defining the
kinematics in walking. To each subject, an identifier was provided for re-identification. The
extracted feature attributes are explained in detail, next.

Anthropometric features: Under the anthropometric feature set, we collected many body
measurements defining the holistic body proportions of the subject. This includes height, arm
length, upper torso length, lower torso length, upper to lower ratio, chest size, hip size. These
seven features constitute the body features.

The length of a body part is defined as the sum of the lengths of the links between the
delimiting joints. For example, the arm length is the sum of Euclidean distances from shoulder
to elbow (joint 4-joint 5), elbow to wrist (joint 5- joint 6) and wrist to hand (joint 6- joint 7).
We calculate these static features across each frame, and then compute the mean value of each

3Note that, we collect three sequences of walking per person in each direction. Since the person makes a
walk in a direction, and then a return walk to the initial point, apparently we have 6 sequences, as we can see
in Fig. 5.5. However, we do not consider the return walks in this work, and hence, we have altogether 3 video
sequences under consideration, as marked.
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feature over a gait cycle. The mean value of the anthropometrics over gait periods, are used
as the static feature descriptors in our experiments.

Gait features: Under the gait features, we collect behavioural features, deriving from the
continuous monitoring of joints during the gait. The key advantage of using the kinect is to
collect a rich set of view-point invariant4 dynamic spatio-temporal features derived from the
body movements.

First we computed three scalar features related to walking, viz., stride length, stride time
and the speed of walking. The stride length is the distance between two stationary positions
of the same foot while walking (Equation (5.1)). It comprises the left step length and right
step length5. The duration to complete a stride is called stride time (Equation (5.2)). It is
obtained by calculating the number of video frames in a gait cycle divided by the frame rate of
acquisition (30 fps). From these two, we can obtain the speed of walking as the ratio between
stride length and stride time ( Equation (5.3)).

Stride length = Left Step length + Right Step length
(5.1)

Stride time =
Number of frames in gaitcycle

30 (5.2)

Speed =
Stride length
Stride time (5.3)

In addition, we also computed a set of 32 features, related to the temporal evolution of the
angles (at various body joints), distance (between various right-left limbs during the gait) as
well as the position (evolution of body joint along the gait). From these spatio-temporal gait
signals, we extract the mean and variance of the signal. Altogether, we have a feature set
containing 35 gait features (3 scalar and 32 dynamic) and 7 anthropometric features. Table
5.1 presents a detailed list of the feature set.

5.2.4 Signature matching

This section explains how the features can be employed either individually or jointly towards
the Re-ID problem. A classical Re-ID problem is usually evaluated by considering two sets
of signatures (feature descriptors) collected from people: a gallery set and a probe set. Then,
the Re-ID evaluation is carried out via associating each of the signature of the probe set to a
corresponding signature in the gallery set.

To evaluate the performance of Re-ID algorithms in closed-set scenarios, the Cumulative
Matching Characteristic (CMC) curve [Grother & Phillips, 2004] is the most acclaimed and
popular method of choice. The CMC curve shows how often, on average, the correct person ID
is included in the best K matches against the training set, for each test image. In other words,
it represents the expectation of finding the correct match in the top K matches.

4As mentioned before, despite the joint coordinates can be easily transformed to a canonical reference frame,
the process to estimate the joints positions suffers from self-occlusions due to view-point.

5Step length is the distance between the heel contact point of one foot and that of the other foot.
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Nearest Neighbor (NN) is among the most popular as well as most performing classifier,
which is commonly used in similar full body biometrics realm [Andersson & Araujo, 2015],
[Barbosa et al. , 2012b]. Hence, in this work, we exploit NN approach for the classification, using
the Euclidean distance as metric. Suppose, we have signatures representing each individual
feature vectors, the Euclidean distance between the signature in the probe is compared against
the rest in the gallery. Then, the most similar signature in the gallery is selected as the correct
Re-ID class.

Concerning anthropometric features in our work, the feature vector is composed of multiple
body features, where each of the features has a numerical value associated with an individual
trait e.g. height, arm length. In the case of gait features, these individual features are vectors
representing mean and variance. Hence, while computing the Euclidean distance, we calculate
the distance for each individual feature in the probe, against their corresponding feature peers
in the gallery. Thus, we get the Euclidean distance of each probe feature against the gallery,
as a distance matrix.

Let us define a probe descriptor P, which is a concatenation of n individual features.

P = [p1, p2, · · · , pi, · · · pn] ∈ IR1×n (5.4)

The gallery contains a set of similar feature descriptors, which we represent as a matrix
G. Each row of G represents an n-dimensional feature vector corresponding to an individual.
Likewise, k feature descriptors from multiple subjects are arranged to make a gallery matrix
of dimension k ×n , as follows.

G =


g1,1 g1,2 . . . g1,i . . . g1,n

...
...

. . .
...

. . .
...

gj,1 gj,2 . . . gj,i . . . gj,n

...
...

. . .
...

. . .
...

gk,1 gk,2 . . . gk,i . . . gk,n

 ∈ IRk×n (5.5)

Then, for the Euclidean distance computation, we calculate the distance of each individual
probe feature element, say, pi, (i = 1, ..., n) against its counterpart feature samples in gallery
i.e. gj,i, (j = 1, ..., k), as a distance vector viz., D(pi, gj,i).

D(pi, gj,i) = |pi − gj,i| ,

∀ i = 1, .., n & j = 1, .., k.
(5.6)

This results in a distance matrix D∈ IRk×n, as follows in Equation 5.7. Each element in
the matrix D is given by dj,i = D(pi, gj,i).

D =


d1,1 d1,2 . . . d1,i . . . d1,n

...
...

. . .
...

. . .
...

dj,1 dj,2 . . . dj,i . . . dj,n

...
...

. . .
...

. . .
...

dk,1 dk,2 . . . dk,i . . . dk,n

 ∈ IRk×n

=
[

d1 d2 . . . di . . . dn
]
∈ IRk×n

(5.7)

Our idea is to get a single distance score, corresponding to the overall feature set. We ac-
complish this via a score level fusion strategy. Since different features have different magnitude
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ranges, the distance scores also will have its impact. Hence, while doing the fusion, the score
will be biased towards the higher measured distance, leading to the problem of heterogeneity
of measures. In order to avoid this, we carry out a min-max normalization strategy, which nor-
malize each of the feature distance score within the [0,1] range. More specifically, we normalise
each column corresponding to a particular feature, separately, i.e. considering the distance
vector corresponding to a particular feature as in Equation 5.7, di = [d1,i, · · · , dj,i, · · · , dk,i]T ,
the normalized distance vector zi = [z1,i, · · · , zj,i, · · · , zk,i]T is computed as follows:

zi = di −min(di)
max(di)−min(di)

(5.8)

Afterwards, we generate the fused feature score Z, by summing the individual normalised
distance vectors, zi with i = 1, ..., n.

Z =
[
z1 + z2 + · · ·+ zi + · · ·+ zn

]
∈ IRk×1 (5.9)

Then, we sort the fused score Z in the ascending order and calculate the final CMC curve
based on the ranked list of matches.

5.2.5 Evaluation methodology

In order to evaluate our proposal, we conduct multiple extensive experiments to verify the
impact of each feature individually and jointly, as well as the influence of various view-points
on the Re-ID paradigm. Basically, we conduct two major experiments in this regard. 1) view-
point dependent and 2) view-point independent.

In the view-point dependent Re-ID experiment, the walking direction is pre-defined. Hence,
the gallery and probe contains the samples from the subjects with the same walking direction.
Apparently, this is a much simpler problem of person recognition6. In this view-point depen-
dent experiment, further detailed analysis is carried out in order to understand the impact of
various features (individual vs fusion) on the overall Re-ID.

In the view-point independent Re-ID experiment, the key idea is to corroborate the effect
of different walking directions in the Re-ID scenario. We categorize three major view-point
invariant scenarios in this regard -a) Pseudo view-point invariance, b) Quasi view-point invari-
ance and c) Full view-point invariance- based on the samples available in the gallery and probe
sets (See Table 5.2). The Re-ID becomes more challenging while moving from pseudo towards
full view-point invariant, due to the limited availability of samples in the training set as well
as the challenging view angles in the probe set.

5.3 Experimental Results

Since a standard gait dataset with different views acquired with kinect sensor was unavailable,
we created a new one consisting of 20 people walking in four different directions i.e. Frontal (F),

6Recognition is a special case of Re-ID, in which the operator has much control on the conditions (same
camera, no change in view-point/ illumination/ background etc.)
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Table 5.2: Chart showing the Re-ID accuracy rates for Experiment 4.2.2

Index View-point
invariance

Gallery Probe

a Pseudo Multi views Single view
b Quasi Multi views Novel view
c Full Single view Novel view

Left Diagonal (LD), Right Diagonal (RD) and Lateral (L). We have asked each person to walk
naturally along a hall in four directions, and three times in each direction. Thus, altogether we
have 12 sequences per person in different directions i.e. a total of 240 sequences in the dataset.

In this work, we conduct multiple experiments, as explained in Section 5.2.5. In the first
experiment, we conduct Re-ID in individual directions, and in the second experiment, we
employ view-point invariant Re-ID. In each of these experiments, we evaluate the performance
of our system via CMC curve analysis. More specifically, each sequence in the probe is tested
against the training set and the ranked list of Re-ID is obtained via signature matching. (The
rank is computed by person i.e. best of the three sequences.) The process is repeated for all
probe sequences. Then the average over all probe sequences Re-ID is computed and represented
as CMC result.

5.3.1 Experiment 1: View-point dependent Re-ID

In this experiment, we test Re-ID in individual directions. This is done to verify the per-
formance of the proposed method along specific directions. Or in other words, we test how
well the system can act when both the probe and gallery contain the features extracted in a
particular direction. We carry out a leave-one-out evaluation strategy, in which any of the gait
sequences will be selected as a probe and tested against the remaining 59 sequences. This is
then repeated 60 times, with each of the gait sequence used exactly once as the test data, and
the average Re-ID result is computed.

We exploit both the anthropometric and gait features. Regarding the anthropometric
features, we select seven body measurements: height, arm length, upper torso, lower torso,
upper-lower ratio, chest and hip (see Table 5.1 for the list of features). An example for the
estimation of ‘height’ feature is shown in Fig. 5.6, by calculating the mean information within
a gait period.

First, we analysed the Re-ID ability of our framework exploiting individual features. An
example of CMC curve produced from each anthropometric features in frontal view is shown
in Fig. 5.7(a). Among them, the most informative features are the height and arm length
information with Rank-1 CMC accuracy of 65.9% and 48.7% respectively.

