
IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob)
Lisbon, Portugal, 18-21 September 2017

Shape-Based Attention for Identification and
Localization of Cylindrical Objects

Rui Figueiredo∗, Atabak Dehban∗†, Alexandre Bernardino∗, José Santos-Victor∗ and Helder Araújo‡
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Abstract—In this paper, we propose a novel framework for
detecting and identifying cylindrical shapes, commonly found in
daily contexts, using multi-modal visual information provided
by RBG-D cameras. The current state-of-the-art methods for
cylinder detection are based on RANSAC and Hough transforms
which estimate cylinder parameters using 3D point cloud infor-
mation. However, the presence of distracting non-cylindrical
shapes leads to time-consuming parametric fitting of wrong
detections, compromising the efficiency of the whole method.

We tackle the aforementioned problem by introducing a
biologically plausible framework, incorporating a pre-attentive
mechanism which learns in a supervised and data-efficient
manner to selectively discard irrelevant shapes before fur-
ther processing. A set of experiments with real data are
conducted to assess the advantages of our framework. The
results demonstrate that combining bottom-up 3D segmentation
with top-down shape-based attention allows for large speed-
up and accuracy improvements on cylinder identification. The
qualitative and quantitative results with real data acquired from
a consumer RGB-D camera, confirm the advantages of the
proposed framework.

I. INTRODUCTION

In many tasks involving interaction with the surrounding
environment, biological and artificial systems require ac-
curate object recognition and pose estimation capabilities.
These tasks are successful manipulation and grasping, ob-
stacle avoidance and self localization with respect to known
landmarks, to name a few.

A key aspect behind the success of a grasping solution,
resides in the choice of the object representation which
can deal with incomplete and noisy perceptual data and be
flexible enough to cope with inter and intra-class variability
generalizing to never-seen objects. Furthermore, in order to
cope with transmission bandwidth and computational pro-
cessing capacity limitations, efficient and fast perception is a
primordial requirement for real-time performance. Therefore,
it is extremely important to design efficient perceptual sys-
tems that are not only robust to sensory noise and occlusion,
but also to clutter and visual distractors.

In this work, we propose a novel biologically inspired
attentional framework for the task of simultaneously detect-
ing, recognizing and identifying particular object shapes. We
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Fig. 1: A snapshot of a RGB-D point cloud and overlaid
cylindrical (green) and non-cylindrical (red) shapes detected
with our methodology. Figure best seen in color.

focus on cylindrical shaped objects which are commonly
found in domestic (e.g. cups, bottles) and industrial envi-
ronments (e.g. pipes, pillars), and whose identification plays
an important role in children development and learning [1],
[2], as well as in robotic grasping applications [3], [4].

The proposed framework relies on the tabletop assumption,
i.e., objects are placed on flat surfaces (Fig. 1). In order to
deal with cluttered environments which are often populated
with multiple non-cylindrical shapes, we take advantage of
the recent advances in deep learning architectures to intro-
duce an efficient recognition module that learns to filter out
irrelevant visual distractors. More specifically, we introduce
the use of pre-attentive shape-based selection mechanisms,
that avoid the need of time-consuming, top-down cylinder
parameter identification at an early stage, on irrelevant salient
candidate objects.

The main contribution of this paper is a novel multi-
modal framework which takes advantage of state-of-the-art
3D cylinder identification and image-based object recognition
models to accurately and rapidly estimate pose and shape
parameters of objects of interest. Unlike previous approaches
that are solely based on 3D depth information, we combine
a state-of-the-art [5], [6] cylinder fitting approach which is
based on a robust and computationally efficient 2-step Gener-



alized Hough Transform (GHT) with a 2D image-based top-
down proposal rejection mechanism to increase the quality
and speed of correct estimations. Since gathering a large
dataset, required for recent recognition techniques is labo-
rious and time consuming, we provide a semi-automatic data
gathering procedure, using 3D information, which greatly
facilitates the acquiring and labeling of relatively large
amounts of data as our second contribution. Our ROS [7] and
Caffee [8] C++ implementation runs in real-time on a GPU,
allowing an easy and direct integration in robotics systems,
e.g. in grasping and manipulation pipelines. The code and
dataset of our experiments will be released when the final
version of this manuscript is prepared.

