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Abstract— Compliant Movement Primitives (CMPs) showed
good performance for a desirable behavior of robots to maintain
low trajectory error while being compliant without knowing the
dynamic model of the task. This framework uses the integral
representation of reference trajectories utilized in a feedback
loop together with driving joint torques that represent the
feed-forward control term. To achieve the generalization of
CMPs, reference trajectories (represented in the form of task
space position trajectories) are encoded as Dynamic Movement
Primitives (DMPs) while the feed-forward torques are learned
through the Gaussian Process Regression (GPR) and are rep-
resented as a combination of radial basis functions. This paper
extends the existing framework through the generalization of
CMPs in bimanual settings that can concurrently achieve low
trajectory errors in relative task space and compliant behavior
in absolute task space. To achieve this behavior of bimanual
robotic system, the control terms derived from CMP framework
are extended with the symmetric control approach. We show
how the task-specific bimanual task dynamics can be learned
and generalized to different task parameters that influence the
task space trajectory and to a different load. Real-world results
on a bimanual Kuka LWR-4 robots configuration confirm the
usability of the extended framework.

I. INTRODUCTION

Although we are witnessing continues progress in collab-
orative robotics [1], where humans and robots can physically
interact to accomplish a common task, this technology has
not yet matured to be widely used. The driving wheel
for further progress comes from the potential to move the
robots from factory floors to everyday human life, and find
broad applications in households, hospitals, residential care
facilities for the elderly etc... In these scenarios, the list of
tasks that require bimanual over single arm configuration is
long, mainly because human’s everyday homes and work
environments are designed with respect to our capabilities.

In environments occupied by humans, safety is of the
highest priority. Where physical contact between human
and the robot can occur, the compliance of the robot is
a necessity. This can be ensured through contact detection
[2], passive compliance using elastic elements [3] or active
torque control strategies, which rely on comparing the actual
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torques and the required theoretical torques [4]. However,
this requires the precise dynamic model of both the robot
and the task (including task variations), but the models of
the task dynamics are usually hard or even not possible to
determine.

When we look at the humans performing an arbitrary bi-
manual task, it is clear that we do not possess the knowledge
of the dynamical model of the task. Inspired by this human’s
ability to learn arbitrary dynamical tasks [5], the framework
of Compliant Movement primitives (CMPs) is being derived
in [6]. The CMP framework is applicable to robots with
active torque control. To extend the ability of imitation of
just one task, statistical generalization is used to allow some
variations in the task definition.

The viability of CMPs was shown in various experiments
performed with a Kuka LWR robot. Both the demonstrated
and generalized CMPs successfully accomplished different
hard-to-model periodic and discrete tasks in a compliant
manner and with high tracking accuracy. Explicit dynamical
models, which can only be provided by experts, were not
required.

One way of mitigating the need to develop dynamical
models of tasks is to learn the specifically required torques
for the given task with learning by imitation. The learned
torques are then applied for the repetition of exact same
task. The framework of Compliant Movement primitives
(CMPs), utilizes this approach. The method was extended
to generalize between a set of learned situations in order
to generate the torques for a new task variation, such as
a different load or speed. Thus, a single robot was able to
perform a wide variety of task variations through direct joint-
position and joint-torque control, with low trajectory errors
but compliantly in the case of an external perturbation. In this
paper, we show that CMPs are useful in bimanual settings
and that generalization can be applied to new task parameters
defined in task space for bimanual robots.

A. Problem Statement

In this paper, we investigate compliant control of a bi-
manual robotic system, physically interacting with a human
(Fig. 1), without explicit dynamical models of the task that
can handle different task parameters defined in task space.

Therefore, the control of the bimanual system must enable
(i) high relative position error rejection and high compliance
behavior in absolute task, (ii) generalization with respect to
position trajectory execution in task space and (iii) general-
ization with respect to different loads imposed to the end-
effectors. The listed properties should be handled by a robotic



Fig. 1. A person interacting with a compliant robot performing the
bimanual task during which the robot holds one object with two arms.

system without knowing the dynamical models of the task,
but only with the use of task-specific torques within the
framework of CMPs.

B. State of the Art

Compliant behavior is the main advantage of torque con-
trolled robots [7], [8]. These robots should offer precise
motion execution and simultaneously the safety in presence
of humans in both industrial and human’s everyday envi-
ronment. However, besides the active torque control robots
(that are used in this research), there are other approaches
to achieve compliance in the joints. One such are artificial
muscle-tendon driven systems as presented in [9] where the
arm-shoulder system is presented. Other approaches rely on
task-specific models. Authors in [10] used tactile sensing to
determine the force of contact with the environment on the
iCub robot to calculate the joint-torques and used them as a
feed-forward signal. In [11] a mapping of external wrenches
to a generalized force in the configuration space is used to
measured joint-level actuation forces. These measurements
are then used as inputs to a compliant motion controller. An
example of passive compliance can be found in COMAN
that uses joint actuators based on the series elastic actuation
principle. In [12] authors presented a method to optimally
tune the joint elasticity based on resonance analysis and
energy storage maximization criteria to determine the passive
compliance. Paper [13] describes the compliance control in
the Valkyrie robot, where it demonstrates the robot’s ability
to accurately track torques with the presented decentralized
control approach.

