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Abstract—Plenoptic cameras allow to recover the structure of
a scene from a single image. Recent works on scene structure
estimation recover the disparity associated with each pixel but do
not consider metric depth. In this work, we propose a methodol-
ogy for scene metric reconstruction that estimates initial disparity
values by analyzing the epipolar plane images. A dense estimate
of disparities is obtained by regularization. These disparity
estimates are then converted to 3D metric information using the
intrinsic parameters of the plenoptic camera. Experiments have
been conducted both with simulated and real cameras yielding
promising results.

I. INTRODUCTION

The human eye is based in a large retina and a single
large lens. In contrast, the compound eye, found for instance
in insects, is based in thousands of microlenses, each one
conducting light to a number of photoreceptors. Man made
plenoptic cameras combine characteristics of both natural de-
signs: each plenoptic camera consists of an artificial compound
eye with a large lens placed in front. The artificial compound
eye is based on a conventional imaging sensor and an array
of microlenses. In other words, the biological equivalent of
a plenoptic camera would be a human eye with the retina
replaced by an insect eye [1].

In formal terms, common plenoptic cameras acquire light
field images or lumigraphs [2], [3], which correspond to 4D
samplings of the 7D plenoptic function [4]. A light field image
represents light intensity in multiple directions for each point
in a plane, while the plenoptic function represents the light
intensity spectrum, for all directions at every 3D point, along
time.

A light field image can be interpreted as a combined-image
acquired by an array of cameras with projection centers placed
close to each other, forming an approximately continuous
baseline. The array of cameras captures images from slightly
different viewpoints and form the so called viewpoint images.
A given world feature is projected in each of the viewpoint
images at a slightly different location. In viewpoint images,
the term disparity is used to refer to the variation in the pixel
position of a world feature relative to the variation in the
camera considered, i.e., a gradient. Like in stereo, disparity
information can be used to reconstruct a scene. Plenoptic
cameras have the advantage that the approximately continuous
baseline allows computing disparities as gradients of epipolar
plane images [5], [6] instead of using feature correspondences.

Prolific research on disparity estimation for reconstruction
can be found nowadays, continuously improving the results.
However, one finds it very scarce on the aspect of metric
reconstruction. This paper proposes a methodology for dense
metric reconstruction from plenoptic camera images. In this
work, we apply a structure tensor analysis on epipolar plane
images to obtain the direction of gradients, from which
disparities can be inferred. Interpreting this information with
knowledge of the camera intrinsic properties allows metric
reconstruction.

The structure of this paper is the following: Section II
reviews work on camera geometry and on disparity estima-
tion using plenoptic cameras. Section III describes the back
projection model of a plenoptic camera. Section IV describes
the estimation of disparity from epipolar plane images and
its conversion to 3D metric information. In Section V are
described experiments conducted both with simulated and real
cameras. Finally, Section VI draws conclusions and proposes
future work.

II. RELATED WORK

Depth estimation was the application presented by Adelson
and Wang [7] associated to the first prototype of a plenoptic
camera. Ng et al. [1] introduced the plenoptic camera as a
setup of a single camera with a microlens array between the
main lens and the image sensor. Ng et al. were also concerned
with recovering depth from focus.

Considering a geometrical study of the lightfield, Dansereau
et al. [6] have showed that under a Lambertian scene surface
hypothesis, there is a plane of constant value in the light
field for each 3D surface point. The orientation of the plane
represents the depth of the surface point. The plane orientation
can be estimated by gradient operations on the acquired light
field. The depth information is estimated essentially at image
edge points, and completed by region growing to the complete
area of the image.

In Wanner et al. [8], a dense disparity estimation is obtained
using a variational approach. Despite using a more con-
ventional terminology, disparity instead of plane orientation,
the authors compare the results of regularizing the disparity
estimates of one (sensor) vertical and horizontal baselines with
a generalized case of multiple baseline directions (multiview



stereo). The multiview stereo was found not bringing signifi-
cant improvement on the good regularization results obtained.