Similarly, we also analysed the impact of other individual gait features separately. Please
refer to Fig. 5.7(b). It includes various body angles, distances and evolution of certain joints,
along the time. The mean and variance information are extracted to generate the feature
vector. We noticed that, all of those gait features are less informative and distinguishable
in comparison with the anthropometric features. Refering to Fig. 5.7(b), the important gait
features are the elbow distance and hand distance achieving Rank-1 CMC rates 51.67% and
30%, respectively whereas the least informative features were speed and stride length which
achieved 5.12% and 2.5% accuracy respectively.
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Figure 5.6: Height estimation from the sequence of frames within a gait cycle.

Next, we conducted fusion of the multiple features aka multi-modal fusion. Initially, vari-
ous anthropometric features were fused together which resulted in the bold red CMC curve in
Fig. 5.7(a), which achieved 75% Re-ID rate at Rank-1. Similarly, the fusion of gait features
were also conducted. The result is shown with the bold blue CMC curve in Fig. 5.7 (b),
which achieved 61.67% Rank-1 Re-ID rate. We could observe that, fusion of body related
measurements produced higher Re-ID performance in comparison with the fusion of the gait
features. It was quite noteworthy that even by combining 35 gait features, it couldn’t achieve
similar Re-ID accuracy as obtained by the anthropometric fusion by seven features. This gives
the intuition that in frontal view, anthropometrics features are more significant than the gait
features in discriminating the population.

After conducting the fusion among the anthropometric features and gait features sepa-
rately, we further conducted the multimodal fusion of all the biometric features (i.e. both
anthropometric and gait features), altogether. The results obtained in these multi-modal fu-
sion technique in frontal sequence is presented together in Fig. 5.8(a). Red and blue curves
denote anthropometric fusion (75% Rank-1 score) and gait fusion (61.67% Rank-1 score) result
respectively. The combined anthropometric+ gait fusion result is represented via green curve
with a Rank-1 Re-ID accuracy of 91.67%. We could observe that the näıve integration could
improve the overall performance while fusing both anthropometrics and gait features together.

Similar experiments are also conducted in the other three views as well, i.e. left diagonal,
right diagonal and lateral. We show the fusion results of all the three experiments in Fig.
5.8(b), (c) and (d) with an overall Rank-1 scores of 71.67%, 63.33% and 70%, respectively. In
all these scenarios also, we could observe that the anthropometric features outperform the gait
features. Also, while fusing both the anthropometric and gait features together, the overall
performance improved.

A similar human classification strategy based on gait features has been reported in [Gi-
anaria et al. , 2014], by employing 20 people. In contrast to our methodology, they have
conducted the experiments only in a single view (i.e. frontal) as well as an exhaustive se-
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Figure 5.7: Individual feature performance towards Re-ID: (a) Static anthropometric features and
scalar gait features (stride length, stride time and speed). The bold red curve with diamond markers
corresponds to the fusion CMC result obtained by exploiting all the anthropometric features. (b)
Dynamic gait features. The result by fusing all the gait features is shown in bold blue curve with
diamond markers.

lection of the set of different features along with a SVM classification scheme. However, our
experiments were explicitly made in different views, and via naive score-level fusion of multi-
modalities. Hence, an approximate comparative analysis is made at this point, particularly
Fig. 5.8(a) referring to the frontal Re-ID experiment. The highest classification accuracy ob-
served in their case is 96.25% (19.25 times the chance level7) under fine tuned parameter set
(elbow distance, knee distance, mean of head, mean of knee). Nevertheless, our direct approach
of naive fusion also could achieve quite similar result 91.67% (18.34 times the chance level)
without the exhaustive feature search or the fine tuning of the parameter set.

7Chance level is Re-ID of 1 subject out of 20 subjects, i.e. 0.05.
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(b) Left diagonal
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(c) Right diagonal
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(d) Lateral

Figure 5.8: Multimodal fusion of anthropometric features, gait features (using mean-variance)
and the fusion of both, in various directions. (a) Frontal (b) Left diagonal (c) Right diagonal
(d) Lateral.

5.3.2 Experiment 2: View-point independent Re-ID

In Section 5.3.1, we have conducted experiments along various view angles at ∼0◦, ∼30◦, ∼60◦

and ∼90◦, separately. Albeit we could analyse the impact of various features in each of these
directions, we did not so far experiment how feasible and robust is our system in order to
perform in view-point invariant scenario i.e. irrespective of any particular direction. Hence,
we conduct a thorough analysis of various view-point independent Re-ID schemes i.e. pseudo
view-point invariant, quasi view-point invariant and full view-point invariant.

Pseudo view-point invariant Re-ID experiment:

In pseudo view-point invariant case, we consider that the gallery contains samples from multiple
views. And, the probe will be a new sample taken from any of these views. This kind of
set up requires either a large number of cameras with different camera views (in the case
of normal surveillance case), or the person’s different views acquired in the enrollment phase
(authentication phase). The nomenclature ‘pseudo’ is attributed to the fact that the probe view
is already encountered among the gallery views and hence its a pseudo view-point invariant
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Figure 5.9: Pseudo view-point invariant Re-ID results using anthropometrics+ gait.

Re-ID.
Since we have used 20 people’s gait in four different directions, each with three sequences,

altogether we have 240 gait sequences. We conduct a leave-one-out evaluation strategy, in
which any of these sequences will be selected as a probe and tested against the remaining 239
sequences in different views. Altogether 240 runs were conducted and the averaged result was
computed. The achieved performance of the system is depicted in Fig. 5.9.

We could observe that, the fusion of anthropometric features achieved 63.75% (red curve in
Fig. 5.9) and the fusion of gait features achieved 55% with (blue curve in Fig. 5.9) respectively.
While combining both of them, we could obtain improvements in their performance i.e. ∼71%
Rank-1 Re-ID rate. This is a promising result highlighting the performance and robustness
of our system towards handling various direction of gait, which is a big challenge in the Re-
ID task. Our intuition is that the increased number of samples per person (12 sequences)
compared to a single direction (three sequences) could enhance the Re-ID rate.

Quasi view-point invariant Re-ID experiment:

Here, in the quasi-view-point invariant scenario, the gallery contains multiview samples of the
subjects. However, the probe sample is taken from a new view angle which has not been
introduced in the training phase. This is a realistic scenario, where a new camera view is
encountered in which the person has to be re-identified, provided that many other training
samples in different views are available in the gallery. This is a more challenging case than the
pseudo view-point invariant case, since the probe direction is encountered in the system for
the first time.

In order to test this case, we keep all the samples in a particular direction in the test set,
whereas all the other three directions are made available in the training phase. In particular,
we have 180 gait sequences of 20 people corresponding to three directions being kept in the
training set. The 60 gait sequences from the fourth walking direction (which was not introduced
in the training phase) are used for testing. Hence, 60 runs per view are carried out and the
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average result is estimated. We conduct the experiment for all the frontal, left diagonal, right
diagonal and lateral views as the test direction.

The Re-ID rates at Rank-1, Rank-5 and Rank-10 are presented in Table 5.3. It is observed
that the highest Rank-1 CMC rate for the anthropometric fusion is reported in the frontal view
case (41.33%) and the counterpart for the gait fusion was reported in lateral view (31.67%).
Coherent results were also observed in the fusion of anthropometric+ gait case as well, where
frontal samples got re-identified with the highest recognition rate (65%) followed by lateral
samples (41.67%) among all the directions, in the Rank-1 scenario. With Rank-5 and Rank-10
rates in CMC curves, the Re-ID accuracy improved drastically >73.33% and >90% respectively,
in all the directions. Once again the highest Re-ID rates were reported in frontal case (Rank
5- 86.67% and Rank 10- 98.33%). This means that, given other multiple views in the gallery
set, frontal view probes are the best in re-identifying people.

Table 5.3: Chart showing the Re-ID accuracy rates for Experiment 4.2.2. The accuracy rates
shown in each cell represents Rank-1, Rank-5 and Rank-10 CMC rates respectively. The highest
Re-ID rate observed is highlighted in bold letters.

Probe
direction

Anthropometric
based Re-ID

Gait
based Re-ID

Anthropometric
+ gait based
Re-ID

Frontal 41.33%
90.00%
98.33%

26.67%
68.33%
96.67%

65.00%
86.67%
98.33%

Left
Diagonal

33.33%
73.33%
91.67%

21.67%
53.33%
88.33%

28.33%
73.33%
90.00%

Right
Diagonal

28.33%
80.00%
93.33%

10.00%
56.67%
90.00%

31.67%
83.33%
93.33%

Lateral 40.00%
68.33%
93.33%

31.67%
70.00%
81.67%

41.67%
75.00%
96.67%

Full view-point invariant Re-ID experiment:

Full view-point invariance is the case which has only one walking direction in the gallery and
any new arbitrary walking direction for the probe. In terms of creating a training set, this
is the easiest way because it requires only one camera and one view of the person to create
a gallery. At the same time, it is the most challenging scenario in terms of Re-ID, since it
requires to get recordings from merely one view and able to Re-ID in any other arbitrary view.

We conducted 12 various combinations of probe-gallery set based on the walking direction,
in order to guarantee a truly view-point invariant Re-ID. The experiments and the results
achieved are reported in Table. 5.4. In each of the test case (e.g. frontal), we keep any of
the other three view-point data sequences as the gallery (e.g. left diagonal or right diagonal
or lateral). And the same procedure is repeated for all the four directions. In all of these
experiments, each of the probe and gallery contains 60 gait sequences from 20 people. Per each
combination, 60 runs were carried out and the average Re-ID resut is estimated. In the tabular
results (see Table. 5.4), we report only the overall anthropometric+ gait multimodal fusion
results at various ranks (Rank-1, 5 and 10) of CMC curves. It is observed that the highest
Re-ID rates (48.33%) are achieved when frontal sequences are kept in the gallery. With the
diagonal samples the second best Re-ID results are achieved (∼35%).
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Despite most works assume that kinect data is pose invariant, this is not really the case as
demonstrated in all the experiments of our work. Re-ID rates are always better in the frontal
view that in the other, due to the quality of the data acquired. We show that with an adequate
use of pre-processing and soft biometrics we can achieve some level of view-point invariance,
but still not perfect.

Table 5.4: Chart showing the Re-ID accuracy rates for Experiment 4.2.3. The accuracy rates
shown in each cell represents Rank-1, Rank-5 and Rank-10 CMC rates respectively. The highest
Re-ID rate observed is highlighted in bold letters.