Another aspect of this paper is bimanual control. In an
asymmetric control scheme, each robot acts independently.
An example using dynamic motion primitives can be found
in [14]. A method of implementing impedance control on a
dual-arm system by using the relative Jacobian technique is
given in [15]. The symmetric control scheme assumes the
two robotic arms are executing the common task, and thus
the motion of the bimanual system can be represented by a
common coordinate frame. In the symmetric control, the task
can be defined in both relative and absolute coordinates. In
[16] is introduced a kinematic control of a dual arm system.
An example of bimanual robot controller for safe interaction

with humans is presented in [17]. It relies on different gains
for absolute and relative motion. This approach, however, did
not offer a solution for low trajectory tracking errors when
the absolute gains are set low.

To address the problem of handling different task pa-
rameters we rely on generalization. Generalization has been
extensively applied in robotics, with methods such as Locally
Weighted Regression [18] and Gaussian Process Regression
(GPR) [19] at the forefront. We refer the reader to [20] for
an extensive overview of generalization of kinematic behav-
ior. However, not so many approaches deal with dynamic
variables. An example of generalization of force trajectories
for peg-in-hole operation is given in [21]. In this paper we,
rely on GPR to generate new CMPs for a bimanual system.

The rest of the paper is organized as follows. In Section II,
is introduced the CMP framework. Section III describes the
procedure for obtaining the model that will provide CMPs
based on the varying parameters of the trajectories and the
load. Experimental results conducted on a bimanual KUKA
LWR-4 robotic system are presented in Section IV and the
final conclusion is given in Section V.

II. COMPLIANT MOVEMENT PRIMITIVES

A. Robot arm controller and Single arm CMPs

The active torque controller, such as the one governing the
motion of Kuka LWR-4 robot arms [22], is defined by

τu = Kq(qd − q ) + Dq(q̇d − q̇ ) + fdyn(q, q̇, q̈ ), (1)

where τu are the driving joint torques, Kq is a diagonal
joint-stiffness matrix, qd and q are the vectors of the desired
and measured joint positions, respectively, Dq is a diagonal
damping matrix, (q̇d and q̇ are the desired and measured vec-
tors of joint angular velocities, respectively, and fdyn(q, q̇, q̈)
represents the torques calculated from the dynamic model of
the robot together with all the non-linearities in the robot
emerging from Coriolis effect, friction, ...

The compliance of the robotic arm is being adjusted by
changing the stiffness matrix (Kq). Smaller values lead to
more compliant behavior, but on the other hand, it affects
the trajectory tracking capability of the robot. One of the
ways to keep the low tracking error simultaneously with
compliant behavior is to introduce feed-forward joint torques
τ ff . Thus, the eq. (1) can be rewritten in the following form:

τu = Kq(qd−q )+Dq(q̇d− q̇ )+fdyn(q, q̇, q̈ )+τ ff . (2)

Typically, feed-forward torques τ ff are calculated from
explicit dynamical models or can be obtained from the
frameworks such as CMPs.

Compliant movement primitives are defined as a combina-
tion of desired motion trajectories and corresponding torque
signals

h(t) = [qd(t), τ f (t)]. (3)

with

qd(t) = [qd1(t), qd2(t), . . . , qdN (t)], (4)
τ f (t) = [τf1(t), τf2(t), . . . , τfN (t)], (5)



where N represents the number of degrees of freedom (DOF)
of the robot. In the proposed approach, joint trajectories
qd are obtained by human demonstration and encoded as
Dynamic Movement Primitives (DMPs) [23], [24]. The cor-
responding torques τ f are recorded during the stiff execution
of demonstrated task, i.e. with a high-gain feedback con-
troller. An example of the use of CMP framework for single
arm robot is given in [6].

B. CMPs in bimanual configuration with symmetric con-
troller

The single arm CMP control method was designed for
joint-space control of the robot. It is thus not applicable for
a bimanual setting, where the control has to be implemented
in the task space. Otherwise, it is impossible to maintain
the bimanual task. The paper [25] describes in detail the
kinematics of the bimanual configuration and derivation
of the compliant bimanual symmetric controller, based on
[16]. For the completeness of this paper, the following text
provides and comments the final derived equation for the
CMP-based symmetric compliant controller. Relying on (2),
in this controller we are using the feed-forward τ ff while
reducing values in stiffness and damping matrix to achieve
compliance, but still preserve accurate trajectory tracking for
specific, learned tasks.