Monteiro et al. [9] also considered disparity estimates
using (sensor) vertical and horizontal directions. In this work,
Monteiro et al. [9] considered multiple horizontal and vertical
baselines to obtain disparity estimates for the entire lightfield
by resorting to an Alternating Direction Method of Multipliers
considering periodic boundaries. In this work, there are still
missing studies on the estimation of depth from disparities.

Recently, Dansereau et al. [10] presented models, methods
and a public toolbox for decoding light field images and cali-
brating light field cameras. The proposed models characterize
the intrinsic parameters of plenoptic cameras, much like the
ones found in pinhole cameras, but in a higher dimension since
plenoptic cameras also represent the direction of light rays.

In this paper we focus on how to use the intrinsic parameters
to promote regularized disparity estimates to a metric structure
estimate.

III. BACK-PROJECTION MODEL

The most common light field representation describes the
light distribution in the so called two planes parametrization.
In the two planes parameterization, the intersection with the
first plane defines the position of the ray while the intersection
with the second plane defines the direction.

Let us denote the light field in the object space as

Lobj : (s, t, u, v) ∈ IR4 7→ I ∈ IR (1)

where (s, t) is a point and (u, v) is a direction. The domain
of I can also be IR3 for the case of e.g. RGB color instead
of gray levels. The point (s, t) is defined as the intersection
of the ray with a plane, at the center of which lies the
reference frame of the camera, with z perpendicular to it,
pointing towards the scene. The direction (u, v) can be seen
as the intersection point of the ray with a plane parallel to
the first. This parameterization using a point and a direction
is equivalent to a local two plane parameterization with the
distance between the two planes fixed at unity.

Consider an arbitrary point m = [x, y, z]
T in the camera

coordinate system. Using the different positions (s, t) of the
rays and their directions (u, v), we can define the relation
between a world point and the light field in the object spacexy
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 , λ ∈ IR . (2)

A. Object and Image Spaces

The definition of the light field in the object space, equation
(1), does not consider the camera optics. In order to represent
the light field in the image space, one needs a transformation
of variables.

Dansereau et al. [10] proposed an intrinsic parameters
matrix H, which transforms the light field in the image sensor
given in pixel and microlens indices Limg(i, j, k, l) into the

light field in the object space Lobj(s, t, u, v)
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The indices (i, j) can be seen as selecting a viewpoint, and
(k, l) as selecting a pixel within the viewpoint image. More in
detail, (i, j) selects the pixel underneath a certain microlens,
while (k, l) selects the microlens under which the pixel is
[10]. This interpretation is coherent with the observation that
pixels emerging from the same (i, j) coordinates intercept at
the same point, which can be seen as the center of projection
for the given viewpoint.

In Dansereau et al. [10], it is assumed that the horizontal
coordinates are completely separate from the vertical ones,
which means that, in intrinsic matrix H, only terms that relate
horizontal parameters (s, u) and horizontal indices (i, k) or
vertical parameters (t, v) and vertical indices (j, l) are non-
zero. Therefore, a typical intrinsic matrix H will have the
form presented in equation (3).

B. Intrinsic Matrix from Viewpoint Intrinsic Parameters

Ligthfields can be captured by commercial plenoptic cam-
eras usually built based on arrays of microlenses (lenslets).
Alternatively, one can consider camera arrays [11], comprised
of several identical cameras arranged in a rectangular array,
each pointing in the same direction. Or by acquiring images
of a static scene with a single camera moving along positions
forming a regular grid [12].

In all cases, obtaining metric values implies modelling and
estimating intrinsic parameters of the cameras.