PROBE
Frontal Left

Diagonal
Right
Diagonal

Lateral

Frontal -
-
-

26.67%
78.33%
91.67%

48.33%
88.33%
93.33%

48.33%
73.33%
93.33%

G
A

L
L

E
R

Y Left Diagonal 33.33%
75.00%
90.00%

-
-
-

30.00%
70.00%
85.00%

35.00%
78.33%
96.67%

RightDiagonal 35.00%
85.00%
95.00%

25.00%
68.33%
83.33%

-
-
-

18.33%
58.33%
85.00%

Lateral 18.33%
78.33%
90.00%

28.33%
78.33%
93.33%

15.00%
68.33%
86.67%

-
-
-

5.4 Summary

A view-point invariant Re-ID system exploiting the skeleton information provided by the kinect
sensor has been proposed. We have used both the static and dynamic features related to the
human posture and walking, in order to extract features to classify the people in the population.
Extensive study on the impact of various features both individually and jointly, as well as
various view angles have been conducted. We have acquired the kinect data in-house from 20
people walking in four different directions, and analysed our proposed methodology.

We could observe that the static anthropometric features are more informative than gait
features, when employed individually. However, while fusing many static anthropometric fea-
tures and dynamic gait features, we noticed that the overall recognition accuracy increases in
both cases. Also, by combining the whole set of static and dynamic features, the final over-
all Re-ID rate improved further. In addition to evaluations in individual directions, we also
conducted view-point invariant Re-ID experiments in realistic conditions where people walk
in different directions. Three cases studies were conducted in this regard viz. pseudo, quasi
and full view-point invariant. It is found that our system is quite robust and promising with
a Rank-1 Re-ID rate of ∼92% in view-point dependent scenarios and ∼71%, ∼65% and ∼48%
in pseudo, quasi and full view-point independent scenarios, respectively. Since the direct com-
parison with other works are not possible due to the novelty of the approach, we carry out
comparative analysis against the most similar view-point dependent approach [Gianaria et al.
, 2014] in the front view, and very similar Re-ID results (19 times and 18 times the chance
level, respectively) were reported.

In the future, we envisage to extrapolate this study by collecting more data in more random
directions of walk. Also, in terms of the feature fusion, we would like to employ context based
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fusion or feature selection strategies (eg: quasi-exhaustive learning strategy [Barbosa et al.
, 2012b], correlation-based feature subset selection [Andersson & Araujo, 2015]), in order to
fine tune the selection of most informative features and thus improve the Re-ID accuracy.
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Chapter 6

Context-Aware Person Re-ID

Content is King, But Context is God.

— Gary Vaynerchuk

6.1 Introduction

Soft-biometric enabled feature extraction depend strongly on the view-point. For instance, a
person with a short stride gait is better perceived from a lateral view, whereas a person with
a large chest is more distinct from a frontal view. Thus we associate context to the viewing
direction of walking people in a surveillance scenario and choose the best features for each case.

In this chapter, we discuss the application of soft-biometrics (anthropometrics and gait) in
long term Person re-identification (Re-ID) using cameras in arbitrary view-points. We study
the influence of the view-point in Re-ID performance and propose a methodology to exploit
the ‘view-point context’ to improve the overall performance. The best features for each context
are selected for training context specific classifiers. Then, during run time, a context-specific
fusion method provides the person Re-ID score. Based on these concepts, we present a novel
‘Context-aware ensemble fusion Re-ID framework’ based on soft-biometric features, for long
term person re-identification (Re-ID) in wild surveillance scenarios.

Some works have employed Kinect based person Re-ID approaches leveraging soft-biometric
cues [Barbosa et al. , 2012b; Gianaria et al. , 2014; Andersson & Araujo, 2015]. Nevertheless,
they employed view-point dependent methods i.e., data was collected and algorithms were
tested with a single walking direction with respect to the camera, which does not represent
a ‘in the Wild’ scenario where people walk in various directions. On the contrary, in this
work, we collect people walking freely in an indoor office like scenario. Depending upon the
strategic points inside a building (entry/exit points, and coffee machine/printer locations etc.),
it was observed that the probability of people walking indoor could be explicitly represented
in various directional view-points, which we term as ‘Contexts’, rather than random walking
paths. In addition to that, the potential features extracted by the sensor also have indicated
clear distinction, according to different contexts. Based on these postulates, we redefine the
classical Re-ID strategy by means of a novel ‘context-aware person re-identification method’,
where we explicitly evaluate a context-specific feature matching criteria in Re-ID.

91
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In this regard, the major contributions of the paper are as follows:

• We propose to consider view-points as ‘contexts’ for re-identification (Re-ID) systems
based on the fact that the features that best correlate with peoples’ identity depend
strongly on the view-points.

• Model each context with a specific set of features selected with Sequential Forward Se-
lection (SFS) algorithm, to adaptively select the potentially relevant features in each
context and thus to maximize Re-ID score in each context.

• Proposal of a ‘Context-aware ensemble fusion framework’, wherein individual classifiers
are trained specific to each context, and the Re-ID performance is analysed via our
proposed ‘Context-specific score level fusion’ strategy.

• Proposal of a new dataset with 20 people walking in 5 different directions acquired from
Kinect v.2, suitable for pose-invariant Re-ID.

This chapter is organized as follows. The proposed methodology is explained in Section 6.2,
i.e., the dataset used, feature extraction method, and Context-aware ensemble fusion frame-
work. In Section 6.3, the experiments conducted and the results obtained are discussed in
detail. Finally, the summary of the paper and some future plans are enumerated in Section 6.4.

6.2 Methodology

6.2.1 Database

In order to employ Re-ID in a realistic ‘in-the-wild’ scenario, it is quite essential to have
a challenging unconstrained dataset, comprised of sequences of people walking in different
directions. Since such a KinectTM based dataset (with different viewangles) towards gait
based Re-ID was unavailable, we acquired our own dataset using a mobile platform, in the host
laboratory. The KinectTM device is able to track movements from users by using a skeleton
mapping algorithm, and is able to provide the 3D information related to the movements of body
joints. The position of camera as well as the walking directions of subjects were deliberately
altered in order to ensure a typical surveillance scenario. Multiple walking sequences of 20
subjects in five different directions i.e., Left Lateral (LL) (at ∼0◦), Left Diagonal (LD) (at
∼30◦), Frontal (F) (at ∼90◦), Right Diagonal (RD) (at ∼130◦) and Right Lateral (RL) (at
∼180◦) were collected. Altogether we have 300 video sequences comprising 20 subjects (3
video sequences per person in a particular context) in the aforementioned directions. Different
walking directions and sample video frames extracted from our dataset, are shown in Fig. 6.1.
Later on, we released this dataset to the community for research purpose under the name
‘KS20 VisLab Multi-View Kinect skeleton dataset’1.

1KS20 VisLab Multi-View Kinect skeleton dataset is made publicly available from May 2017 onwards. The
link of the website is http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/. Access to the Vislab Multi-
view KS20 dataset is available upon request.

http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/
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(a)

(b) (c) (d) (e) (f)

Figure 6.1: Data acquisition: (a) Subject walking directions in front of the camera system
(Direction angles are defined with respect to the image plane.) (b-e) Sample frames from our
data acquisition, in five different directions- left lateral (∼0◦), left diagonal (∼30◦), frontal
(∼90◦), right diagonal (∼130◦) and right lateral (∼180◦) respectively.

6.2.2 Feature extraction

The real-time skeleton models tracked via KinectTM are composed of 25 body joints. The
foremost step in feature analysis was preprocessing, to remove the noise contents in the data.
By empirically analysing the evolution of lower body angles over time, we cleared the unwanted
jerks in the signals especially, at the boundaries of the Kinect range. The detailed explanation
of pre-processing and feature extraction phases were reported in the prior work by the authors
in Chapter5 and in [Nambiar et al. , 2017b] 2. Then, based on those cleaned signals, the
functional units of gait viz., gait cycles, were estimated. A gait cycle comprises of sequence
of events/movements during locomotion since one foot contacts the ground until the same
foot again contacts the ground. Hence, based on the cleaned data, the periodicity of the feet
movement is estimated to define gait cycle and various features were extracted within this gait
period.

Two kinds of features were extracted: (i) Anthropometric features i.e., the static physical
features defining the body measurements and (ii) Gait features i.e., dynamic features defining
the kinematics in walking. See Table 6.1 for the list of features we used. Under the anthro-
pometric feature set, body measurements defining the holistic body proportions of the subject
such as height, arm length, upper torso length, lower torso length, upper to lower ratio, chest
size, hip size were collected. Similarly, under the gait features, the behavioural features de-
riving from the continuous monitoring of joints during the gait were collected. In particular,
mean and standard deviation of the various measurements during a gait cycle were collected

2The key idea of the prior work was to analyse the influence of various anthropometric and gait features
either individually or jointly (via fusion), and to demonstrate the real impact of view-point on the Re-ID
paradigm. The results highlighted (i) the significance of multi-modal fusion strategy in overall Re-ID results,
and (ii) not all the features are equally contributing towards various view-points, i.e., the Re-ID result varied
in different view-points (although by using the same features). In the current paper we extend that prior work
by adding the i.e., Feature selection strategy and Context-aware fusion framework.
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Table 6.1: List of anthropometric and gait features used in our experiments. L& R correspond
to ‘left and right’ and x& y correspond to ‘along x and y axes’. The numbers of features derived
are shown within parenthesis.

Anthropometric
features

Gait features

Height-(1) Hip angle(L&R)-(4) Hip position(L&R)(x& y)-(8)
Arm length-(1) Knee angle(L& R)-(4) Knee position(L&R)(x& y)-(8)
Upper torso-(1) Foot distance-(2) Ankle position(L&R)(x& y)-(8)
Lower torso-(1) Knee distance-(2) Hand position(L&R)(x& y)-(8)
Upper-lower ratio-(1) Hand distance-(2) Shoulder position(L&R)(x& y)-(8)
Chestsize-(1) Elbow distance-(2) Stride-(1)
Hipsize-(1) Head position(x& y)-(4) Stride length-(1)

Spine position(x& y)-(4) Speed-(1)

i.e., (i) the angles at various body joints; (ii) the distance between various right-left limbs
and; (iii) the position of body joints. Also three scalar features related to walking, viz., stride
length, stride time and the speed of walking, are computed within the gait features. Hence,
the feature set contains a total of 7 anthropometric features and 67 gait features. In Table 6.1,
the numbers of features derived are shown in parenthesis.

6.2.3 Context-aware ensemble fusion

Context1 (v1)

Context2 (v2)

Context3 (v3)

Context4 (v4)

  C2

  C3

  C4

   Test 
data (y) 

Context-
aware 

classifier 
fusion

Feature selection 
bench for contexts

Individual 
classifier bench

Training
data (x)

F2*

F3*

F4*

F1*

Re-ID o/p:
(Ranked list)

Context5 (v5)
F5*

Context    
detector  ?h  

  C1

  C5

F* C

S

Figure 6.2: Context-aware ensemble fusion system: It internally consists of a feature selection context
bench, an individual classifier bench, a classifier fusion module and a context detector module. The
individual classifiers for each context are trained using individual feature subspace ensembles F∗

j ,
obtained for each context. When the test data enters, context detector identifies the context and
activates the corresponding ensemble classifiers. Then, the context-aware classifier fusion strategy
finally combines the results of those ensemble classifiers to produce the global result.