Feed-forward torques τ ff in CMP-based symmetric com-
pliant controller is composed of three components:

τ ff =

[
τ ff,1

τ ff,2

]
= τ rec + τ biman − τ vft. (6)

The pre-recorded or learned task torque τ rec ensures
trajectory tracking. It is the direct output of the CMP. How-
ever, the reference joint trajectories are calculated from the
task-space trajectories using the kinematics of the bimanual
configuration. Inverse kinematics solution needs to match the
posture of the robot during the demonstration.

In eg.6 the bimanual symmetric controller τ biman main-
tains the bimanual task. It is given with:

τ biman = JT (Ktask (xd − x) + Dtask(ẋd − ẋ)) . (7)

where Ktask and Dtask are 12×12 diagonal gain matrices for
stiffness and damping, respectively (6 DOF for the absolute
(Kabs and Krel) and 6 for the relative task (Dabs and Drel)),
J is a Jacobian matrix, and xd are x desired and actual
position of the common coordinate frame in the task space.
A low value on the diagonal of Ktask will result in compliant
behavior for that DOF, which also means that trajectory
tracking in that DOF results in high errors. The controller
increases joint torques based on the error in task space.
Since the gains are decoupled for separate DOFs, in the
case of low gains for the absolute DOFs, Kabs << Krel, the
robot will be compliant in absolute space, but stiff in relative
space. However, it will also not be able to track the desired
trajectories in the absolute space. As described in Section
II-A, trajectory tracking is ensured through the torque part
of CMPs. To ensure that (7) does not act against (2), we set
low values for Kq .

The virtual force translation τ vft reduces the necessary
feedback reaction of (7) and thus increases compliance of
the bimanual system. It is given with:

τ vft =

JT1
(

J†2
)T

∆τ 2

JT2
(

J†1
)T

∆τ 1

 . (8)

where J1 and J2 are Jacobian matrices of left and right
robot arm, while ∆τ 2 and ∆τ 1 are the deviations between
measured and desired joint torques for right and left robot
arm.

C. Experimental results of the bimanual CMP controller

In Fig. 2 we can see the behavior of the underlying
bimanual CMP control approach given with eq. (2) and (6),
that is compliant in the absolute task, but maintains low
errors in the relative task despite the high forces.
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Fig. 2. Absolute error (top), relative error (middle) and end-effector
perturbation (calculated from measured joint torques) when using the
complete controller, given by eq. (2) and (6).

The system was performing the task-space defined trajec-
tory and the absolute (deviation of a common coordinate
frame for both arms in the world coordinate frame) and
relative errors (deviation of the tool-center point (TCP) of
one arm with respect to the TCP of another arm) are being
recorded. The top plot shows the perturbations. We can
see that relatively small perturbations result in significant
motion of the common coordinate frame, as shown in the
middle plot. The bottom plot shows that despite no actual
physical coupling through rigidly holding a common object,
the relative error between the robots was quite low.

III. GENERALIZATION

In this section is given a description of the generaliza-
tion of bimanual CMPs using GPR. Since CMPs provide
trajectories and torque profiles only for specific solutions,
their applicability would remain limited to exactly the same
conditions if it were not for generalization. Through gener-
alization, one can make the system applicable to different
situations and thus overcome the limitation of confinement



to the exact repetitions of pre-learned situations. The task of
the system was to bimanually carry an object, by holding it
with both hands.

Statistical generalization using GPR can be effectively
applied to single-robot tasks. Given a database of CMPs and
associated task parameters (e. g., a new CMP is recorded
for every new load the robot is carrying), we can then use
statistical generalization to calculate CMPs for the loads
between the recorded ones. However, the behavior of the
robot and the query must transition continuously between the
task parameters. We apply this approach for the bimanual
tasks and for the generalization of task space trajectory
and load imposed to end-effectors. Thus, the goal of the
generalization is to learn a model defined as a function:

Fu : c 7−→ [a], (9)

which uses the database of n learned coupling terms u
to define a new coupling term, defined as the weights a
of RBF terms, adapted to the new query point c. The
calculation of the new weights is performed using GPR
[19]. The idea behind using GPR to learn the model is to
allow as to set a new inputs c∗ for which we can effectively
calculate corresponding outputs a∗. The equations explaining
the derivation of GPR model are given below.