In order to define the intrinsic matrix H let us analyze
the coordinates (s, t) and (up, vp). The coordinates (s, t)
correspond to the position of the projection centers of the
cameras and (up, vp) correspond to the world points in the
plane defined at a distance f from, and parallel to, the plane
containing the points (s, t). In a camera array setup, each
viewpoint image is obtained pointing in the same direction,
and using identical cameras (same intrinsic parameters defined
by the intrinsic matrix K). Hence, nothing varies from camera
to camera apart from their position (s, t), which does not affect
the coordinates (up, vp) because of the local parameterization
used to define (up, vp). Therefore, in this setup (s, t) is
independent from (up, vp) and can be analyzed separately.

Regarding the (s, t) coordinates, one can assume that the
projection centers of the viewpoints are equally spaced in the
plane defined by the projection centers of the camera array and
the distance between consecutive projection centers is denoted
by ds and dt, which leads tost
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where s0 and t0 are defined such that the center of the
plane lies in coordinates (0, 0), s0 = −ds(w + 1)/2 and
t0 = −dt(h + 1)/2, with w and h defining the number of
cameras in the camera array in width and height, respectively.

Regarding the (up, vp) coordinates, one can use the formula
for the pinhole camera to describe the relationship between
a world point and the pixel coordinate. This is, essentially,
projecting the pixels from the image plane onto the plane
which is f units of distance away from the plane containing
the array, i.e. [k l 1]T = K[up vp f ]

T . Inverting the projection
equation and combining with equation (4), the intrinsic matrix
H is defined as

H =


ds 0
0 dt

0 0 s0
0 0 t0

0 0
0 0
0 0

K−1

 . (5)

In this work, the parameterization of the lightfield in the
object space is defined in terms of a position in a plane, and the
direction of the ray. As mentioned previously, this is equivalent
to a local two plane parameterization with the planes set at a
unit distance apart. This means that by defining f to be one,
the parameterization (s, t, up, vp) here defined for a camera
array, becomes equivalent to the one we are using, (s, t, u, v).

IV. RECONSTRUCTION

Unlike a standard camera, a single feature in a scene
has multiple projections on the light field. Plenoptic cameras
observe rays which do not converge on the same point. In other
words, sampled rays do not have a single projection center.
Using the intrinsic matrix H, mapping the rays (i, j, k, l) to
rays (s, t, u, v), allows finding the constraint that a collection
of rays corresponding to a single feature must follow. The
feature location can therefore be estimated from the multiple
rays passing through the feature.

A. Relationship between position in space and pixel indices
within a light field

Rewriting equation (2) as [x y]
T

= [s t]
T
+ z [u v]

T and
replacing the light field on the object space by the light field
on the image sensor using the mapping defined in equation
(3) one obtains:
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where we follow the notation H
(·)
(·) to represent a submatrix of

H. For instance, Hst
ij selects the first two columns, denoted

by the subscript ij, and the first two lines, denoted by the
superscript st.

More precisely, the intrinsic matrix H is partitioned in four
2× 2 diagonal sub-matrices and two 2× 1 vectors
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(7)
Let us consider that the feature’s position m is constant and

let us compute the derivative of equation (6)
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Considering both equations separately, and solving each for z,
one obtains a relation between the depth of the world feature
m and the disparity represented by the gradients ∂k

∂i and ∂l
∂j :

z = −
hsi + hsk

∂k
∂i

hui + huk
∂k
∂i

∨ z = −
htj + htl

∂l
∂j

hvj + hvl
∂l
∂j

. (9)

In this work, we assume that the intrinsic parameters in
H are the same in the horizontal and vertical directions, i.e.
hsi = htj , hsk = htl, hui = hvj and huk = hvl, such that
both derivatives yield in general the same value.

Concluding, the position of a point, [x y z]T can be obtained
by estimating the gradients ∂k

∂i and ∂l
∂j , applying equation (9)

to calculate the depth z, and finally using equation (6) to obtain
the (x, y) coordinates.