One of the most significant contributions of this work is a novel context-aware ensemble
fusion strategy. First, we present an evaluation of the impact of the various data features in
various contexts i.e., view-points, and then employ a context-based fusion method to obtain
the final Re-ID result. We accredit the work on Feature subspace ensembles [Silva & Fred,
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2007] which acted as a motivation to the authors to come up with an analogous ensemble
fusion strategy. That work presented an approach to run multiple parallel Feature selection
stages with different training conditions, in order to obtain the best features, by using majority
voting of the feature ensembles.

Our proposed framework is shown in Fig. 6.2. It is composed of four modules: (i) Feature
selection Context bench (ii) Individual classifier bench, (iii) Context detector module and (iv)
Context-aware classifier fusion module.

Feature selection Context bench

Our data for evaluation consists of the feature vectors extracted at various view-points, as
mentioned earlier. We denote those five context view-points as v1, ...,vN, with N = 5, corre-
sponding to LL, LD, F, RD and RL directions. We analyse the data in each context individually
by leveraging a Feature Selection (FS) scheme in order to retain only the most discriminative
and relevant features.

In particular, we employed Sequential Forward Selection (SFS) algorithm [Whitney, 1971]
as an instance of FS, as it is well known and widely used in practice. It works iteratively by
adding features to an initial subset, seeking to improve a given measure, by selecting more
features at each iteration. Suppose, x = {x1, · · · , xn} denotes a set of n samples represented
in a d-dimensional space, each with a d-dimensional feature set F = [f1, · · · , fd] ∈ IR1×d. FS
analyses this d-dimensional space in order to identify which features fi ⊂ F are potentially
relevant, and which can be discarded according to some feature subspace evaluation criteria J
and ultimately derive F∗j , containing the most relevant features.

Specifically, the SFS algorithm works as follows: It starts from an empty feature set F∗t=0.
At each step F∗t+1 all possible super-spaces containing the most relevant feature subspace in the
previous step, F∗t , and one from the remaining features fi ∈ F\F∗t are formed and evaluated
by J. This iterative search will proceed until a stopping criteria is met, for which we considered
the degradation of J i.e., if none of the super-spaces formed at a given step F∗t+1 improves
J, the search stops and the subspace F∗t is considered as the best feature subset. Finally, the
outputs of the Feature selection context bench consists of an ensemble of feature subspace i.e.,
the features selected for each particular context F∗ = [F∗1, · · · ,F∗5]. For the implementation
of the algorithm, the authors used SFS package3 Pohjalainen et al. [2015]. We used 1-NN

classifier with an Euclidean neighborhood metric in the SFS scheme.

Individual classifier bench

Since our training data consists of both anthropometric and gait features, we need to exploit
both of them in training our each individual classifier. In this regard, we exploit various fusion
techniques in order to combine anthropometric and gait features. Traditionally, there are many
fusion strategies at various levels viz., feature level fusion, score level fusion, rank level fusion or
decision level fusion [Ross et al. , 2006], of which we select both feature level fusion and score
level fusion strategies in our work. In order to see the impact of various fusion strategies, we
conduct two baseline fusion schemes without Feature selection: (i) Feature-level fusion without
FS, represented as Feature Level fusion with No Feature Selection (FL/NFS) and (ii) Score-level

3http://users.spa.aalto.fi/jpohjala/featureselection/

http://users.spa.aalto.fi/jpohjala/featureselection/
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fusion without FS, represented as Score Level fusion with No Feature Selection (SL/NFS). The
schematic representations of the aforementioned are shown in Fig. 6.3 (a) FL/NFS and (c)
SL/NFS respectively.

(a) FL/NFS (b) FL/FS

(c) SL/NFS (d) SL/FS

Figure 6.3: Various Fusion-Feature selection schemes employed in this work. Top and bottom
rows represents feature-level and score-level fusion strategies respectively. Feature Selection
(FS) is not used in case studies (a) FL/NFS and (c) SL/NFS, whereas (b) FL/FS and (d)
SL/FS shows the inclusion of FS module.

In Feature level fusion (see Fig. 6.3 (a)), the biometric sets of the same individual are
concatenated after an initial normalization (Min-max) scheme. This way, we concatenate our
7D anthropometric features and 67D gait features in order to make a 74D feature vector. Then,
the concatenated feature vector is used in the classifier in order to represent the identify of
an individual. Instead, in score level fusion (see Fig. 6.3 (c)), the fusion is carried out at the
score level. The matching scores of each biometric sets are determined independently using two
different classifiers and the matching scores at their outputs are fused in order to provide an
aggregate score result. As explained in [Ross et al. , 2006], normalized distance scores obtained
at each individual classifiers can be fused using some combination rule such as sum, product,
min, max or median. In our approach, we adopted sum rule as the classifier combination rule.

After the baseline cases, we further conduct our proposed FS-enabled fusion strategies as
well. Here, the biometric sets are fed into a FS module prior to the classification stage so
that, only the selective feature subspace F∗j (as explained in Section 6.2.3) will be used as
the individual feature vector. In this regard, two more fusion schemes with Feature selection
are carried out: (i) Feature-level fusion with FS, represented as FL/FS and (ii) Score-level
fusion with FS, represented as SL/FS. The schematic representations of the aforementioned
are shown in Fig. 6.3 (b) FL/FS and (d) SL/FS respectively.

Thus, as explained above, four different Fusion-FS schemes are conducted in order to as-
sess the performance of each individual context classifiers within the classifier bench. In all
of those case studies, a leave one out evaluation strategy is performed within each context,
with a classifier specification of Nearest neighbour (NN) using euclidean distance metric. The
experimental results obtained are explained in Section 6.3.1, and the best among all those
fusion-FS scheme is further used as the de facto standard scheme in our framework. Based on
this standard scheme, five different classifiers are trained corresponding to each context, which
will form the Individual Classifier bench C = [C1, · · · ,C5].
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Context detector

Context detector is the module where the context (view-point) of the test sample is estimated.
The design of the context detector module was carried out by analysing the evolution of any
static joint along the sequences over a gait cycle. We used ‘SpineShoulder’ i.e., the base of the
neck refering to joint number 20 of KinectTM v.24, since it remains more or less stable while
walking. Then, the direction of walking was estimated by analysing the direction of the joint
vector. Suppose ~hbegin and ~hend denotes the position of the joint in the first frame and last
frame respectively. Then the directional vector among these frames ~h =< hx, hy, hz > can be
obtained as follows:

~h = ~hend − ~hbegin, (6.1)

The y component hy is only related to the vertical direction and hence is ignored. Then, the
angular direction θ~h made by ~h can be determined by measuring the inverse tangent of hz/hx.

θ~h(degrees) = tan−1(hz/hx) ∗ 180/π (6.2)

Whenever a test data y ∈ IR1×d enters into the system, its context is estimated using (6.1)
and (6.2), and the corresponding ensemble classifiers are activated in order to proceed with
context-aware classifier fusion.

Context-aware Classifier fusion

Based on the results from context detector module, this classifier fusion module performs a
context-specific adaptive fusion of the results obtained at the outputs of individual classifiers
C = [C1, · · · ,C5]. In order to facilitate this, an extended version of score-level fusion based
on context is proposed in this work, which we term as ‘Context-specific score level fu-
sion’. This could be analysed homologous to the concept of user-specific score-level fusion
in multibiometric systems, where user-specific weights were assigned to indicate importance
of individual biometric matchers [Ross et al. , 2006]. In a similar way, in our proposal, we
endorse adaptive weights to scores from different classifiers according to its context, in order
to increase the influence of more reliable context. In order to facilitate this adaptive weighting
scheme, we employ linear interpolation technique.

Consider a test sample y, at an arbitrary view-point context vtest, is entering into the
system. The context is detected using the context-detector module. Suppose the context lies
in between our pre-defined context views say, vi and vj. The individual classifiers for both
aforementioned contexts Ci and Cj are selected alongwith their matching scores si and sj

respectively. The context-specific score level fusion S is computed as weighted sum of those
scores as follows:

S = η ∗ si + (1− η) ∗ sj, (6.3)

where η ∈ [0, 1]. The weight η is computed via linear interpolation of the two contexts i.e.,
η = |vj − vtest|/|vj − vi|. The special case where only single context is activated, η of the

4https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
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nearest context turns to be 1, and all the others will be 0. Regarding these concepts, we
analyse different case studies in detail, in the experimental section Section 6.3.2.

6.3 Experimental results

The performance of the context-aware ensemble fusion strategy was evaluated on our own
database collected from 20 people, mentioned in previous section (see Section 6.2.1). Two
major experiments were carried out: (A) Training the individual context-specific classifier, in
which each individual classifier was learned specific to its context. Intermediate experiments
leading to this standard scheme (such as various fusion-FS schemes for performance assessment,
context-specific feature ensembles selected) are also detailed in this section. The second exper-
iment is (B) Context-Specific Score Level Fusion, wherein the final Re-ID result was achieved
via adaptive fusion of the ensemble classifiers. Under this part, the experiments on context
detection and context-specific fusion strategy are detailed. In order to evaluate the perfor-
mance of our Re-ID algorithms, we use the popular method of choice, cumulative matching
characteristic (CMC) curve. As per [Nambiar et al. , 2014b], “CMC shows how often, on
average, the correct person ID is included in the best K matches against the training set for
each test image”.

6.3.1 Training the individual context-specific classifiers

In this step, we assessed the individual context classifier performance leveraging the 7D an-
thropometric features and 67D gait features. The impact of various fusion and FS schemes
were analysed in this stage, via the four extensive case studies explained in Section 6.2.3.

Why Feature selection is required?

Prior to the selection of feature subspace ensembles, initially we tried to analyse the Re-ID
performance of each gait as well as anthropometric feature individually. This is performed with
the NN classifier explained before but using a single feature i.e., no fusion. Fig. 6.4 shows the
individual performances of some of the best features5 in person Re-ID in the frontal context.
We can observe that certain features are quite relevant and discriminative (e.g., height 55.89%,
arm length 41.67%, elbow distance 50.00% and chest size 35.00%) compared to the others in
re-identifying people. Another interesting result was that the feature level fusion of all features
among a biometric set (gait or anthropometric) resulted in better performance. Or in other
words, multi-modal fusion outperformed the individual Re-ID results. Referring to the CMC
curves in Fig. 6.4, we can observe that fusion of all anthropometric features resulted in 85.00%
Re-ID rate at Rank-1 (bold green curve) and fusion of all gait features resulted in 60.00%
Re-ID rate at Rank-1 (bold blue curve).