The remainder of this paper is organized as follows: In
section II we overview the related work on attention and
object identification in the recent literature. In section III we
describe in detail the various steps involved in the proposed
cylinder identification and localization methodology. In sec-
tion IV we quantitatively evaluate the benefits of the proposed
contribution. Finally, in section V we draw some conclusions
and future work ideas.

II. RELATED WORK

Successful identification of objects in an environment
requires not only the development of efficient object detec-
tion architectures, but also the definition of flexible shape
representations that should facilitate generalization to never-
seen-objects, via the integration of different visual sensing
modalities. Therefore, we organize the present section in
two distinct parts. At first we overview the state-of-the-art
in visual attention with an emphasis on shape-based models
of selective attention. Afterward, we analyse various object
identification paradigms proposed in the literature, suitable
for applications requiring identification and localization of
parametric shapes.

A. Shape-based Selective Attention

Visual attention plays a central role in biological and
artificial systems to control perceptual resources [9], [10].
The classic artificial visual attention systems use salient
features of the image obtained from the information provided
by hand-crafted filters. Recently, deep neural networks have
been developed for recognizing thousands of objects and
autonomously generate visual characteristics optimized by
training with large data sets. Besides being used for object
recognition, these features have been very successful in other
visual problems such as object segmentation, tracking and
recently, visual attention.

Evidence from neurophysiology studies [11] suggests that
people consider shape as an important feature dimension
among other low-level visual features (e.g. texture and color).
In [12] the authors found that subjects looking for a particular
shape (e.g. flowers or pillows) are more accurate in reporting
other features of that object (e.g.color). meaning that people
have attentional mechanisms for shape features. Furthermore,
infants rely more on shape than on color when learning

new objects, which in turn allows them to generalise to
other objects with similar visual features while interacting
with them [13]. This fact motivates the need of developing
more sophisticated, shape-biased and biologically plausible,
attentional architectures [14].

B. Object identification in robotics

Object recognition and pose estimation in an important
subject in computer vision with various applications in
robotics [15]. There are two main approaches to the problem
that depend on the availability of 3D object models: 3D
model based and learning based. If one has a description
of the 3D shape of the object, either given by a parametric
surface representation or by a CAD mesh representation, the
3D model-based methods are more commonly used [16].
These representations are often unsuitable, when flexibility
and generalization to novel objects is a requirement. The
dominant strategies rely in machine learning techniques that
are able to generalize to similar objects using a set of sample
images acquired by the robot sensors. In this paper we
focus on cylindrical shapes and, thus, we will combine the
generalization capabilities of state-of-the-art deep learning
techniques with robust 3D model-based fitting approaches.

For the extraction of simple geometric shape primitives
like planes, cylinders, cones and spheres, the two most com-
mon paradigms are the Hough transform [17] and Random
Sample Consensus (RANSAC) [18], which are robust to
outliers and noisy data.

The most efficient parametric shape fitting methods are
based on Hough transforms that estimate cylinder parameters,
i.e. orientation, position and radius, in two sequential voting
steps [5], [6]. More specifically, they rely on a 2D Hough
transform to estimate orientation followed by a 3D Hough
transform to simultaneously detect radius and position. Al-
though reducing the exponential complexity factor, these
approaches still lacks speed in dense point clouds, being
incapable of filtering at early step different object shapes
which act as distractors. The lack of processes for fast
hypothesis verification sets one of the main setbacks of the
current approaches for real-time applications.

This work significantly differs from previous approaches as
it incorporates a mediating shape-based pre-attention mecha-
nism to reduce the space of possible cylindrical shapes [19]
to a small subset of prominent objects in the field of view.
The 2D image patches, comming from 3D segmentation are
first classified and only if they belong to object classes of
interest, they will be used for parameter identification which
results in faster and more accurate estimates.