B. The proposed algorithm

In this section we describe the complete reconstruction
algorithm, starting from a light field in the image space
and resulting in a depth map. Prior to running the proposed
algorithm, it is assumed that one runs the decoding of raw
images to a light field image and that the plenoptic camera is
calibrated [10].

The complete reconstruction algorithm encompasses three
main steps, namely disparity estimation, disparity regulariza-
tion and conversion to metric structure.

1) Disparity Estimation: A light field in the image space,
Limg(i, j, k, l) can be represented as a hypercube, where each
slice with (i, j) constant is a viewpoint image. These images
are similar in their properties, except each was taken from a
slightly different position, indicated by their (i, j) coordinates.

Slices made by fixing (i, k) or (j, l) are vertical or horizontal
epipolar plane images (EPIs), respectively (e.g. figure IV-B1).
EPIs are very interesting for the purposes of reconstruction
because they show the effect of parallax. An EPI is composed
of the same row of pixels taken from a row of viewpoints,
and stacked on top of each other [5]. This way, they show
how the captured image shifts as the center of projection (of
a viewpoint) pans left and right (or up and down).

Within these EPIs, the gradient of the image will be
extracted. The direction perpendicular to this one represents



Fig. 1. Above: An epipolar plane image, taken from a synthetic light field,
made using Matlab’s VR tools. Below: The same EPI, with a different color
scheme, and red lines marking detected gradients. The color scheme still
represents image intensities, but it was chosen to make the gradients more
visible.

the direction with least change in an image, which, in most
cases, corresponds to a direction along which all the pixels
correspond to the same real-world feature. Obtaining the
gradient ∂k

∂i or ∂l
∂j that matches this direction is the first step

in the algorithm.
These EPIs show the same line from all viewpoints, ar-

ranged side by side. Figure IV-B1 shows a typical EPI. In it
several edges can be seen. These edges correspond to areas of
the image with large gradients, which allow for useful epipolar
gradient information to be extracted.

The gradient on the EPI is calculated using a structure
tensor. The values of Ii, Ik, representing the gradient of the
image along i and k, are calculated using a Sobel operator.
The local structure tensor, S0, is then formed for each pixel
in the EPI according to

S0 =

[
I2i IiIk
IiIk I2k

]
. (10)

A typical structure tensor is a convolution of a window
function with this S0 matrix.

The final goal of the first part of this algorithm is to obtain a
structure tensor S(k, l) for every viewpoint pixel k, l, that is, a
2D array of structure tensors, indexed by viewpoint pixel. The
problem of occlusion will not be considered, and whenever a
real-world feature gets occluded, errors will occur.

At first, the matrix S0 associated with every EPI will be
averaged along i, eliminating this variable, and producing a
1D vector of structure tensors, hereby referred to as Se. This
matrix Se will be calculated for every possible EPI, both
vertical and horizontal, and on all color channels. The value
of S will result of adding up every one of these Se vectors on
the location in S that they refer to. This method will naturally
give preference to stronger gradients, preventing areas with
weak gradients dominated by noise from disturbing the final
results.

From the structure tensor, it is possible to extract the
gradient direction across the EPI, and also, from the difference
between the eigenvalues, a confidence measure, telling us how
accurate the disparity estimation is in a given location [13].

For example, in figure 1, a structure tensor like Se is
produced for the EPI of figure IV-B1, and lines were traced
along the edges detected where the confidence measure is
above a certain threshold. As can be seen, most of them appear

to match, although some of them are completely incorrect.
However, by adding up the values of Se obtained for every
EPI in the line or row of S they correspond to, most errors
should be decreased. The results of applying the algorithm on
the full light field image from which figure IV-B1 was taken
will be discussed in section V-A.

2) Disparity Regularization: In areas where the confidence
measure does not meet a certain treshold, the disparity values
were ignored. To have data pertaining to the whole viewpoint
area, the in-painting algorithm published by John D’Errico in
[14] was used (method number 4). To deal with the noise
present in the results, a total variation method by Gabriel
Peyre [15] is used. Both of these methods were applied to
the resulting disparity map, a 2D image.