After the feature level fusion of anthropometric features and gait features separately, we
further conducted multimodal fusion of the biometric features altogether i.e., both anthropo-
metric and gait features. Within this scheme, we first utilized feature-level fusion strategy i.e.
as per Fig. 6.3 (a) FL/NFS. However, we could observe that the multimodal fusion at feature

5Among 74 features, only those features with individual Re-ID performance ≥ 20% are illustrated here.
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Figure 6.4: Re-ID performances of individual as well as fused features in frontal context. Only a
subset of individual features with classification rate ≥ 20% at Rank-1, are shown. The fusion results
of anthropometric features (green with circle markers), gait features (blue with circle markers) and
both anthropomeric and gait features (red with star markers) are shown via bold curves. For fusion
of features, feature-level fusion strategy is adopted.
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Figure 6.5: The Re-ID performances of various Fusion-FS schemes mentioned in Fig. 6.3 along five
contexts viz., left lateral(∼0◦), left diagonal(∼30◦), frontal (∼90◦), right diagonal(∼130◦) and right
lateral(∼180◦) respectively. Cumulative matching scores up to 10 subjects are shown.

level resulted in lower Re-ID rate (75% illustrated by bold red Dash-dot curve in Fig. 6.4)
lying in between the anthropometric and gait fusion results. This under-performance could
be ascribable to the large number of potentially misleading irrelevant/redundant features in
the feature vector. To tackle this issue, we applied feature selection strategy by exploiting SFS

algorithm as explained in Section 6.2.3 and carried out its FS-enabled counterpart Fig. 6.3 (b)
Feature Level fusion with Feature Selection (FL/FS).

Various Fusion-Feature selection schemes

After observing the lower performance of the multi-modal system without feature selection,
we thereafter carried out an extensive analysis on different fusion-FS schemes as mentioned in
Section 6.2.3.Within this set of assessment studies, we carried out all the four fusion-FS schemes
i.e., (a) FL/NFS, (b) FL/FS, (c) SL/NFS and (d) Score Level fusion with Feature Selection
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(SL/FS), leveraging both feature level/score level fusion and without/with FS. The performance
results of all those case studies are illustrated in Fig. 6.5. The corresponding cumulative ranked
list (showing anthropometric, gait and overall CMC rank-1) is also shown in Table 6.2. These
experimental results corroborate that:

• Feature Selection (FS) improves Re-ID accuracy, compared to without FS (NFS).

• Score-level fusion works better than the feature level fusion in Re-ID.

• Overall performance of SL/FS is the best among the group and thus is considered as the
‘de-facto’ in our context-aware ensemble fusion framework, at the individual classifier
bench.

Table 6.2: Chart showing the Re-ID accuracy rates for five contexts. The accuracy rates
shown in each cell represent Anthropometry based Re-ID, gait based Re-ID and Overall Re-ID
respectively, at rank-1 CMC. The highest Re-ID rate observed is highlighted in bold letters.

Context FL/NFS FL/FS SL/NFS SL/FS
Left
Lateral

63.33
53.33
63.33

61.67
81.67
85.00

63.33
53.33
78.33

58.33
83.33
86.67

Left
Diagonal

75.00
48.33
55.00

63.33
61.67
68.33

75.00
48.33
71.67

63.33
61.67
80.00

Frontal 85.00
58.33
75.00

78.33
71.67
93.33

85.00
58.33
91.67

78.33
70.00
93.33

Right
Diagonal

66.67
46.67
51.67

66.67
66.67
65.00

66.67
46.67
66.67

66.67
63.33
78.33

Right
Lateral

40.00
63.33
70.00

45.00
81.67
81.67

40.00
63.33
80.00

48.33
85.00
83.33

Context-specific FS ensembles

Based on the results obtained, we attribute SL/FS as the de-facto strategy in our framework.
The score level fusion of the selected features (both gait and anthropometric) were used to
train individual classifiers for each context, at the classifier bench. Also, at this training phase,
we also comprehended the relevant features for each context. For analysing the same, we
conducted a holistic FS criteria with Cross-validation scheme in each context, which resulted
in Table. 6.3. This shows the context-specific features selected for each individual classifier,
and using these results, the classifier bench is trained for future evaluation.

It is quite remarkable that the impact of globally discriminative anthropometric features
such as height, arm length, chest size are highly relevant in almost all the contexts. However,
some features clearly show its influence dependent on the context. For example, gait features
presenting angular evolution (hipAngle) and distance showing various right-left limbs during
the gait (knee distance, hand distance, elbow distance etc.) were selected in the frontal view.
At the same time, many other gait features such as stride length, vertical position evolutions
at various joints (headYµ, kneeYµ, spineYµ,hipYµ, handYµ etc.) clearly exhibited the evi-
dence of their influence in the lateral contexts. As a consequent result, lateral cases bestowed
higher performance of gait features against anthropometric features in our experiments (see
SL/FS results in Table 6.2 where LL and RL achieved 83.33% and 85.00% gait based Re-ID
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accuracies respectively against corresponding anthropometric based Re-ID accuracies 58.33%
and 48.33%), in contrast to the frontal cases where anthropometric features showed better Re-
ID performance (Anthropometry based Re-ID is 78.33% against gait based Re-ID of 70.00%).
This results clearly corroborate the reason behind why usually gait analysis techniques are
better manifested in lateral view rather than in front view.

Table 6.3: Context-specific features selected via SL/FS scheme, during the training of indi-
vidual context classifiers. Only 28 feature subset out of whole 74 features were selected.

Feature LL LD F RD RL Feature LL LD F RD RL
height 3 3 3 3 3 spineYµ 3
arm 3 3 3 3 lhipYµ 3
upper 3 3 lkneeYµ 3 3 3 3
lower 3 3 3 rkneeYµ 3 3 3
ULratio 3 3 rankleYµ 3
chestsize 3 3 3 3 lhandXµ 3
hipsize 3 3 3 lhandYµ 3
hipAngle 3 lhandYSD 3
kneeDistµ,SD 3 rhandYµ 3 3
handDistµ,SD 3 lshouldYµ 3
elbowDistµ 3 3 3 lshouldYSD 3
elbowDistSD 3 rshouldYµ 3
headYµ 3 3 3 3 rshouldYSD 3
headYSD 3 strideLength 3 3

6.3.2 Context-Specific Score Level Fusion

After the training of each individual classifier leveraging the context-specific features selected
as per in Table 6.3, we conducted testing of our proposed method in pose-invariant scenario
where test sample could be at any arbitrary context. In all of our test experiments, we employ
a leave-one-out evaluation strategy, where we select one sample at a time and is compared
against the rest of the samples in the gallery. This procedure is iterated throughout all the
samples in the dataset.

Context detection

When a test sample at an arbitrary context enters into the system, the foremost stage is
to detect the context of the test sample by enabling a Context detector module (see Sec-
tion 6.2.3). Then, based on the detected context, corresponding context-specific classifiers are
activated. In order to enable this, a prerequisite was to empirically verify the actual contex-
tual view-points existing in our global dataset, and thus define ‘contexts’ based on the gross
view-points along a particular direction. So, in order to comprehend the existing contexts in
our dataset, a prior context analysis was carried out on our global database, which resulted
in context clusters as shown in Fig. 6.6. This empirical analysis enabled us to obtain bet-
ter insight of the actual view-points spread within each contexts. Based on this study, we
could observe that five contexts v1, ...,v5 are spread around their respective clustermeans µ =
[1.67, 35.63, 92.83, 130.70, 180.17]>, with standard deviations σ = [3.64, 4.90, 3.29, 5.34, 3.99]>.
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Figure 6.6: Distribution of the context the dataset.

Context-specific fusion strategy

In this fusion stage, information from different context specific classifiers are fused using the
runtime estimate of the current context, given by the context detector. After the context
detector determines the current context, the corresponding ensemble classifiers are activated.
Under this context-aware paradigm, two schemes were proposed: (i) Using single context
(binary weighted), in which only the closest context is selected based on the nearest cluster
mean among all the clusters. Hence, only that specific context in the gallery is activated and the
test is matched against all the rest of the 59 samples in that particular context and the ranked
Re-ID list is obtained. The second context-aware scheme is (ii) using Two contexts (linear
interpolated weights), wherein depending upon the probe context, two nearby contexts
(between which the test probe lies) are activated. Then, the test sample is matched against the
rest of the gallery samples in those two contexts, and respective matching scores are generated6.
Then, depending on the distance of the test context with respect to those contexts, adaptive
weights are assigned via linear interpolation technique, and Context-specific score level fusion
strategy is applied to obtain the aggregate Re-ID result (see Section 6.2.3).

In order to perform a comparison of our context-aware proposal, we also conducted baseline
studies without the notion of context (Context-unaware). In these baseline scenarios, we
disabled the context detector module, and hence no notion of the probe context is available
to the system. Three baseline studies were performed. In the first case study, the test sample
enters into the system and it matches against all the rest of the 299 gallery samples (from
all the contexts), and computes the ranked Re-ID list based on the matching score. In this
method, albeit the testing is performed as context-unaware, the features used per person are
context-aware. In other words, the samples per person used in the test mode were trained a
priori based on the context-specific feature selection. Hence, we term this scenario as ‘Pseudo
baseline’ . To tackle this context dependency, we conducted the second case study called
‘Pure baseline’ , where we made the system context-unaware not only at the testing phase,
but also at the training phase. In order to conduct this analysis, we retrained our system and
applied global feature selection upon all the samples, independent of the context. Thus, the
same features got selected globally, thus making the FS in all the samples context-unaware.
Afterwards, testing was conducted as in the ‘Pseudo baseline’ case, where the probe is matched
against all the rest of the 299 gallery samples, and computes the ranked Re-ID list based on
the matching score. The third context-unaware case study is with the assumption that the

6Since the number of gallery samples per context may vary (the actual context containing text context
contains 59 samples in the gallery whereas the other context contains 60 samples), the matching scores per
sample are of different size. Hence, we use matching scores per person by computing the best score (minimum
distance score) per person.)
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Table 6.4: Results of classifier fusion showing our proposed context-aware classifier fusion
against context-unaware baseline case studies. In context-aware cases, context detector module
is enabled, whereas in the context-unaware cases, context detector module is disabled

Context-unaware Context-aware
No con-
text
(Pseudo
baseline)

No con-
text (Pure
baseline)

All con-
texts
(equal
weights)

1 context
(binary
weights)

2 contexts
(adaptive
weights)

Anthropometric 25.33% 60.33% 45.67% 68.67% 68.00%
Gait Re-ID 26.67% 70.33% 53.33% 84.67% 85.67%

Overall Re-ID 74.33% 79.33% 71.33% 88.67% 88.33%
Processing time 25.7sec. 21.64sec. 25.92sec. 5.59sec. 10.47sec.

chance of the probe sample within the pre-defined contexts are equally likely i.e., the same
probability of occurring. Hence, equal weights of 0.2 is assigned to each contexts. The probe
sample is tested against the gallery samples in each context and then weighted sum upon all
the five individual classifier matching scores are performed to obtain the aggregate matching
score and the consequent ranked list.