III. METHODOLOGY

In this section we describe our framework for efficient
detection and identification of cylindrical shapes using mul-
tiple visual sensing modalities: color and depth. The pro-
posed architecture, depicted in Figure 2, is an integration of
different cognitive blocks which are responsible for object
segmentation and shape recognition, fitting and localization.



Fig. 2: General overview of our shape-based attention framework.

In the remainder of this section we describe in detail the
multiple components of our pipeline.

A. System Overview

We start by detecting tabletop objects using 3D point
cloud information, since points above tables are considered
to belong to potentially graspable objects. Therefore, the
first component of our cylinder detection and identification
pipeline is a bottom-up segmentation module that is triggered
by salient objects laying on flat surfaces [20]. First, we use a
RANSAC-based fitting approach, which efficiently operates
on downsampled organized point cloud data [21], in order
to detect planes on the scene and segment objects above
these planes. We rely on Euclidean clustering [21] to identify
individual objects. Afterwards, these objects are projected on
the 2D camera plane to extract bounding boxed 2D focused
images from a stream of monocular images, which are used
to recognize cylindrical shapes via a biologically inspired
Deep Artificial Neuronal Network classifier. The proposed
Convolutional Neural Network (CNN) is trained offline via
transfer learning, and acts as a shape-based mediating pre-
attentive selective mechanism that filters out non-cylindrical
shapes. Finally, the parameters of the identified cylindrical
shapes are estimated in 3D Cartesian space, using an efficient
and robust top-down depth-based Hough transform.

B. Transfer learning for early shape-based attention

In order to reject region proposals and avoid parametric
identification of non-cylindrical objects, we propose to use
deep neural networks. Inspired by recent advances of deep
learning in achieving state of the art performance in recog-
nition tasks, we use a deep CNN as a binary classifier to
decide if a particular object is a cylinder or not.

However, using a deep neural network for the task at hand
can pose several challenges. Firstly, deep neural networks
are notoriously data-hungry, usually trained on millions of

labeled images. Secondly, designing a neural network archi-
tecture for a new task is time consuming and involves a large
amount of trial and errors. And last, their performance even
at test time is relatively slow due to the large amount of their
parameters.

1) Data acquisition and training: To solve the first prob-
lem, we propose a fast and convenient procedure for semi-
automatic gathering of labeled data, which does away with
the need of manual labeling. The procedure relies on the
3D tabletop segmentation method and the 3D bounding
box projection to 2D approach described in the previous
subsection. For the creation of positive samples, we first place
many different cylindrical shaped objects on tabletops and
acquire data, from multiple views, using an hand-held RGB-
D camera. Then for the creation of the negative examples
dataset, we repeat the same procedure with all the non-
cylindrical objects, commonly found in the testing environ-
ment.

2) Cylindrical-shapes recognition: For the second prob-
lem, i.e. architecture design, we propose to use transfer
learning [22]. More specifically, we have used a network
previously trained on imagenet dataset [23] and fine-tuned
it as a cylinder classifier. This way, the architecture of the
network is pre-defined and it is only necessary to change the
last layer such that instead of predicting probability classes
of 1000 objects, it only outputs the probability that an input
image is a cylinder or not. Moreover, it is generally assumed
that if a network performs well on a recognition task, it means
it has learned good features which are useful for different
tasks. As a result, it is possible to train the network on
significantly smaller datasets and only slightly change the
previously learned features.

3) Performance speed-ups: Since the tasks requires to
have relatively fast performance at test time, we used a
relatively small neural network called SqueezeNet [24]. This
network achieves AlexNet accuracy score on imagenet while



being 50 times smaller. Taking advantage of this reduction
in parameters of the network, it is possible to have a fast and
reliable classifier.

C. Robust 3D cylindrical shape fitting

Our Hough-based cylinder fitting approach is based on the
former work of Rabanni et al. [5] and divides the cylinder
parametric fitting in two independent stages. In the first stage,
3D point normals cast votes for possible cylinder orientations,
in a 2D orientation accumulator. In the second stage, the point
cloud is rotated according to the determined orientation and
each point votes for a position and radius of the cylinder
in a 3D Hough accumulator. In the original work [5] the
unit sphere of orientations is uniformly and deterministically
sampled at a predefined number of points [25], to generate
a discrete Hough accumulator space, in which voting is
subsequently performed. A larger number of cells on the unit
sphere improves the accuracy of the orientation estimate, at
the cost of increased computational effort.