The total-variation method used finds the values y that
minimize a function of the form E(x, y) + λJ(y), where
E(x, y) measures the difference between the original image
x and y, J(y) is the total variation of y, and λ is the
regularization parameter. The regularization method used, was
based on the one defined by Chambolle in [16]. In that article,
they define E(x, y) = ‖y − x‖2/2, and J(y) = ‖∇y‖ , where
the gradient ∇y is defined with a forward difference method.

3) Metric Structure: The disparity estimation and regular-
ization steps organize disparities into an image format, a dense
disparity map. Consequently, one may obtain the resulting
point cloud as a depth map represented also as an image in the
coordinates of the viewpoint images, i.e. (k, l). Converting the
disparity map into a depth map, or point cloud map, involves
computing the location [x y z]t for every pair of values (k, l),
for a fixed pair (i, j), as detailed in section IV-A.

V. EXPERIMENTS

Several tests were conducted to test the proposed method-
ology, both with synthetic images, as well as with real images
taken by a plenoptic camera.

A. Synthetic Data

A synthetic scenario was created in order to create synthetic
4D light field images. In our case, the scene was built in the
Virtual Reality Markup Language (VRML) and the images
were captured using the Matlab Virtual Reality (VR) toolbox.
Given the VRML scenario, an array of images is captured,
and then arranged into a light field. The intrinsics matrix is
obtained using J. Y. Bouguet’s calibration toolbox [17], since
Matlab VR tools do not clarify what the intrinsics are when
an image is captured.

1) VRML Scene: The VRML scene is composed of a hori-
zontal plane (i.e. normal to the y direction, considered as up)
with a grassy texture upon which rests a box with a wooden
texture. The center of the coordinate system corresponds to the
center of the box, which has dimensions 0.6 × 0.04 × 0.4 in
the x, y and z directions, respectively. Floating above this box
are two spheres. One sphere is textured to look like the Earth,
and has its center at coordinates (−0.05, 0.15, 0) and radius
0.1. The other is textured with the moon’s surface, centered
on (0.15, 0.15, 0) and radius 0.02.



(a) Central viewpoint (b) Disparity (c) Reconstruction (d) Relative reconstruction error

Fig. 2. Synthetic light field depth reconstruction. Central viewpoint image, size 378× 378 pixels, of a 11× 11 set of viewpoint images (a). Disparity map
in pixel (b). Reconstructed point cloud in metric units (c). Relative depth reconstruction error in percentage (d).

2) Capturing an image: The synthetic light field images
were made by combining several viewpoint pictures, captured
from positions forming an array. The distance between each
center of projection is the same in both directions, namely
dx = dy = 0.004.

The intrinsic matrix for each viewpoint was obtained by
performing a calibration routine in Matlab [17], after taking
several pictures of a checkerboard within this virtual world.
Note that Matlab tends to represent vectors in row form,
whereas we represent them in column form. Because of
this, the resulting intrinsics matrix needs to be transposed to
become equivalent to K. This is the H matrix that is obtained,
by applying equation (5):

H =


0.0040 0 0 0 −0.024

0 0.0040 0 0 −0.024
0 0 0.0029 0 −0.55
0 0 0 0.0029 −0.55
0 0 0 0 1

 . (11)

3) Results: A light field was captured in the described
settings. Figure 2(a) represents the central viewpoint of this
light field. The measured disparity values are also represented
in figure 2(b). The (x, y, z) coordinates corresponding to each
point were calculated as described in the previous section,
and all the points were arranged into a point cloud, which is
represented from some points of view in figure 2(c).

The accuracy of the algorithm was evaluated by comparing
with the ground truth obtained from the information used to
define the scene in the VRML file. The results are presented
in Figure 2(d). The relative error is below 10% for 88% of
the image, and the RMS of the error is 0.0574, where the
globe has a diameter of 0.2. If the grass background plane is
ignored, the RMS becomes 0.0841.