The results of all the five case studies mentioned above are shown in Table 6.4. It is quite
remarkable to observe that, context-aware methods (either by using a single or two contexts)
bestow high performance level ∼88%, whereas all variants of Context-unaware cases miss good
results ∼71%-79%. Also, since there is no notion of the context in Context-unaware cases, the
probe sample has to be matched against all the rest 299 samples in the global dataset. At the
same time, in context-aware cases, the information of the direction helps to reduce the size
of the gallery set drastically by making it context-specific. Due to this reason, context-aware
systems performed faster (∼5-10 sec.) compared to the context-unaware system (∼21-25 sec.).
This highly accentuates the fact that, in unconstrained scenarios, the knowledge of context can
augment the performance of a Re-ID system in terms of both speed and accuracy.

6.4 Summary

In this work, a novel context-aware ensemble fusion framework has been proposed towards
long term Re-ID in the wild. In order to develop this framework, we first analysed the individ-
ual as well as fused Re-ID results leveraging anthropometric and gait features. Based on the
observation that albeit multimodal fusion improves the result, näıve integration of large num-
ber of potentially irrelevant features can cause degradation of results, we proposed a Feature
selection (FS) technique by employing Sequential Feature selection (SFS) algorithm. In this
regard, various fusion-FS strategies were analysed and the best among all (SL/FS) has been
selected as the de facto standard in our framework.

Another contribution was the concept of context-specific classifiers. This was quite signif-
icant depending upon the property of the sensor that, specific features are well acquired in
specific directions. Based on our FS scheme, we adaptively selected those features depending
upon the directions which we term as ‘contexts’, and trained each individual classifiers based on
the selected features for that particular context. During the run time, the direction of the probe
sample was determined using a Context-detector module, and the corresponding neighboring
context/contexts were activated. Afterwards, a context-aware classifier fusion was facilitated
via our proposed ‘Context-specific score level fusion’, and the Re-ID was carried out. The
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experimental results showed that comparing to the Context-unaware systems, context-aware
systems performed significantly faster (up to 4.5 times) and accurate (up to 17 percentage
point better).

In the future works, we envisage to extrapolate this study by collecting more data in more
random directions of walk (moving from a denser context clusters to scatter clusters), and to
analyse how the linear interpolation strategy can enhance the results. Another idea is also to
incorporate multiple contexts in the scenario, (i.e., in addition to the view-point, also include
distance to the camera, occurrence of face, person co-occurances etc.) in order to improve the
re-identification performance.



Chapter 7

Conclusions and Perspectives

I think and think for months and years. Ninety-nine times, the conclusion is false. The
hundredth time I am right.

— Albert Einstein

This thesis proposes a few step changes in the problem of long-term and view-invariant
person Re-Identification (Re-ID) by exploiting soft-biometrics (human anthropometry/shape
and human gait), 3D data and contextual methods. We developed two datasets (HDA and
KS20 Vislab Multi-View Kinect Skeleton datasets) in realistic scenarios and one synthetic
dataset leveraging virtual reality avatars. (refer Section 1.5)

7.1 Key contributions

• Anthropometry based Person Re-ID: Our first direct contribution is the proposal
of a novel Re-ID framework, for person re-identification either by multimedia data or
by means of manual queries describing natural human compliant labels (soft biometric
traits). The proposal of such an automatic dual mode system by incorporating ‘human
in the loop’ is quite appropriate in a practical perspective where the operator can opt
collecting either multimedia info from the camera or eye witness description of the person
to carry out person identification. By exploiting shape context (SC) descriptor extracted
on the head-to-torso region on frontal human silhouettes (less occluded and more stable
features), its applicability was experimentally confirmed in both real and virtual reality
data sets.

We studied the relationship between Shape Context descriptors and soft biometrics.
By means of regression methods, the semantic gap between the manual and machine
interpretation of human profile has been analysed and corroborated as ‘linear’ in nature.
The use of digital graphics/animation platform (Unity3D R©) along with computer vision
and machine learning techniques has enabled Re-ID without the need of time-consuming
manually annotated data.

105
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• Gait based Person Re-ID:

A flow-based gait period estimation and a novel Histogram of Optic flow Energy Image
(HOFEI) over the entire body were proposed in this work. The main advantage of such
a methodology is that it facilitates online Re-ID, since optic flow based methods do not
require silhouette segmentation. No state-of-the-art works addressed Re-ID with optic
flow features in frontal gait. The proposed algorithm has been tested on a controlled
benchmarking gait dataset (CASIA dataset) and a more challenging benchmarking video
surveillance dataset (HDA Person dataset). Various case studies confirmed the effective-
ness of the proposed gait based Re-ID technique under challenging conditions of different
background clutter and sampling rates (25Hz in CASIA vs 5Hz in HDA).

• Towards multi-modal and view-point invariant Person Re-ID: We have studied
the effect of the combination of multiple features in Re-ID. We used both static and
dynamic features related to the human posture and walking, in order to select which
features are better to classify people in the population. It was observed that the static
anthropometric features are more informative than gait features when employed indi-
vidually. However, when fusing many static anthropometric features and dynamic gait
features, the overall recognition accuracy increases.

A key contribution was the first actual demonstration of the of the real impact of view-
point on the Re-ID paradigm using data acquired from the Kinect sensor. Traditional
studies assume the walking sequences to be in a specific view-point. Instead, we con-
ducted a view point invariant benchmark assessment by experimenting explicitly different
view-points in the probe and gallery samples. Various case studies conjectured that the
view-point has a great influence on the feature extraction and the Re-ID performance
will vary according to the selection of view-points in the gallery and probe sets.

• Context-Aware Person Re-ID: A novel context-aware ensemble fusion framework for
long term Re-ID has been proposed. Realizing that the computation of biometric features
depend strongly on the view-point, we incorporated the information associated to the
view-points termed as ‘contexts’ and proposed the so called ‘Context-aware ensemble
fusion Re-ID framework’.

Assigning view-points to contexts, feature selection technique (SFS) can to fine tune the
most relevant features in each context that are used to train context-specific classifiers.
Various feature selection and fusion strategies have been a part of the research in order
to understand the best combination of features in each context. The observed superior
performance of context-aware systems both in terms of speed and accuracy, look quite
promising.

7.2 Limitations and Future works

There are still many open issues associated with the Re-ID problem, which we couldn’t explore
completely during this thesis period. However, we envisage to include some in our future works.
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– Albeit we addressed the long term re-identification problem, by leveraging soft-biometric
cues, the possibility of exploring many other cues are still open. For instance, face informa-
tion could improve the Re-ID rate drastically. Even though face information can’t be exploited
in all the viewing directions (for example, rear/lateral cases), some context enabled fusion of
face and other biometric cues could be envisaged. In the same way, the idea of using human
shape in the Re-ID frame work could be extended towards full body shape. This would
provide a better representation of the 3D shape of persons, and lead to more accurate re-
identifications.

– Another possibility is to leverage some tecniques to understand the dressing style and
the choices of apparels. For example, personal choices of the dress colours, signature apparels,
ornaments/other accessories can also contribute towards the process of distinguishing among
the population. Some celebrities’ dress code are shown in Fig.7.1. In future, deep learning
techniques could be able to comprehend these kind of abstract cues to be incorporated with
the process of re-identification. Due to the availability of increasing amount of big data and
deep techniques, such abstract level information can be deployed to the Re-ID paradigms.

(a) (b)

(c) (d) (e) (f)

Figure 7.1: Different dressing attires also could be exploited towards Re-ID process via deep
learning techniques. The figure above shows the typical dress codes of some famous people
around the globe (a) Mark zuckerberg (b) Steve Jobs (c) Wangari Maathai (d) Queen Eliza-
beth (e) Malala Yousafzai and (f) Angela Merkel. Rather than just the colour/texture of the
appearance, the style of appearance also matters, and more interestingly also could be utilized
towards long term Re-ID.

–On gait based Re-ID, there are many open issues. Due to the wild nature of the re-
identification scenarios, gait based Re-ID would benefit a lot from true pose invariant ap-
proaches to gait analysis. Even though some pose invariant approaches have been proposed
using 2D images [Wang et al. , 2016; Wei et al. , 2015] or 3D models generated out of mul-
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tiple 2D cameras [Iwashita et al. , 2010], their levels of accuracy still lag behind what can
be achieved with MOCAP data, therefore leaving room for improvements. Recently, many
state-of-the-art methods address the pose-invariant 3D data generated by Kinect-like devices
[Chattopadhyay et al. , 2015; Andersson & Araujo, 2015], including our proposal [Nambiar
et al. , 2017b]. These latter techniques have been quite revolutionary in terms of data acqui-
sition, as well as the classification accuracy, however, it is not clear how to exploit them in
traditional surveillance scenarios which use 2D cameras. Hence, one possible future direction
is to research further on reconstructing 3D data from the traditional 2D image frames.

– Another significant problem is the open-set Re-ID. In the open-set scenarios the system
should be able to detect novel subjects, i.e. persons not yet enrolled in the gallery [Gala &
Shah, 2014]. Only a few works on person Re-ID address the open space scenario [Liao et al.
, 2014; Bedagkar-Gala & Shah, 2011]. Similarly, although gait is well suited for long term
person identification, only a few works have verified their performance over the longer periods.
All of them suffer degradation in the Re-ID performance with the changes in the covariates
(e.g., different terrains, wear accessories, seasonal variations in the dressing styles) compared
to their performance over the short period. This problem motivates the necessity for more
long-term gait based Re-ID datasets, where algorithms could be tested against seasonal
variations, and more real-world experiments in long-term scenarios.