1) Randomized Orientation Hough Accumulator: The
proposed orientation Hough accumulator space is composed
of a set of cells D lying on a unit sphere. The center of
each cell corresponds to a unique absolute orientation. The
accumulator is analogous to a Voronoi diagram defined on
a spherical 2-manifold S2 in 3D space, and is represented
by set of Nd 3D Cartesian sample points with unit norm,
centered in the reference frame origin (center of the sphere)

D = {di ∈ R3, i, ..., Nd : ‖di‖ = 1} (1)

which are i.i.d. and randomly generated from a three dimen-
sional Gaussian Mixture Model (GMM) distribution

di =
vi

‖vi‖
where vi ∼ p (θ) =

M∑
m=1

φmN (µm
d ,Σ

m
d ) (2)

where M is the number of mixture components and where
each di ∈ D represents an orientation, allowing for efficient
voting with estimated surface normals, using simple inner
products (equation 3).

2) Fast Orientation Voting Scheme: At run-time time, the
input of our algorithm is a scene input point cloud which
comprises a finite set of 3D Cartesian points P ⊂ R3 , where
P = {ps, s = 1, ..., Ns}.

First, we estimate the surface normals at each scene point
ps ∈ P using the Principal Component Analysis (PCA) of
the covariance matrix created from its k-nearest neighbors.
Let N = {ns, s = 1, ..., Ns} denote the set of surface
normals. Then, we proceed with the computation of the
principal curvatures as follows. For each scene point ps,
we compute a projection matrix for the tangent plane given
by the associated normal ns. After, we project all normals
from the k-neighborhood onto the tangent plane. Finally, we
compute the centroid and covariance matrix in the projected
space. We finally employ eigenvalue decomposition of this
covariance matrix to obtain the principal curvature direction
csmax ∈ R3 and the corresponding eigenvalue kmax ∈ R.

Let C = {csmax, s = 1, ..., Ns} denote the set of principal
curvature directions and K = {ksmax, s = 1, ..., Ns} the
set of the corresponding eigenvalues. The orientation voting
procedure goes as follows: For each direction cell di in the
orientation Hough accumulator A, we compute the inner
product with all the scene surface normals ns ∈ N and
their associated principal curvature directions csmax ∈ C to
cast continuous votes in the accumulator according to the
function

A(i) =

Ns∑
s=1

ksmax

∣∣(1− dicsmax

)∣∣ ∣∣(1− dins
)∣∣ (3)

This voting function gives more weight to directions that
are simultaneously, orthogonal to the the normal and the
principal curvature directions. Furthermore, the eigenvalue
ksmax functions as a curvature high-pass filter, that suppresses
low curvature candidates, since points belonging to flat
surfaces have very low ksmax. After determining the cylinder
orientation we proceed with the estimation of the cylinder
position and radius. For further details we refer the interest
reader to [5].

3) Goodness-of-fitting criterion: Finally, the goodness of
the fitting of a cylinder is evaluated using the following
conditional confidence measure:

p(cylinder|object) =
Nmodel

Ncluster
(4)

where Nmodel represents the number of points that fit the
estimated cylinder parametric model (i.e. inliers) and Ncluster
the total number of 3D points belonging to the object. Esti-
mations below a user-defined quality threshold are discarded
and considered as non-cylindrical shapes.

IV. RESULTS

In order to assess the behavior of the proposed framework
with real data acquired from a low-cost consumer RGB-
D sensing device, we created multiple tabletop scenarios,
each containing various different shapes including cylindrical
objects (see Fig. 3a for an example view). We quantita-
tively and qualitatively evaluated our attentional framework’s
computational time improvements, in the presence of salient
visual distractors.