The resulting point cloud approximates well the scene,
especially large planar features such as the grassy plane. How-
ever, more detailed areas are significantly distorted. Notably,
areas where occlusion occurs, such as in the edges of the
spheres, ”ramps” seem to form, connecting the sphere to the
grassy background. This is a result of averaging in the i or
j direction, which averages structure tensors of two distinct
features, significantly separated in space.

B. Real Data

The light field image used, captured by a Lytro model F01,
is represented in figure 3(a). The scene is composed of two
checkerboard textured cubes, stacked on top of each other.
Behind the cubes, to the left, is a checkerboard, squares are
35mm in size, and to the right is a computer monitor. As
expected, in the real light field image there are problems such
as outer viewpoints being darker than central ones, having too
low contrast edges, dead pixels, and other general imaging
noise.

The decoding of raw images to a light field in the image
space is a process automated by the toolbox of Dansereau et
al. [10] which works perfectly well with our cameras. The
intrinsics calibration required some repetitions of the process,
namely to add novel calibration images with checkerboard
patterns. The value for the confidence measure cut-off thresh-
old, and the regularization parameter were adjusted to improve
the results. A median filter was also applied to the image to
remove dead pixels. In addition, a Gaussian filter with σ = 3
was applied on the structure tensor to smooth the observed
noise.

In order to avoid darker viewpoints, due e.g. to vignetting,
a ”ring” composed of the outermost viewpoints was rejected,
and the remaining ones were normalized so that all have 0 as
minimum intensity value, and 1 as maximum.

The resulting depth map is presented in figure 3. It correctly
displays lower depth values in regions of the scene that are
closer, such as the cube, and higher in regions that are further,
such as the monitor. Moreover, basic geometry is preserved.

To help visualize the reconstruction, a region from the
central viewpoint, marked in figure 3(a), was extracted from
the point cloud and viewed from above in figure 3(e). This
figure allows to distinguish between the chess pattern on the
background and the two faces of the cube on the foreground.

In order to quantify the reconstruction error, points have
been extracted from the point cloud corresponding to the three
visible faces of the cube at the top (black squares). The points
from each face were then fitted into a plane using a least
squares method. The RMS of the distances between each
point and the fitted plane was then obtained, and divided by
the length of the side of the cube in the point cloud. The
measurement errors were 3.3%, 1.4% and 1.1% for the left,



(a) Central viewpoint (b) Zoom of raw image, area A
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Fig. 3. Real light-field image depth reconstruction. The central viewpoint (a), size 378 × 379 pixels, of a 11 × 11 viewpoints set, has superimposed two
rectangular areas, A and B, to support the explanation of the next sub-figures. The raw image zoomed in area A shows the imaging effect of the micro-lenses
(b). The estimated disparities are regularized on the complete image area (c). Depth is computed given the disparities at all pixel locations (d). The depth
values for the pixels in area B are shown in (e) sorted by column number. Using the intrinsic parameters a point cloud is generated from the depths estimated
for all the pixels (f).

right and top faces, respectively.

VI. CONCLUSION

In this article, a dense methodology for reconstructing a
scene from a light field image was presented. The proposed
methodology is quite successful at reconstructing 3D data,
structure, despite some distortion being visible. Geometry is
mostly kept in a recognizable form after reconstruction, and
in the synthetic images, the dimensions of the objects were
the same as defined in the scene VRML file.

In the case of the real image, as expected, the calibration
uncertainty affects the results. As with the calibration of
standard, pin hole like cameras, care has to be taken about
setting the calibration data, i.e. the poses of the checkerboard
patterns shown to the camera. Nevertheless, we found it
feasible to create coherent scene reconstructions. The results
obtained are encouraging.

As future work, we consider repeating the calibration
multiple times, while indicating the user positions of the
checkerboard likely to help calibration.
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