–Regarding the Context-aware Re-ID, we envisage to incorporate multiple contexts in
the scenario, i.e., in addition to the view-point. By including other contexts such as camera
topology, distance to the camera, types of environments under surveillance, types of activities
under consideration (leisure, work, passage), the amount of interactions among persons etc.,
we expect to enrich the the quality of the methods. An extension of the current work is also in
preparation, to exploit information across contexts (cross-contextual analysis). In many cases
the probe data appears in contexts where the gallery samples of the person are few. So we
should gather information for the identity of a person in multiple contexts. Our approach is to
study which features better map among different contexts. The publication will be submitted
soon. [Nambiar et al. , 2017 (In preparation)]



Appendix A

HDA Person dataset

A.1 HDA Person dataset

High Definition Analytics (HDA) dataset was designed with the following goals: (i) establish-
ing a benchmark for Pedestrian Detection (PD) algorithms specific for an office scenario, (ii)
providing a benchmark featuring High Resolution images for Video Surveillance algorithms, in
particular PD, person tracking and Re-Identification (Re-ID), and (iii), creating a benchmark
for fully automated Re-Identification (PD+REID) systems. We think that the availability of
a benchmark for PD algorithms in an office scenario will attract the attention of the Video
Surveillance community on PD’s. The use of cameras equipped with both standard and High
Definition sensors will permit the study of the effect of High Definition on the performance of
the algorithms. Moreover, the presence of Hight Resolution images will highlight the weak-
nesses of the Video Surveillance algorithms of the current generation for that specific case and
foster the development of algorithms specific for High Definition images. To make a concrete
example, we expect that the algorithms in the state of the art not to achieve real time per-
formance on High Resolution images. Finally, we think that the creation of a benchmark for
PD+REID will help the establish a community for the study of this problem, which we see as
the natural evolution of classic Re-ID.

The HDA dataset was acquired recording simultaneously from 13 indoor cameras for 30
minutes. The cameras were distributed over three floors of the Institute for Systems and
Robotics (part of the Instituto Superior Técnico in Lisbon, Portugal), a typical office scenario
for Video Surveillance. Approximately 85 people participated in the data collection, most of
them appearing in more than one camera. The dataset is heterogeneous: we used three distinct
types of cameras (standard, high and very high resolution), different view types (corridors,
doors, open spaces) and different frame rates. This diversity is essential for a proper assessment
of the robustness of video analytics algorithms in different imaging conditions.

The data recordings for the HDA dataset involved the use of 13 AXIS cameras, some with
standard VGA resolution (AXIS 211, AXIS 212PTZ, and AXIS 215PTZ) some with 1MPixel
resolution (AXIS P1344) and one of 4MPixel resolution (AXIS P1347). To save bandwidth,
storage and labelling time, the sequences were not acquired at high frame rates, but at rates
of 5Hz, 2Hz and 1Hz for the VGA, the 1MPixel and the 4MPixel resolution respectively. The
camera poses in the three floors are depicted in Figure A.1. Table A.1 describes the camera
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network details in brief. Figure A.2 displays one frame for each camera, highlighting differences
in illumination, color balance, depth range and camera perspective.

(a) Floor 6 (b) Floor 7

(c) Floor 8

Figure A.1: Camera poses: a visualization of the three floors of the building at which the HDA
dataset was acquired. The cameras marked with a red circle and an orange field of view are
the ones used to record data.

Table A.1: Details of the labelled camera network.
CAM 02 17 18 19 40 50 53 54 55 56 57 58 59 60

640x480 3 3 3 3 3
1280x800 3 3 3 3 3 3 3 3
2560x1600 3

fps 5 5 5 5 5 2 2 2 2 2 2 2 2 1
floor 6 8 8 8 8 7 7 7 7 7 7 7 8 7

A.2 Labelling for the HDA dataset

The labelling for the HDA dataset consists in Bounding Boxes (BB’s) associated with a unique
person identifier (ID) and an occlusion flag. Each person/group of people in the images is
labelled by such a BB. We opted for using an occlusion flag instead of a value encoding the
occlusion ratio of a person because of the much faster annotation process required by the
former: given the elevated number of annotations in the dataset, this choice made the labelling
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(a) Camera 02

(b) Camera 17 (c) Camera 18 (d) Camera 19 (e) Camera 40

(f) Camera 50 (g) Camera 53 (h) Camera 54 (i) Camera 56

(j) Camera 57 (k) Camera 58 (l) Camera 59 (m) Camera 60

Figure A.2: Snapshots of the sequences acquired in the HDA dataset. Notice the differences in
illumination, color balance, depth range and camera perspective.

task more manageable. The BB’s alone are used as Ground Truth (GT) in the PD task, while the
information conveyed by the BB’s needs to be augmented by the person ID for evaluating the
Re-ID algorithms. The GT for benchmarking tracking algorithms is encoded by the ID of the
BB’s, together with the initial and final frame for each person appearance in a video sequence.
In the process of labelling, we used the following software tools: MATLAB R© with the Image
Processing Toolbox, Piotr Dollár’s Toolbox [Dollár, n.d.b] and Detection Code [Dollár, n.d.a].
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This is the list of the labelling rules:

1. Each BB is drawn so that it completely and tightly encloses the person.

2. If a person is partially occluded, the BB is drawn estimating the whole body extent.

3. Truncated people (i.e., people with projections partially outside the image boundaries)
have their BB’s cropped to image limits.

4. The occlusion flag is set to ’0’ for fully visible people, while for partially occluded and
truncated people it is set to ’1’.

5. A unique ID is associated with each person. In case determining the identity of a person
is impossible for the labeller, the special ID ‘personUnk’ is used.

6. Groups of people that are impossible to label individually are labelled collectively as
‘crowd’. People in front of a ’crowd’ area are labelled normally.

The proposed labelling allows researchers to perform different experiments on a single test
set. For instance, one could choose to test one algorithm ignoring Missed Detections on heavily
occluded people, or detections on crowded regions.

We show examples of labelling in Figure A.3. The person ID is indicated at the top of each
BB. The HDA dataset comprises annotations of 85 persons, of which 70 are men and 15 are
women. A statistical characterization of the data is presented in Table A.2 and Figure A.4.
One of the peculiarities of the HDA dataset resides in the exceptionally wide range of peoples’
BB heights: from 69 to 1075 pixels (see Figure A.4(c)).

(a) (b) (c)

Figure A.3: Labelling examples. (a) A fully visible (unoccluded) person. (b) Two partially
occluded people. (c) A crowd with three partially occluded people in front of it. The ID of
each person is indicated on top of the Bounding Boxes.
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(a) (b)

(c)

Figure A.4: (a) Number of sequences each person appears in. Person 86 (yellow) and 87 (red)
correspond to the labels ‘personUnk’ and ‘crowd’. (b) Number of Bounding Boxes (BB’s) for
each person. (c) Histogram of BB height for the unoccluded people. The peaks of the VGA
and the high resolution distributions are visible. The BB’s span heights between 69 and 1075
pixels.

Table A.2: Data on the number of frames, the number of annotations and the number of people
for each sequence. The minimum and maximum height of unoccluded Bounding Boxes (BB’s)
are also reported. Camera 02 does not have person height information due to its unconventional
overhead perspective.

Camera 02 17 18 19 40 50
# frames 9819 9897 9883 9878 9861 2227
# BB’s 1832 3865 13113 18775 7855 1288

Min. height - 310 90 71 71 158
Max. height - 463 338 403 408 606
# persons 9 26 32 34 39 20
# frames 3521 3424 3798 3780 3721 3670 1728
# BB’s 465 8703 576 3190 2291 894 1182

Min. height 69 153 619 384 395 598 212
Max. height 681 608 717 688 681 775 1075
# persons 19 12 34 43 34 34 20

A.3 Access to the data

The link for HDA dataset is http://vislab.isr.ist.utl.pt/hda-dataset/. Access to the
dataset is available upon request. We received 74 requests so far.

http://vislab.isr.ist.utl.pt/hda-dataset/
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Regarding the data format, for each camera we provide the .jpg frames sequentially num-
bered and a .txt file containing the annotations according to the “video bounding box” (vbb)
format defined in the Caltech Pedestrian Detection Database1. Also on this site there are tools
to visualise the annotations overlapped on the image frames.

Some statistics info are also mentioning herein:

Labeled Sequences 13
Number of Frames 75207

Number of Bounding Boxes 64028
Number of Persons 85

1Caltech Pedestrian Detection Database: http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians/

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


Appendix B

Kinect based Re-ID dataset

B.1 Our dataset: KS20 Vislab Multi-view Kinect Skele-
ton dataset

In order to employ Re-ID in a realistic ‘in-the-wild’ scenario, it is quite essential to have
a challenging unconstrained dataset, comprised of sequences of people walking in different
directions. Since such a Kinect based dataset (with different view angles) towards gait based
Re-ID was unavailable, we acquired our own dataset using a mobile platform, in the host
laboratory. It is made publicly available now, in the host webpage http://vislab.isr.ist.

utl.pt/vislab_multiview_ks20/

For the data acquisition, we used a mobile platform, in which the kinect sensor was fixed
at a height of an average human. (See Fig. B.1(a) for the data acquisition system)

Figure B.1: Data acquisition system set up

Originally, the acquisition set up has been developed as a part of AHA(Augmented Human
Assistance) project (http://aha.isr.tecnico.ulisboa.pt/), in our host laboratory. The
AHA Recording System was designed to acquire and record data from the movement and
body signals of humans performing exercises according to the AHA Exercise Protocol. It
fulfills two objectives in the AHA project: to record exercise data for offline analysis and
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algorithm development and; to provide real time data streaming for online analysis in the
robotic platform.

In addition to the KINECT sensor, it consisted of 2 omnidirectional cameras, Bitalino and
Bioplux wearable biosensors, a PC with Bluetooth dongle (to acquire from Bitalino or Bioplux
modules), LCD Display and wireless keyboard and 8 ports switch to allow the usage of multiple
ip network cameras. All the above sensors were acquired via YARP drivers that stream time
stamped information to ports. Currently, we used only the Kinect sensor among them and
the PC to record the data streams. And the acquired data streams from KINECT are the
following:

• ahaKinectColor: Images from the Kinect camera. RGB 8 bit unsigned integer.

• ahaKinectDepth: Depth data from the Kinect sensor. Single channel 8 bit unsigned
integer.

• ahaKinectBody: Skeleton coordinates arranged according to the file Yarp Messages Structure
described below in Section B.1.1.

B.1.1 Yarp Messages Structure for Kinect v2 Body Frame:

The Kinect v2 body frame data is streamed through the buffered port “/unityServer/kinectv2/body:o”
at 30Hz. The data is encapsulated in a bottle with the structure defined as follows.

• Bodies Bottle Structure: The Bottle encapsulating all the data from Kinect v2 Body
frame. It holds multiple bottles (0 to 6 bottles) each encapsulating the data for one
tracked body. The maximum number of bodies tracked by the Kinect v2 is 6.

( ( Body 1 ) ( Body 2 ) . . . ( Body N ) )

Bottle Body X – Bottle that holds the data of one tracked body.

• Body Bottle Structure: Holds the data of one tracked body, includes the Tracking Id
of the body and 25 Joint Bottles describing the Kinect v2 skeleton.

( Tracking Id ( Joint 1 ) ( Joint 2 ) . . . ( Joint 25 ) )

String Tracking Id – Unsigned long integer identifying the body being tracked converted
into string type.

Bottle Joint X – Bottle that holds the joint data, in Kinect v2 each body has 25 joints.

• Joint Bottle Structure: Bottle holding the data of a joint, includes joint type, tracking
state, joint position and joint orientation.