If ak ∈ a, k = 1...n, then training data can be written
as {ak, ck}nk=1. If a new set of inputs c∗ is given, Gaussian
Process Regression can be applied to compute a∗ as follows:

a∗ = Σ (C∗,C) ·
[
Σ (C,C) + σ2

nI
]−1

a. (10)

Here C = {c1, . . . , cn}, C∗ = {c∗1, . . . , c∗k}, σn is the noise
variance of the output data and

Σ({c1, . . . , ck}, {c∗1, . . . , c∗k}) =

=

 cov(c1, c
∗
1) . . . cov(c1, c

∗
k)

... . . .
...

cov(cK , c
∗
1) . . . cov(ck, c

∗
k)

 , (11)

cov(ci, c
∗
j ) = σ2

f exp

(
−
‖ci − c∗j‖2

2l2

)
, (12)

where σf is the signal variance and l the characteristic
length-scale, i. e., the change in the input parameters that
will cause a significant change of the output value. σn, σf ,
and l are hyperparameters that can be determined from the
learning data set. One way to calculate σn, σf , and l is by
maximizing the log marginal likelihood

log (p(a|C, σl, σf , l)) =−1

2
aT [Σ(C,C) + σ2

nI]−1a− (13)

1

2
log
(
det
[
Σ(C,C) + σ2

nI
])
− n

2
log 2π.

For generalization use case in this paper, the robots were
physically coupled through holding a common object (see
Fig. 1) and thus no relative error appeared, with low forces
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Fig. 3. Bimanual absolute task database trajectories in blue and generalized
trajectories in red-dashed.

acting on the object. For motion in the task space, a half-
sinusoidal shape trajectory is chosen. The amplitude of the
trajectory is varied in the range from 0.13m to 0.4m with a
0.03m increment. The starting and ending points of the tra-
jectories in task space are set to ~pstart = [0.5, −0.2, 0.78]T

and ~pend = [0.5, 0.2, 0.78]T respectively. Fig. 3 shows
the trajectories stored in the database for learning the model
(blue solid lines) and the shape of trajectories obtained from
the model with the input value set between the database
values (red dashed lines).

Also, the object weight varied in the ranged from 0.5kg
to 4.5kg at a 0.5kg increment. The query into generalization
was thus two-dimensional vector c = [A L]

T , where A is
the amplitude of the half-sinusoidal trajectory and L is the
load, i.e. the weight of the object the robot is carrying with
two arms.

IV. RESULTS

Experimental setup consisted of two Kuka LWR-4 robots
and two BarrettHand BH8-280 hands, as shown in Fig. 1.
In this experiments, the rotation of the 3rd axis on both
robot arms is locked. Thus the system was not redundant
for the task. The system was controlled from MATLAB at
the frequency of 500Hz.

Fig. 4 shows an image sequence of still photos during
the bimanual task execution with the generalized load of
2.25kg and the amplitude of half-sinusoidal trajectory set at
0.16m. Second image sequence, given in Fig. 5, shows a
series of still photos showing the bimanual task execution
with the generalized load of 1.25kg and the amplitude
of half-sinusoidal trajectory set at the highest value, i.e.
0.4m. During execution of the second task the robot was
perturbed through physical interaction with the human. On
the sequence of images is visualized that the robot complies
to the external force, and after the disturbance is canceled, the
robot rejects error in task space and returns to the execution
of the requested trajectory.

The results of the generalization are shown in Fig. 6 and
Fig. 7. In both figures, light blue stars represent the values



Fig. 4. Image sequence of the bimanual system performing the given task using a generalized model obtained with GPR.

Fig. 5. Image sequence of the bimanual system performing a given task using a generalized model with imposed external disturbance.
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of the parameters of the task for which the measurements
are stored in the database and later used for the learning
process. The red stars represent the query point for which
the learned CMPs are used from the generalized model and
for these CMPS the measurements during the task execution
are recorded. Fig. 6 shows the color map of the root mean
square (RMS) error of the absolute task, i.e. the sum of the
RMS error of all three position components of the common
coordinate frame with respect to the desired trajectory for
different loads. We can say that the error is small bearing in
mind that the system is configured as very compliant in the
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absolute task, and only in that case, the use of generalization
is actually justified. Fig. 7 shows the mean value of the
intensity of the error vector. The results shown in this plot,
are comparable to the results obtained in [6], with the notice
that in this paper the generalization is derived for the task
space and in the bimanual configuration.

V. CONCLUSION

In this paper is shown that the generalization was success-
ful for the execution of requested absolute tasks thus allowing
application of the bimanual system within the generalization
area, and not only for the pre-learned examples. During the



execution of the bimanual task, the robots were physically
coupled by holding a rigid object. This lead to the low
error in the relative task. In this configuration, we showed
that the system is compliant to external disturbances while
maintaining the execution of bimanual task, and that the
controller is general to the absolute task parameters that can
change load and shape of the trajectory in task space.

In the experiments is shown that the proposed controller
calculates all the control signals in real time, and proves
the applicability of the method. For the future work, we
will focus on the experiments that asks for dynamic relative
task with the robot holding one elastic or multiple rigid
objects. Also we will consider designing the hybrid controller
that allows the seamless switching between the execution of
symmetric and asymmetric bimanual tasks.
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