In all experiments, the selected parameters for the cylinder
parameter estimation methodology where the following: The
number of orientation sample points in the Hough accumu-
lator space was set to Nd = 450. The radius Hough space
was defined in the interval [0.25, 0.35] and quantized into 10
bins, and the height was defined in the interval [0.05, 1.0]m
and discretized into 100 bins.

A. Classifier Performance Analysis

As described in the previous section, we fine-tune
SqueezeNet with the newly gathered dataset which contains
about 11000 train images and 1200 test images. Fig. 4
shows a few samples that were used to train the network.
The original dataset contained less than 3000 samples and,



Scene Objects Number Avg. Processing Time (ms)
Cylinders Distractors Segmentation Classification Identification Total

no classifier 3 8 100 - 213 313
with classifier 64 70 234

TABLE I: Quantitative analysis of the time performance of the proposed pipeline, for the specific episode of Fig. 3a

(a)

(b)

Fig. 3: Qualitative assessment of our framework with data
data acquired with an Asus Xtion 3D camera. (a) Example
testing scene. (b) Cylinder recognitions (Left): Good and
bad classifications in green and red, respectively. Parameter
identification (Right): green represents correct parameter esti-
mation; blue represents correct non-cylindrical shape objects
identified by the baseline quality of fitting criterion; red
represents wrong estimations without the classifier.

in order to gain more robustness to different orientations,
they were mirrored in vertical and horizontal directions,
effectively quadrupling the amount of available data.

All the layers of the network were fine-tuned. This is jus-
tified because imagenet samples are not centered, as opposed
to our dataset, thus requiring a higher capacity for domain
adaptation. The learning rate for fine-tuning the network was
emperically selected as 0.01 and we kept other parameters as
their proposed values by [24]. Fig. 5 shows the performance
of the classifier during training.

Our initial experiments with the neural network classifier
suggests a generalization to unseen cylindrical and non-
cylindrical objects. However, not surprisingly, it is more re-
liable in classifying seen cylinders. Introducing more unique
cylinders can help mitigating this effect.In order to quan-

(a) Cylindrical samples;
(b) Non-cylindrical sam-
ples.

Fig. 4: Sample examples from the training dataset after
rotation augmentation.
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Fig. 5: Loss and accuracy evolution of the classifier on
training and validation data.

titatively evaluate the performance of the 2D image-based
deep neural network classifier, it is compared with a baseline
indicator of the fit quality criteria defined in section III-C3.
Fig. 6 compares the precision recall curves of the two
classifiers.

B. Overall Framework Assessment

Figure 3 depicts the cylinder parameters estimation quality
for the proposed cylinder fitting methodology in the presence
of noisy 3D point cloud data. The use of prior classification
results not only in temporal gains (see Table I), but also on
early filtering of non-cylindrical distractors, hence improving
the reliability of the 3D cylinder fitting approach. Overall,
the incorporation of shape-based pre-attention mechanism,
results in dramatic improvements on detection speed and
robustness to visual distractors, without sacrificing robustness
to noise. Furthermore, the evaluation of our method with data
acquired from a consumer RGB-D camera demonstrates our
method applicability to real-scenarios and its advantages in
scenes populated with salient visual distractors.
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V. CONCLUSIONS

In this paper, we have proposed a biologically inspired
robust and efficient cylinder detection framework. Unlike
previous approaches that are solely based on 3D depth
information, our methodology incorporates RGB information
by means of a novel shape-based pre-attentive top-down
attentional mechanism that filters out visual distractors at
early stage. The results demonstrate significant detection and
speed-up time improvements.

Currently, the bottleneck section of the presented pipeline
is the generation of object proposals. Having an end-to-end
mechanism, capable of directly predicting region proposals
may significantly speed-up the whole process. In addition,
the current classifier is trained with a limited number of
cylinders, however, it is expected to improve the gener-
alization to unseen cylinders if the training set contains
multiple cylindrical objects of various shapes and colors.
Last, utilizing a generic multi-label classifier paves the way
to extend the current work for multiple shapes such as cubes,
spheres, etc. without sacrificing the performance.
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