( ( Type ) ( Tracking ) ( Position ) ( Orientation ) )

Bottle Type – Bottle storing the joint type data.

Bottle Tracking – Bottle storing the joint tracking data.

Bottle Position – Bottle storing the joint position data.

Bottle Orientation – Bottle storing the joint orientation data
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• Type Bottle Structure: Bottle storing the joint type data both in integer and string
format.

( Type Int Type Name)

Integer Type Int – Integer identifying the joint type.

String Type Name – String identifying the joint type.

The Kinect v2 Joint Type follows the enumeration:

Figure B.2: Kinect v2 Joint Type enumeration

• Tracking Bottle Structure: Bottle of a single element describing the tracking state of
a joint.

( Tracking State )

Integer Tracking State – Integer describing the joint tracking state.

The Kinect v2 Joint State follows the enumeration:

Figure B.3: Kinect v2 Joint Type enumeration

• Position Bottle Structure: Bottle storing the Cartesian coordinates of a joint. The
Kinect v2 reference frame is as indicated in Figure B.4, where X points to the left of
device, Y upwards and Z forward.

( X Y Z )

Float X – X coordinate of the joint in meters.

Float Y – Y coordinate of the joint in meters.

Float Z – Z coordinate of the joint in meters, distance to the X0Y sensor plane.

• Orientation Bottle Structure: Bottle storing the quaternion values that define the
joint parent bone orientation relative to the Kinect v2 reference frame, Figure B.4. Each
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Figure B.4: Kinect V2 camera space reference frame

bone reference frame, depicted in Figure 2, is defined as follows: Origin located at the
bone’s child joint; Y axis (bone direction) collinear with the bone, directed from the
previous joint towards the current joint; Z axis (normal) perpendicular to the bone,
collinear with the joint roll axis; and X axis (binormal) perpendicular to Y and Z, forming
a right handed reference frame.

Figure B.5: Kinect V2 body joints reference frames

Example: the orientation of the bone connecting the right hip to the right knee is given by
the “KneeRight” joint reference frame orientation relative to the camera space reference
frame. ( X Y Z W )

Float X – X component of the Quaternion

Float Y – Y component of the Quaternion

Float Z – Z component of the Quaternion

Float W – W component of the Quaternion

B.1.2 Sensor Placement:

The sensor will be placed facing the user at about 3m from it, at a height of about 0.9m
as shown in the following figures where the green area represents the space where full body
tracking is possible.
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(a) (b)

Figure B.6: Kinect v.2 placement: (a) Front view (b) Top view

B.2 Instructions to perform recordings

• Begin an acquisition

1. Connect the system to a power plug and press the button on the power strip.

2. Turn on the PC.

3. Launch the AHA acquisition module double clicking the light blue icon on the desktop.

4. Wait until the system finishes the loading procedure.

5. Press “1” and “Enter” to add a new patient

6. Insert patient name and press “Enter”

7. Press “3” and “Enter” to begin the acquisition

8. Press “Esc” when you want to end the acquisitions

• Change Patient

Add a new patient:

1. From the main menu, press “1” and “Enter”
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2. Insert patient name and press “Enter”

Load an existent patient:

1. When you are in the main menu, press “2” and “Enter”

2. Choose the desired patient ID and press “Enter”

• Change acquisition settings
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1. From the main menu, press “4” and “Enter”

2. Press the number corresponding to the setting you want to edit “1” is to adjust camera
acquisition frequency (default:1Hz) “2” is to adjust string acquisition frequency (default:
unlimited), “3” is to choose the device to acquire biosignals (default: both off), “4” is to
choose the omnidirectional camera (default: both on)

3. Insert the new value and press “Enter”

4. Press “0” and “Enter” to go back to the main menu.

• Quit the application and turn off the system

1. From the main menu, press “5” and “Enter”

2. Turn off the PC

3. Press the button on the power strip and disconnect the system from the power plug

B.3 Instructions to verify recordings

The software will check during data acquisition that everything is properly working but still,
there are several ways to check that the system is correctly performing the data acquisition:

- Check using mongo client if any database is missing (command “show dbs”). Check the
appendix on further instructions about mongodb.

- Check using mongo client that the number of elements in every collection is growing
(command “use < database− name >” and then “db.< collection− name > .count()”)

- Visualize data at the end of the data acquisition using matlab scripts (check next section)

B.4 Instructions to use recordings on a different com-
puter

After data is recorded, it can be retrieved for offline use. This section describes the instructions
to prepare a different computer to use the acquired recordings.

-Download MongoDB from here http://www.mongodb.org/downloads

-Create a /data/db folder in some location in your disk.
-In a terminal window go to the folder where you have the mongodb binaries
-Run ”mongod−−dbpath < path− to− data− folder > ” from terminal.
-Run ”mongorestore−−db < db− name >< path− to− dbfolder > ” from terminal, e.g.

mongorestore –db ahaKinectBody
-(Optional) Run ”mongo” from terminal and then execute the command ”show dbs” to

check if the requested databases have been correctly imported
- Run dataVisualization.m. Before running you may want to comment the lines that visu-

alize the data you’re not interested in
- (Optional) To visualize timestamps set the verbose = 1.

http://www.mongodb.org/downloads
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Appendix C

Publications & other scientific
activities

Refereed Journals:

• Athira Nambiar, Alexandre Bernardino and Jacinto C. Nascimento, “Gait based Person
Re-identification: a Survey”, acm Computing Surveys, 2017 (submitted).

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento, Ana Fred and Jose
Santos-Victor,“A context-aware method towards view-point invariance in ’in-the-wild’
long-term Re-identification”, 2017. (submitted).

• Athira Nambiar, Alexandre Bernardino and Jacinto Nascimento, “Shape context for soft
biometrics in person re-identification and database retrieval”, Pattern Recognition Let-
ters, 2015.

• Athira Nambiar, Matteo Taiana, Dario Figueira, Jacinto Nascimento and Alexandre
Bernardino, “A Multi-camera video dataset for research on High-Definition surveillance”,
International Journal of Machine Intelligence and Sensory Signal Processing, Special Is-
sue on Signal Processing for Visual Surveillance, Inderscience Journal, 2014.

Refereed Conferences and Workshops:

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Context-
Aware Person Re-identification in the Wild via fusion of Gait and Anthropometric fea-
tures”, 2nd International Workshop on Biometrics in the Wild (BWild), in conjunction
with IEEE Conference on Automatic Face and Gesture Recognition, Washington DC,
USA, 2017.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Context-
aware Person Re-identification via Fusion of Anthropometric and Gait Features”, One
day BMVA Technical Meetings- Security and Surveillance, British Computer Society,
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London, UK, 2017.

• Athira Nambiar, Alexandre Bernardino, Jacinto C. Nascimento and Ana Fred, “Towards
view-point invariant Person Re-identification via fusion of Anthropometric and Gait Fea-
tures from Kinect measurements”, VISAPP, 12th International Conference on Computer
vision Theory and Applications, Porto, Portugal, 2017.

• Athira Nambiar, Alexandre Bernardino and Jacinto Nascimento, “Person Re-identification
based on Human query on Soft Biometrics using SVM Regression”, VISAPP -11th In-
ternational Conference on Computer vision Theory and Applications, Rome, Italy, 2016.

• Athira Nambiar, Jacinto C. Nascimento Alexandre Bernardino, and Jose Santos-Victor,
“Person Re-identification in frontal gait sequences via Histogram of Optic flow Energy
Image”, Advanced Concepts for Intelligent Vision Systems ACIVS, 2016.

• Matteo Taiana, Dario Figueira, Athira Nambiar, Jacinto Nascimento and Alexandre
Bernardino, “Towards Fully Automated Person Re-Identification ”, VISAPP 2014, 9th
International Conference on Computer vision Theory and Applications, Lisbon, Portugal,
January, 2014.

• Dario Figueira, Matteo Taiana, Athira Nambiar, Jacinto Nascimento and Alexandre
Bernardino, “The HDA+ dataset for research on fully automated re-identification sys-
tems”, Proc. of ECCV2014 Workshop on Visual Surveillance and Re-identification,
Zurich, Switzerland, 2014.

• Athira Nambiar, Paulo Lobato Correia and Luis Ducla Soares, “Frontal Gait Recognition
Combining 2D and 3D Data”, Proc ACM Workshop on Multimedia and Security - MM-
Sec, Conventry, United Kingdom, 2012.

• Athira Nambiar, Marco Tagliasacchi and Enrico Magli, “Secure image databases through
distributed source coding of SIFT descriptors”, IEEE International Workshop on Multi-
media Signal Processing (MMSP), Banff, Canada, 2012.

• Athira.M.Nambiar, Asha Vijayan and Aishwarya Nandakumar, “Wireless Intrusion De-
tection Based on Different Clustering Approaches”, First Conference Of Women in Com-
puting in India, published in acm portal digital library, India, 2010.

Projects:

• AHA- Augmented Human Assistance (http://aha.isr.tecnico.ulisboa.pt/) -Sep 2014- now
Supervisor: Prof. Alexandre Bernardino, Vislab, ISR/IST.

• HDA- High Definition Analytics (http://vislab.isr.ist.utl.pt/hda-dataset/) -Jan 2013-
March 2014
Supervisor: Prof. Alexandre Bernardino, Vislab, ISR/IST.

h
h
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• BIOSEC- Secure Multimodal Biometric Recognition System (Human gait analysis) -Sep
2011- March 2012
Supervisor: Prof. Paulo Lobato Correia, Multimedia Signal Processing Group, IT/IST.

• Distributed Source Coding, Database Security -Sep 2010- June 2011
Supervisor: Prof. Enrico Magli, Image Processing group, POLITO.

Other scientific activities:

• Session chair for VISAPP 2017, 12th International Conference on Computer vision The-
ory and Applications, Porto, Portugal.

• Reviewer for Pattern Recognition Letters, International Joint Conference on Artificial
Intelligence (IJCAI).

• Oral conference presentations in VISAPP2016 (Rome, Italy), ACIVS2016 (Leece, Italy),
VISAPP2017 (Porto, Portugal), BMVAmeeting2017 (London,UK) and BWild,IEEE FG
(Washington DC, US).

• Poster presentations at Annual Meeting of LarSyS (Laboratório de Robótica e Sistemas
em Engenharia e Ciência) 2014, 2015, 2016 Lisbon and PhD open days at IST, 2017.

• Presented the work of Prof. Shishir. K. Shah’s group, Computer Science Department,
University of Houston in VISAPP 2017 conference, on Human activity recognition.

• Project developer (HDA, AHA) and dataset managing & distribution team member
• Robot exhibition assistance in Ciencia2016 Portugal, RoCKIn Competition 2015, Mak-

ersfair’LISBON 2015.
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